Package ‘DrugUtilisation’

July 29, 2024

Title Summarise Patient-Level Drug Utilisation in Data Mapped to the OMOP Common Data Model

Version 0.7.0

Description Summarise patient-level drug utilisation cohorts using data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model. New users and prevalent users cohorts can be generated and their characteristics, indication and drug use summarised.

License Apache License (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests covr, testthat (>= 3.1.5), odbc, CohortSurvival, here, RPostgres, duckdb, knitr, rmarkdown, ggplot2, tibble, gt, flextable, ggttext, scales, tictoc, DBI

Config/testthat/edition 3

Imports CDMConnector (>= 1.4.0), CodelistGenerator (>= 3.1.0), checkmate, dbplyr, dplyr, glue, clock, tidyr, rlang, cli, PatientProfiles (>= 1.0.0), purrr, omopgenerics (>= 0.2.3), visOmopResults, lifecycle, stringr

Depends R (>= 2.10)

LazyData true

URL https://darwin-eu-dev.github.io/DrugUtilisation/

Config/testthat/parallel true

VignetteBuilder knitr

NeedsCompilation no

Author Martí Català [aut, cre] (<https://orcid.org/0000-0003-3308-9905>), Mike Du [ctb] (<https://orcid.org/0000-0002-9517-8834>), Yuchen Guo [aut] (<https://orcid.org/0000-0002-0847-4855>), Kim Lopez-Guell [aut] (<https://orcid.org/0000-0002-8462-8668>), Edward Burn [aut] (<https://orcid.org/0000-0002-9286-1128>), Xintong Li [ctb] (<https://orcid.org/0000-0002-6872-5804>), Marta Alcalde-Herraiz [ctb] (<https://orcid.org/0009-0002-4405-1814>),
Nuria Mercade-Besora [aut] (<https://orcid.org/0009-0006-7948-3747>),
Xihang Chen [aut] (<https://orcid.org/0009-0001-8112-8959>)

Maintainer Martí Català <marti.catalasabate@ndorms.ox.ac.uk>
Repository CRAN
Date/Publication 2024-07-29 18:20:02 UTC

Contents

addCumulativeDose .. 3
addCumulativeQuantity ... 4
addDailyDose ... 5
addDrugUse ... 6
addDrugUtilisation .. 8
addExposedTime .. 10
addIndication .. 11
addInitialDailyDose ... 12
addInitialQuantity ... 14
addNumberEras .. 15
addNumberExposures ... 16
addRoute ... 17
addTimeToExposure ... 18
benchmarkDrugUtilisation ... 19
cohortGapEra .. 20
dailyDoseCoverage .. 21
defaultTableOptions ... 21
generateAtcCohortSet .. 22
generateDrugUtilisationCohortSet 23
generateIngredientCohortSet ... 25
mockDrugUtilisation .. 27
patternsWithFormula .. 28
patternTable ... 28
plotDrugRestart .. 29
plotIndication .. 30
plotProportionOfPatientsCovered 31
plotTreatment ... 32
readConceptList .. 33
requireDrugInDateRange ... 33
requireIsFirstDrugEntry ... 34
requireObservationBeforeDrug 35
requirePriorDrugWashout .. 36
stratifyByUnit ... 37
summariseDoseCoverage ... 38
summariseDrugRestart .. 39
summariseDrugUse ... 40
summariseDrugUtilisation .. 42
summariseIndication ... 43
summariseProportionOfPatientsCovered 45
addCumulativeDose

To add a new column with the cumulative dose. To add multiple columns use `addDrugUtilisation()` for efficiency.

Description

To add a new column with the cumulative dose. To add multiple columns use `addDrugUtilisation()` for efficiency.

Usage

```
addCumulativeDose(
  cohort,  
  ingredientConceptId,  
  conceptSet = NULL,  
  indexDate = "cohort_start_date",  
  censorDate = "cohort_end_date",  
  restrictIncident = TRUE,  
  nameStyle = "cumulative_dose_{concept_name}_{ingredient}";
  name = NULL
)
```

Arguments

- **cohort**
 Cohort in the cdm.

- **ingredientConceptId**
 Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.

- **conceptSet**
 List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.

- **indexDate**
 Name of a column that indicates the date to start the analysis.

- **censorDate**
 Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.

- **restrictIncident**
 Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.

- **nameStyle**
 Character string to specify the nameStyle of the new columns.

- **name**
 Name of the new computed cohort table, if NULL a temporary tables is created.
addCumulativeQuantity

Value

The same cohort with the added column.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

cdm$cohort1 |>  
  addCumulativeDose(ingredientConceptId = 1125315)
```

addCumulativeQuantity To add a new column with the cumulative quantity. To add multiple columns use addDrugUtilisation() for efficiency.

Description

To add a new column with the cumulative quantity. To add multiple columns use addDrugUtilisation() for efficiency.

Usage

