Package ‘DrImpute’

July 15, 2017

Version 1.0
Date 2017-7-15
Title Imputing Dropout Events in Single-Cell RNA-sequencing Data
Description R codes for imputing dropout events. Many statistical methods in cell type identification, visualization and lineage reconstruction do not account for dropout events ('PCAreduce', 'SC3', 'PCA', 't-SNE', 'Monocle', 'TSCAN', etc). ‘DrImpute’ can improve the performance of such software by imputing dropout events.

Author Il-Youp Kwak with contributions from Wuming Gong
Maintainer Il-Youp Kwak <ilyoup.kwak@gmail.com>
Depends R (>= 3.1.0)
Imports Rcpp
Suggests knitr, rmarkdown, devtools, roxygen2, irlba
License GPL-3
VignetteBuilder knitr
URL https://github.com/ikwak2/DrImpute
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-07-15 21:00:01 UTC

R topics documented:

 DrImpute ... 2
 exdata .. 3
 getCls .. 3
 preprocessSC .. 4

Index 6
DrImpute

Imputing dropout events in single-cell RNA-sequencing data.

Description

Imputing dropout events in single-cell RNA-sequencing data.

Usage

`DrImpute(x, ks = 10:15, dists = c("spearman", "pearson"), method = "mean",
cls = NULL, seed = 1, zerop = 0)`

Arguments

- **X** Gene expression matrix (gene by cell).
- **ks** Number of cell clustering groups. Default set to ks = 10:15.
- **dists** Distribution matrices to use. Default is set to c("spearman", "pearson"). "eucleadian" can be added as well.
- **method** Use "mean" for mean imputation, "med" for median imputation.
- **cls** User can manually provide clustering information. Using different base clusterings. each row represent different clusterings. each column represent each cell.
- **seed** User can provide a seed.
- **zerop** zero percentage of resulting imputation is at least zerop.

Value

Imputed Gene expression matrix (gene by cell).

Author(s)

Il-Youp Kwak

References

Il-Youp Kwak, Wuming Gong, Kaoko Koyano-Nakagawa and Daniel J. Garry (2017+) DrImpute: Imputing dropout events in single cell RNA sequencing data

Examples

```r
data(exdata)
exdata <- preprocessSC(exdata)
exdata <- exdata[1:3000, 1:80]
logdat <- log(exdata+1)
cls <- getCls(logdat)
logdat_imp <- DrImpute(logdat, cls = cls)
```
exdata

Usoskin data

Description

This data set is subset from Usoskin et al. (2015). Original data is RNA-seq data on 799 cells dissected from the mouse lumbar dorsal root ganglion distributed over a total of nine 96-well plates. We randomly selected 150 cells from the data.

Column names indicate four different cell types, NF, NP, TH, and PEP.

Usage

data(exdata)

References

Examples

data(exdata)
exdata <- preprocessSC(exdata)

getCls

get base clustering results using SC3 based clustering methods.

Description

Similarity matrix constructed using "pearson", "spearman" or "euclidean". K-means clustering is performed on first few number of principal components of similarity matrix.

Usage

getCls(X, ks = 10:15, dists = c("spearman", "pearson"),
dim.reduc.prop = 0.05)

Arguments

X Log transformed gene expression matrix (Gene by Cell).
ks Number of cell clustering groups. Default set to ks = 10:15.
dists Distribution matrices to use. Default is set to c("spearman", "pearson"). "euclidean" can be added as well.
dim.reduc.prop Proportion of principal components to use for K-means clustering.
Value

A matrix object, each row represents different clustering results.

Author(s)

Il-Youp Kwak

References

Il-Youp Kwak, Wuming Gong, Kaoko Koyano-Nakagawa and Daniel J. Garry (2017+) DrImpute: Imputing dropout events in single cell RNA sequencing data

See Also

DrImpute preprocessSC

Examples

```r
data(exdata)
exdata <- preprocessSC(exdata)
exdata <- exdata[1:3000, 1:80]
logdat <- log(exdata+1)
cls <- getCls(logdat)
```

preprocessSC

A function for preprocessing gene expression matrix.

Description

Preprocess gene expression data

Usage

```r
preprocessSC(X, min.expressed.gene = 0, min.expressed.cell = 2, 
max.expressed.ratio = 1, normalize.by.size.effect = FALSE)
```

Arguments

- `X` : Gene expression matrix (Gene by Cell).
- `min.expressed.gene` : Cell level filtering criteria. For a given cell, if the number of expressed genes are less than min.expressed.gene, we filter it out.
- `min.expressed.cell` : Gene level filtering criteria. For a given gene, if the number of expressed cells are less than min.expressed.cell, we filter it out.
preprocessSC

max.expressed.ratio
 Gene level filtering criteria. For a given gene, if the ratio of expressed cells are larger than max.expressed.ratio, we filter it out.

normalize.by.size.effect
 Normalize using size factor.

Value
 Filtered gene expression matrix

Author(s)
 Wuming Gong

References
 Il-Youp Kwak, Wuming Gong, Kaoko Koyano-Nakagawa and Daniel J. Garry (2017+) DrImpute: Imputing dropout events in single cell RNA sequencing data

See Also
 DrImpute

Examples

 data(exdata)
 exdata <- preprocessSC(exdata)
Index

DrImpute, 2, 4, 5
exdata, 3
getCls, 3
preprocessSC, 4, 4