```r
addCumulativeQuantity(
  cohort,
  conceptSet,
  indexDate = "cohort_start_date",
  censorDate = "cohort_end_date",
  restrictIncident = TRUE,
  nameStyle = "cumulative_quantity_{concept_name}",
  name = NULL
)
```

Arguments

- **cohort**: Cohort in the cdm.
- **conceptSet**: List of concepts to be included.
- **indexDate**: Name of a column that indicates the date to start the analysis.
- **censorDate**: Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
- **restrictIncident**: Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
- **nameStyle**: Character string to specify the nameStyle of the new columns.
- **name**: Name of the new computed cohort table, if NULL a temporary tables is created.
addDailyDose

Value

The same cohort with the added column.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
cdm,
name = "acetaminophen"
)
cdm <- generateDrugUtilisationCohortSet(
cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |> 
  addCumulativeQuantity(conceptSet = codelist)
```

addDailyDose

add daily dose information to a drug_exposure table

Description

[Deprecated]

Usage

```r
addDailyDose(drugExposure, ingredientConceptId, name = NULL)
```

Arguments

- `drugExposure`
 drugExposure it must contain drug_concept_id, quantity, drug_exposure_start_date and drug_exposure_end_date as columns

- `ingredientConceptId`
 ingredientConceptId for which to filter the drugs of interest

- `name`
 Name of the computed table, if NULL a temporary table will be generated.

Value

same input table
Examples

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm[['drug_exposure']] |> 
  filter(drug_concept_id == 2905077) |> 
  addDailyDose(ingredientConceptId = 1125315)
```

addDrugUse

Add new columns with drug use related information

Description

[Deprecated]

Usage

```r
addDrugUse(
  cohort,
  cdm = lifecycle::deprecated(),
  ingredientConceptId,
  conceptSet = NULL,
  duration = TRUE,
  quantity = TRUE,
  dose = TRUE,
  gapEra = 0,
  eraJoinMode = "zero",
  overlapMode = "sum",
  sameIndexMode = "sum",
  imputeDuration = "none",
  imputeDailyDose = "none",
  durationRange = c(1, Inf),
  dailyDoseRange = c(0, Inf)
)
```

Arguments

- **cohort** Cohort in the cdm
- **cdm** deprecated
- **ingredientConceptId** Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.
addDrugUse

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>conceptSet</td>
<td>List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.</td>
</tr>
<tr>
<td>duration</td>
<td>Whether to add duration related columns.</td>
</tr>
<tr>
<td>quantity</td>
<td>Whether to add quantity related columns.</td>
</tr>
<tr>
<td>dose</td>
<td>Whether to add dose related columns.</td>
</tr>
<tr>
<td>gapEra</td>
<td>Number of days between two continuous exposures to be considered in the same era.</td>
</tr>
<tr>
<td>eraJoinMode</td>
<td>How two different continuous exposures are joined in an era. There are four options: "zero" the exposures are joined considering that the period between both continuous exposures the subject is treated with a daily dose of zero. The time between both exposures contributes to the total exposed time. "join" the exposures are joined considering that the period between both continuous exposures the subject is treated with a daily dose of zero. The time between both exposures does not contribute to the total exposed time. "previous" the exposures are joined considering that the period between both continuous exposures the subject is treated with the daily dose of the previous subexposure. The time between both exposures contributes to the total exposed time. "subsequent" the exposures are joined considering that the period between both continuous exposures the subject is treated with the daily dose of the subsequent subexposure. The time between both exposures contributes to the total exposed time.</td>
</tr>
<tr>
<td>overlapMode</td>
<td>How the overlapping between two exposures that do not start on the same day is solved inside a subexposure. There are five possible options: "previous" the considered daily dose is the one of the earliest exposure. "subsequent" the considered daily dose is the one of the new exposure that starts in that subexposure. "minimum" the considered daily dose is the minimum of all of the exposures in the subexposure. "maximum" the considered daily dose is the maximum of all of the exposures in the subexposure. "sum" the considered daily dose is the sum of all the exposures present in the subexposure.</td>
</tr>
<tr>
<td>sameIndexMode</td>
<td>How the overlapping between two exposures that start on the same day is solved inside a subexposure. There are three possible options: "minimum" the considered daily dose is the minimum of all of the exposures in the subexposure. "maximum" the considered daily dose is the maximum of all of the exposures in the subexposure. "sum" the considered daily dose is the sum of all the exposures present in the subexposure.</td>
</tr>
<tr>
<td>imputeDuration</td>
<td>Whether/how the duration should be imputed "none", "median", "mean", "mode" or a number</td>
</tr>
<tr>
<td>imputeDailyDose</td>
<td>Whether/how the daily dose should be imputed "none", "median", "mean", "mode" or a number</td>
</tr>
<tr>
<td>durationRange</td>
<td>Range between the duration must be comprised. It should be a numeric vector of length two, with no NAs and the first value should be equal or smaller than the second one. It must not be NULL if imputeDuration is not "none". If NULL no restrictions are applied.</td>
</tr>
<tr>
<td>dailyDoseRange</td>
<td>Range between the daily dose must be comprised. It should be a numeric vector of length two, with no NAs and the first value should be equal or smaller than the second one. It must not be NULL if imputeDailyDose is not "none". If NULL no restrictions are applied.</td>
</tr>
</tbody>
</table>
addDrugUtilisation

Value

The same cohort with the added columns.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

codelist <- CodelistGenerator::getDrugIngredientCodes(
  cdm,
  name = "acetaminophen"
)

cdm <- generateDrugUtilisationCohortSet(cdm, "dus_cohort", codelist)

cdm[["dus_cohort"]]
  |> addDrugUse(ingredientConceptId = 1125315)
```

Description

Add new columns with drug use related information

Usage

```r
addDrugUtilisation(
  cohort,
  gapEra,
  conceptSet = NULL,
  ingredientConceptId = NULL,
  indexDate = "cohort_start_date",
  censorDate = "cohort_end_date",
  restrictIncident = TRUE,
  numberExposures = TRUE,
  numberEras = TRUE,
  exposedTime = TRUE,
  timeToExposure = TRUE,
  initialQuantity = TRUE,
  cumulativeQuantity = TRUE,
  initialDailyDose = TRUE,
  cumulativeDose = TRUE,
  nameStyle = "{value}_{concept_name}_{ingredient}",
  name = NULL
)
```
Arguments

- **cohort**: Cohort in the cdm
- **gapEra**: Number of days between two continuous exposures to be considered in the same era.
- **conceptSet**: List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.
- **ingredientConceptId**: Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.
- **indexDate**: Name of a column that indicates the date to start the analysis.
- **censorDate**: Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
- **restrictIncident**: Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
- **numberExposures**: Whether to add a column with the number of exposures.
- **numberEras**: Whether to add a column with the number of eras.
- **exposedTime**: Whether to add a column with the number of exposed days.
- **timeToExposure**: Whether to add a column with the number of days between indexDate and start of the first exposure.
- **initialQuantity**: Whether to add a column with the initial quantity.
- **cumulativeQuantity**: Whether to add a column with the cumulative quantity of the identified prescription.
- **initialDailyDose**: Whether to add a column with the initial daily dose.
- **cumulativeDose**: Whether to add a column with the cumulative dose.
- **nameStyle**: Character string to specify the nameStyle of the new columns.
- **name**: Name of the new computed cohort table, if NULL a temporary tables is created.

Value

The same cohort with the added columns.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
  cdm,
  name = "acetaminophen"
)
```
```r
# Example

cdm <- generateDrugUtilisationCohortSet(cdm, "dus_cohort", codelist)
cdm[["dus_cohort"]]
  |> addDrugUtilisation(ingredientConceptId = 1125315, gapEra = 30)
```

addExposedTime

To add a new column with the exposed time. To add multiple columns use `addDrugUtilisation()` for efficiency.

Description

To add a new column with the exposed time. To add multiple columns use `addDrugUtilisation()` for efficiency.

Usage

```r
addExposedTime(
  cohort, 
  conceptSet, 
  gapEra, 
  indexDate = "cohort_start_date", 
  censorDate = "cohort_end_date", 
  restrictIncident = TRUE, 
  nameStyle = "exposed_time_{concept_name}", 
  name = NULL 
)
```

Arguments

- **cohort**
 Cohort in the cdm.
- **conceptSet**
 List of concepts to be included.
- **gapEra**
 Number of days between two continuous exposures to be considered in the same era.
- **indexDate**
 Name of a column that indicates the date to start the analysis.
- **censorDate**
 Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
- **restrictIncident**
 Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
- **nameStyle**
 Character string to specify the nameStyle of the new columns.
- **name**
 Name of the new computed cohort table, if NULL a temporary tables is created.

Value

The same cohort with the added column.
Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
  cdm,
  name = "acetaminophen"
)

cdm <- generateDrugUtilisationCohortSet(
  cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |>
  addExposedTime(conceptSet = codelist, gapEra = 1)
```

addIndication

Add a variable indicating individuals indications

Description

Add a variable to a drug cohort indicating their presence in an indication cohort in a specified time window. If an individual is not in one of the indication cohorts, they will be considered to have an unknown indication if they are present in one of the specified OMOP CDM clinical tables. If they are neither in an indication cohort or a clinical table they will be considered as having no observed indication.

Usage

```r
addIndication(
  cohort, indicationCohortName, indicationCohortId = NULL, indicationWindow = list(c(0, 0)), unknownIndicationTable = NULL, indexDate = "cohort_start_date", censorDate = NULL, name = NULL
)
```

Arguments

- **cohort**
 - A cohort table in the cdm.
- **indicationCohortName**
 - Name of indication cohort table
- **indicationCohortId**
 - Target cohort Id to add indication
addInitialDailyDose

- **indicationWindow**: time window of interests
- **unknownIndicationTable**: Tables to search unknown indications
- **indexDate**: Date respect to indication will be calculated.
- **censorDate**: After that day no indication will be considered.
- **name**: name of permanant table

Value

The original table with a variable added that summarises the individual’s indications.

Examples

```r
library(DrugUtilisation)
library(CDMConnector)
library(dplyr)

cdm <- mockDrugUtilisation()

indications <- list("headache" = 378253, "asthma" = 317009)

## create a concept cohort set and add indication

## add indication and show the added indication

## add initial daily dose

## add concept cohort set

## add ingredient cohort set

## add indication
```

Description

To add a new column with the initial daily dose. To add multiple columns use `addDrugUtilisation()` for efficiency.
Usage

addInitialDailyDose(
 cohort,
 ingredientConceptId,
 conceptSet = NULL,
 indexDate = "cohort_start_date",
 censorDate = "cohort_end_date",
 restrictIncident = TRUE,
 nameStyle = "initial_daily_dose_{concept_name}_{ingredient}" ,
 name = NULL
)

Arguments

cohort Cohort in the cdm.

ingredientConceptId Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.

conceptSet List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.

indexDate Name of a column that indicates the date to start the analysis.

censorDate Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.

restrictIncident Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.

nameStyle Character string to specify the nameStyle of the new columns.

name Name of the new computed cohort table, if NULL a temporary tables is created.

Value

The same cohort with the added column.

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

cdm$cohort1 |>
 addInitialDailyDose(ingredientConceptId = 1125315)
addInitialQuantity

To add a new column with the initial quantity. To add multiple columns use addDrugUtilisation() for efficiency.

Description
To add a new column with the initial quantity. To add multiple columns use addDrugUtilisation() for efficiency.

Usage
addInitialQuantity(
 cohort,
 conceptSet,
 indexDate = "cohort_start_date",
 censorDate = "cohort_end_date",
 restrictIncident = TRUE,
 nameStyle = "initial_quantity_{concept_name}",
 name = NULL
)

Arguments
- **cohort**: Cohort in the cdm.
- **conceptSet**: List of concepts to be included.
- **indexDate**: Name of a column that indicates the date to start the analysis.
- **censorDate**: Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
- **restrictIncident**: Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
- **nameStyle**: Character string to specify the nameStyle of the new columns.
- **name**: Name of the new computed cohort table, if NULL a temporary tables is created.

Value
The same cohort with the added column.

Examples
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
 cdm,
 name = "acetaminophen"
)
addNumberEras

)
cdm <- generateDrugUtilisationCohortSet(
 cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |>
 addInitialQuantity(conceptSet = codelist)

addNumberEras

| To add a new column with the number of eras. To add multiple columns use addDrugUtilisation() for efficiency. |

Description

To add a new column with the number of eras. To add multiple columns use addDrugUtilisation() for efficiency.

Usage

addNumberEras(
 cohort,
 conceptSet,
 gapEra,
 indexDate = "cohort_start_date",
 censorDate = "cohort_end_date",
 restrictIncident = TRUE,
 nameStyle = "number_eras_{concept_name}",
 name = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohort</td>
<td>Cohort in the cdm.</td>
</tr>
<tr>
<td>conceptSet</td>
<td>List of concepts to be included.</td>
</tr>
<tr>
<td>gapEra</td>
<td>Number of days between two continuous exposures to be considered in the same era.</td>
</tr>
<tr>
<td>indexDate</td>
<td>Name of a column that indicates the date to start the analysis.</td>
</tr>
<tr>
<td>censorDate</td>
<td>Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.</td>
</tr>
<tr>
<td>restrictIncident</td>
<td>Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.</td>
</tr>
<tr>
<td>nameStyle</td>
<td>Character string to specify the nameStyle of the new columns.</td>
</tr>
<tr>
<td>name</td>
<td>Name of the new computed cohort table, if NULL a temporary tables is created.</td>
</tr>
</tbody>
</table>
Value

The same cohort with the added column.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
  cdm,
  name = "acetaminophen"
)
cdm <- generateDrugUtilisationCohortSet(
  cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |> addNumberEras(conceptSet = codelist, gapEra = 1)
```

addNumberExposures To add a new column with the number of exposures. To add multiple columns use `addDrugUtilisation()` for efficiency.

Description

To add a new column with the number of exposures. To add multiple columns use `addDrugUtilisation()` for efficiency.

Usage

```r
addNumberExposures(
  cohort, 
  conceptSet, 
  indexDate = "cohort_start_date", 
  censorDate = "cohort_end_date", 
  restrictIncident = TRUE, 
  nameStyle = "number_exposures_{concept_name}", 
  name = NULL 
)
```

Arguments

- **cohort** Cohort in the cdm
- **conceptSet** List of concepts to be included.
- **indexDate** Name of a column that indicates the date to start the analysis.
addRoute

`censorDate` Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.

`restrictIncident` Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.

`nameStyle` Character string to specify the nameStyle of the new columns.

`name` Name of the new computed cohort table, if NULL a temporary tables is created.

Value

The same cohort with the added columns.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
  cdm,
  name = "acetaminophen"
)
cdm <- generateDrugUtilisationCohortSet(
  cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |>  
  addNumberExposures(conceptSet = codelist)
```

addRoute

`add route column to a table containing drug_exposure information`

Description

[Deprecated]

Usage

`addRoute(drugTable)`

Arguments

`drugTable` Table in the cdm that must contain drug_concept_id

Value

It adds route to the current table
Examples

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm[["drug_exposure"]]
  |> addRoute()
```

addTimeToExposure

To add a new column with the time to exposure. To add multiple columns use addDrugUtilisation() for efficiency.

Description

To add a new column with the time to exposure. To add multiple columns use addDrugUtilisation() for efficiency.

Usage

```r
addTimeToExposure(
  cohort,  # Cohort in the cdm.
  conceptSet,  # List of concepts to be included.
  indexDate = "cohort_start_date",  # Name of a column that indicates the date to start the analysis.
  censorDate = "cohort_end_date",  # Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
  restrictIncident = TRUE,  # Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
  nameStyle = "time_to_exposure_{concept_name}"  # Character string to specify the nameStyle of the new columns.
  name = NULL,  # Name of the new computed cohort table, if NULL a temporary tables is created.
)
```

Arguments

- **cohort**: Cohort in the cdm.
- **conceptSet**: List of concepts to be included.
- **indexDate**: Name of a column that indicates the date to start the analysis.
- **censorDate**: Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
- **restrictIncident**: Whether to include only incident prescriptions in the analysis. If FALSE all prescriptions that overlap with the study period will be included.
- **nameStyle**: Character string to specify the nameStyle of the new columns.
- **name**: Name of the new computed cohort table, if NULL a temporary tables is created.
Value
The same cohort with the added column.

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(
 cdm,
 name = "acetaminophen"
)
cdm <- generateDrugUtilisationCohortSet(
 cdm = cdm, name = "dus_cohort", conceptSet = codelist
)

cdm$dus_cohort |>
 addTimeToExposure(conceptSet = codelist)

benchmarkDrugUtilisation

Run benchmark of drug utilisation cohort generation

Description
Run benchmark of drug utilisation cohort generation

Usage
benchmarkDrugUtilisation(
 cdm,
 numberOfCohort = 1:4,
 indicationCohortName = "cohort1",
 ingredientId = 1125315,
 drugExposureName = "drug_exposure"
)

Arguments

cdm A CDM reference object
numberOfCohort Number of cohort to generate for benchmarking. An integer or a vector of integers
indicationCohortName Name of indication cohort table
ingredientId Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.
cohortGapEra

Value

A tibble with time taken for different analyses.

Examples

```r
library(DrugUtilisation)
cdm <- mockDrugUtilisation()
timings <- benchmarkDrugUtilisation(cdm)
timings
```

cohortGapEra
Get the gapEra used to create a cohort

Description

Get the gapEra used to create a cohort.

Usage

`cohortGapEra(cohort, cohortId = NULL)`

Arguments

- `cohort`: A cohort_table object.
- `cohortId`: Integer vector referring to cohortIds from cohort. If NULL all cohort definition ids in settings will be used.

Value

gapEra values for the specific cohortIds.

Examples

```r
library(CDMConnector)
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()
druglist <- CodelistGenerator::getDrugIngredientCodes(
```
dailyDoseCoverage

```r
cdm, c("acetaminophen", "metformin")
)

cdm <- generateDrugUtilisationCohortSet(
  cdm = cdm,
  name = "drug_cohorts",
  conceptSet = druglist,
  gapEra = 100
)

cohortGapEra(cdm$drug_cohorts)
```

dailyDoseCoverage

Check coverage of daily dose computation in a sample of the cdm for selected concept sets and ingredient

Description

[Deprecated]

Usage

```r
dailyDoseCoverage(cdm, ingredientConceptId)
```

Arguments

- `cdm`
 A cdm reference created using CDMConnector

- `ingredientConceptId`
 Code indicating the ingredient of interest

Value

The function returns information of the coverage of computeDailyDose.R for the selected ingredients and concept sets

defaultTableOptions

Additional arguments for the table functions.

Description

It provides a list of allowed inputs for .option argument in table functions, and their given default values.
generateAtcCohortSet

Usage

defaultTableOptions()

Value

The default .options named list.

Examples

{
 defaultTableOptions()
}

generateAtcCohortSet Generate a set of drug cohorts based on ATC classification

Description

Adds a new cohort table to the cdm reference with individuals who have drug exposure records that belong to the specified Anatomical Therapeutic Chemical (ATC) classification. Cohort start and end dates will be based on drug record start and end dates, respectively. Records that overlap or have fewer days between them than the specified gap era will be concatenated into a single cohort entry.

Usage

generateAtcCohortSet(
 cdm, # A cdm reference.
 name, # The name of the new cohort table to add to the cdm reference.
 atcName = NULL, # Names of ATC classification of interest.
 level = c("ATC 1st"),
 doseForm = NULL,
 gapEra = 1,
 durationRange = lifecycle::deprecated(),
 imputeDuration = lifecycle::deprecated(),
 priorUseWashout = lifecycle::deprecated(),
 priorObservation = lifecycle::deprecated(),
 cohortDateRange = lifecycle::deprecated(),
 limit = lifecycle::deprecated()
)

Arguments

cdm A cdm reference.
name The name of the new cohort table to add to the cdm reference.
atcName Names of ATC classification of interest.
```r
level

ATC level. Can be one or more of "ATC 1st", "ATC 2nd", "ATC 3rd", "ATC 4th", and "ATC 5th"

doseForm

Only descendants codes with the specified dose form will be returned. If NULL, descendant codes will be returned regardless of dose form.

gapEra

Number of days between two continuous exposures to be considered in the same era. Records that have fewer days between them than this gap will be concatenated into the same cohort record.

durationRange

Deprecated.

imputeDuration

Deprecated.

priorUseWashout

Deprecated.

priorObservation

Deprecated.

cohortDateRange

Deprecated.

limit

Deprecated.

Value

The function returns the cdm reference provided with the addition of the new cohort table.

Examples

```r
cdm <- mockDrugUtilisation()
cdm <- generateAtcCohortSet(
 cdm = cdm,
 atcName = "alimentary tract and metabolism",
 name = "drugs"
)
cdm$drugs |>
glimpse()
```
Usage

generateDrugUtilisationCohortSet(
    cdm,
    name,
    conceptSet,
    gapEra = 1,
    durationRange = lifecycle::deprecated(),
    imputeDuration = lifecycle::deprecated(),
    priorUseWashout = lifecycle::deprecated(),
    priorObservation = lifecycle::deprecated(),
    cohortDateRange = lifecycle::deprecated(),
    limit = lifecycle::deprecated()
)

Arguments

cdm  A cdm reference.
name The name of the new cohort table to add to the cdm reference.
conceptSet The concepts used to create the cohort, provide as a codelist or concept set expression.
gapEra Number of days between two continuous exposures to be considered in the same era. Records that have fewer days between them than this gap will be concatenated into the same cohort record.
durationRange Deprecated.
imputeDuration Deprecated.
priorUseWashout Deprecated.
priorObservation Deprecated.
cohortDateRange Deprecated.
limit Deprecated.

Value

The function returns the cdm reference provided with the addition of the new cohort table.

Examples

library(CDMConnector)
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

druglist <- CodelistGenerator::getDrugIngredientCodes(
    cdm, c("acetaminophen", "metformin"))
generateIngredientCohortSet

Generate a set of drug cohorts based on drug ingredients

Description

Adds a new cohort table to the cdm reference with individuals who have drug exposure records with the specified drug ingredient. Cohort start and end dates will be based on drug record start and end dates, respectively. Records that overlap or have fewer days between them than the specified gap era will be concatenated into a single cohort entry.

Usage

generateIngredientCohortSet(cdm, name, ingredient = NULL, doseForm = NULL, doseUnit = NULL, routeCategory = NULL, ingredientRange = c(1, Inf), gapEra = 1, durationRange = lifecycle::deprecated(), imputeDuration = lifecycle::deprecated(), priorUseWashout = lifecycle::deprecated(), priorObservation = lifecycle::deprecated(), cohortDateRange = lifecycle::deprecated(), limit = lifecycle::deprecated())

Arguments

cdm A cdm reference.
name The name of the new cohort table to add to the cdm reference.
generateIngredientCohortSet

**ingredient**
Accepts both vectors and named lists of ingredient names. For a vector input, e.g., c("acetaminophen", "codeine"), it generates a cohort table with descendant concept codes for each ingredient, assigning unique cohort_definition_id. For a named list input, e.g., list("test_1" = c("simvastatin", "acetaminophen"), "test_2" = "metformin"), it produces a cohort table based on the structure of the input, where each name leads to a combined set of descendant concept codes for the specified ingredients, creating distinct cohort_definition_id for each named group.

**doseForm**
Only descendants codes with the specified dose form will be returned. If NULL, descendant codes will be returned regardless of dose form.

**doseUnit**
Only descendants codes with the specified dose unit will be returned. If NULL, descendant codes will be returned regardless of dose unit.

**routeCategory**
Only descendants codes with the specified route will be returned. If NULL, descendant codes will be returned regardless of route category.

**ingredientRange**
Used to restrict descendant codes to those associated with a specific number of ingredients. Must be a vector of length two with the first element the minimum number of ingredients allowed and the second the maximum. A value of c(2, 2) would restrict to only concepts associated with two ingredients.

**gapEra**
Number of days between two continuous exposures to be considered in the same era. Records that have fewer days between them than this gap will be concatenated into the same cohort record.

**durationRange**
Deprecated.

**imputeDuration**
Deprecated.

**priorUseWashout**
Deprecated.

**priorObservation**
Deprecated.

**cohortDateRange**
Deprecated.

**limit**
Deprecated.

**Value**
The function returns the cdm reference provided with the addition of the new cohort table.

**Examples**

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm <- generateIngredientCohortSet(
 cdm = cdm,
 ingredient = "acetaminophen",
 name = "acetaminophen"
)```

mockDrugUtilisation

It creates a mock database for testing DrugUtilisation package

Usage

mockDrugUtilisation(
 con = NULL,
 writeSchema = NULL,
 numberIndividuals = 10,
 seed = NULL,
 ...
)

Arguments

con

A DBIConnection object to a database. If NULL a new duckdb connection will be used.

writeSchema

A schema with writing permissions to copy there the cdm tables.

numberIndividuals

Number of individuals in the mock cdm.

seed

Seed for the random numbers. If NULL no seed is used.

... Tables to use as basis to create the mock. If some tables are provided they will be used to construct the cdm object.

Value

A cdm reference with the mock tables

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

cdm
patternsWithFormula

Patterns valid to compute daily dose with the associated formula.

Description

Patterns valid to compute daily dose with the associated formula.

Usage

`patternsWithFormula`

Format

A data frame with eight variables: `pattern_id`, `amount`, `amount_unit`, `numerator`, `numerator_unit`, `denominator`, `denominator_unit`, `formula_name` and `formula`.

patternTable

Function to create a tibble with the patterns from current drug strength table

Description

Function to create a tibble with the patterns from current drug strength table

Usage

`patternTable(cdm)`

Arguments

`cdm`
'cdm' object created with `CDMConnector::cdm_from_con()`. It must contain 'drug_strength' and 'concept' tables.

Value

The function creates a tibble with the different patterns found in the table, plus a column of potentially valid and invalid combinations.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
patternTable(cdm)
```
Generate a custom ggplot2 from a summarised_result object generated with summariseDrugRestart() function.

Usage

plotDrugRestart(
 result,
 facetX = "variable_name",
 facetY = c("cdm_name", "cohort_name", "strata"),
 colour = "variable_level",
 splitStrata = TRUE
)

Arguments

result
 A summarised_result object with results from summariseDrugRestart().

facetX
 Vector of variables to facet by horizontally. Allowed options are: "cdm_name",
 "cohort_name", "strata", "variable_name"

facetY
 Vector of variables to facet by vertically. Allowed options are: "cdm_name",
 "cohort_name", "strata", "variable_name".

colour
 Vector of variables to distinct by colour. Allowed options are: "cdm_name",
 "cohort_name", "strata", "variable_name", and "variable_level".

splitStrata
 Whether to split strata columns.

Value

A ggplot2 object.

Examples

Not run:
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

conceptlist <- list("a" = 1125360, "b" = c(1503297, 1503327))
cdm <- generateDrugUtilisationCohortSet(
 cdm = cdm,
 name = "switch_cohort",
 conceptSet = conceptlist
)
result <- cdm$cohort1 |> summariseDrugRestart(switchCohortTable = "switch_cohort")
plotDrugRestart(result)
CDMConnector::cdmDisconnect(cdm = cdm)

End(Not run)

plotIndication Generate a plot visualisation (ggplot2) from the output of summariseIndication

Description

Generate a plot visualisation (ggplot2) from the output of summariseIndication

Usage

plotIndication(
 result,
 x = "window",
 facet = c("cdm_name", "cohort_name", "strata"),
 color = c("indication"),
 splitStrata = TRUE
)

Arguments

result A summarised_result object.
x Variables to be used in the x axis.
facet Variables to be used to facet the plot.
color Variables to be used to color the plot.
splitStrata Whether to split strata.

Value

A ggplot2 object

Examples

library(DrugUtilisation)
library(CDMConnector)
library(dplyr)

cdm <- mockDrugUtilisation()
indications <- list("headache" = 378253, "asthma" = 317009)
cdm <- generateConceptCohortSet(cdm, indications, "indication_cohorts")

cdm <- generateIngredientCohortSet(
 cdm = cdm, name = "drug_cohort", ingredient = "acetaminophen"
)

result <- cdm$drug_cohort |> summariseIndication(
 indicationCohortName = "indication_cohorts",
 unknownIndicationTable = "condition_occurrence",
 indicationWindow = list(c(-Inf, 0), c(-365, 0))
)

plotIndication(result)

plotProportionOfPatientsCovered

Plot proportion of patients covered

Description

Plot proportion of patients covered

Usage

plotProportionOfPatientsCovered(
 result,
 ylim = c(0, NA),
 facet = NULL,
 colour = NULL,
 colour_name = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>Output of summariseProportionOfPatientsCovered</td>
</tr>
<tr>
<td>ylim</td>
<td>Limits for the Y axis</td>
</tr>
<tr>
<td>facet</td>
<td>Variables to use for facets</td>
</tr>
<tr>
<td>colour</td>
<td>Variables to use for colours</td>
</tr>
<tr>
<td>colour_name</td>
<td>Colour legend name</td>
</tr>
</tbody>
</table>

Value

Plot of proportion of patients covered over time
plotTreatment

Generate a custom ggplot2 from a summarised_result object generated with summariseTreatment function.

Description

Generate a custom ggplot2 from a summarised_result object generated with summariseTreatment function.

Usage

plotTreatment(
 result,
 facetX = "window_name",
 facetY = c("cdm_name", "cohort_name", "strata"),
 splitStrata = TRUE,
 colour = "treatment"
)

Arguments

result A summarised_result object with results from summariseDrugRestart().
facetAddress Vector of variables to facet by horizontally. Allowed options are: "cdm_name", "cohort_name", "strata", "variable_name"
facetAddress Vector of variables to facet by vertically. Allowed options are: "cdm_name", "cohort_name", "strata", "variable_name".
splitStrata Whether to split strata columns.
colour Vector of variables to distinct by colour. Allowed options are: "cdm_name", "cohort_name", "strata", "variable_name", and "variable_level".

Value

A ggplot2 object.

Examples

Not run:
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
result <- cdm$cohort1 |> summariseTreatment(
 treatmentCohortName = "cohort2",
 window = list(c(0, 30), c(31, 365))
)
plotTreatment(result)
readConceptList

Get concept ids from a provided path to json files

Description

[Deprecated]

Usage

```r
readConceptList(path, cdm)
```

Arguments

- `path` path to a file or folder containing jsons to be read
- `cdm` A cdm reference created with CDMConnector

Value

list of concept_ids and respective concept_ids of interest

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

codelist <- readConceptList(
  path = system.file("concepts", package = "DrugUtilisation"), cdm = cdm
)
```

requireDrugInDateRange

Restrict cohort to only cohort records within a certain date range

Description

Filter the cohort table keeping only the cohort records for which the specified index date is within a specified date range.
requireDrugInDateRange

requireDrugInDateRange(
 cohort,
 dateRange,
 indexDate = "cohort_start_date",
 cohortId = NULL,
 name = omopgenerics::tableName(cohort)
)

Arguments

cohort A cohort table in a cdm reference.
dateRange Date interval to consider. Any records with the index date outside of this range will be dropped.
indexDate The column containing the date that will be checked against the date range.
cohortId IDs of the cohorts to modify. The default is NULL meaning all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
name Name of the table with the filtered cohort records. The default name is the original cohort name, where the original table will be overwritten.

Value

The cohort table having applied the date requirement.

Examples

library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm$cohort1 <- cdm$cohort1 |> requireDrugInDateRange(
 dateRange = as.Date(c("2020-01-01", NA))
)

attrition(cdm$cohort1) |> glimpse()

requireIsFirstDrugEntry

Restrict cohort to only the first cohort record per subject
Description

Filter the cohort table keeping only the first cohort record per subject.

Usage

```r
requireIsFirstDrugEntry(
  cohort,
  cohortId = NULL,
  name = omopgenerics::tableName(cohort)
)
```

Arguments

- `cohort`: A cohort table in a cdm reference.
- `cohortId`: IDs of the cohorts to modify. The default is NULL meaning all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
- `name`: Name of the table with the filtered cohort records. The default name is the original cohort name, where the original table will be overwritten.

Value

The cohort table having applied the first entry requirement.

Examples

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm$cohort1 <- cdm$cohort1 |> requireIsFirstDrugEntry() 
attrition(cdm$cohort1) |> glimpse()
```

requireObservationBeforeDrug

Restrict cohort to only cohort records with the given amount of prior observation time in the database

Description

Filter the cohort table keeping only the cohort records for which the individual has the required observation time in the database prior to their cohort start date.
Usage

requireObservationBeforeDrug(
 cohort,
 days,
 cohortId = NULL,
 name = omopgenerics::tableName(cohort)
)

Arguments

cohort A cohort table in a cdm reference.
days Number of days of prior observation required before cohort start date. Any records with fewer days will be dropped.
cohortId IDs of the cohorts to modify. The default is NULL meaning all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
name Name of the table with the filtered cohort records. The default name is the original cohort name, where the original table will be overwritten.

Value

The cohort table having applied the prior observation requirement.

Examples

library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm$cohort1 <- cdm$cohort1 |> requireObservationBeforeDrug(days = 365)

attrition(cdm$cohort1) |> glimpse()

requirePriorDrugWashout

Restrict cohort to only cohort records with a given amount of time since the last cohort record ended

Description

Filter the cohort table keeping only the cohort records for which the required amount of time has passed since the last cohort entry ended for that individual.
stratifyByUnit

Usage

```r
requirePriorDrugWashout(
  cohort,
  days,
  cohortId = NULL,
  name = omopgenerics::tableName(cohort)
)
```

Arguments

- **cohort**
 - A cohort table in a cdm reference.
- **days**
 - The number of days required to have passed since the last cohort record finished. Any records with fewer days than this will be dropped. Note that setting days to Inf will lead to the same result as that from using the `requireIsFirstDrugEntry` function (with only an individual’s first cohort record kept).
- **cohortId**
 - IDs of the cohorts to modify. The default is NULL meaning all cohorts will be used; otherwise, only the specified cohorts will be modified, and the rest will remain unchanged.
- **name**
 - Name of the table with the filtered cohort records. The default name is the original cohort name, where the original table will be overwritten.

Value

The cohort table having applied the washout requirement.

Examples

```r
library(DrugUtilisation)
library(dplyr)

cdm <- mockDrugUtilisation()

cdm$cohort1 <- cdm$cohort1 |>
  requirePriorDrugWashout(days = 90)

attrition(cdm$cohort1) |> glimpse()
```

stratifyByUnit

Function to stratify a conceptSet by unit

Description

[Deprecated]
Usage

stratifyByUnit(conceptSet, cdm, ingredientConceptId)

Arguments

- conceptSet List of concept sets
- cdm cdm reference
- ingredientConceptId ConceptId that refers to an ingredient

Value

The conceptSet stratified by unit

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

codelist <- CodelistGenerator::getDrugIngredientCodes(cdm, "acetaminophen")

codelistStratified <- stratifyByUnit(codelist, cdm, 1125315)

codelistStratified

summariseDoseCoverage

Check coverage of daily dose computation in a sample of the cdm for selected concept sets and ingredient

Description

Check coverage of daily dose computation in a sample of the cdm for selected concept sets and ingredient

Usage

summariseDoseCoverage(
 cdm,
 ingredientConceptId,
 estimates = c("count_missing", "percentage_missing", "mean", "sd", "q25", "median", "q75"),
 sampleSize = NULL
)
Arguments

- **cdm**
 A cdm reference created using CDMConnector.

- **ingredientConceptId**
 Code indicating the ingredient of interest.

- **estimates**
 Estimates to obtain.

- **sampleSize**
 Maximum number of records of an ingredient to estimate dose coverage. If an ingredient has more, a random sample equal to sampleSize will be considered. If NULL, all records will be used.

Value

The function returns information of the coverage of computeDailyDose.R for the selected ingredients and concept sets

Examples

```r
library(DrugUtilisation)
cdm <- mockDrugUtilisation()
summariseDoseCoverage(cdm, 1125315)
```

summariseDrugRestart *Summarise the drug restart per window.*

Description

[Experimental]

Usage

```r
summariseDrugRestart(
  cohort,
  switchCohortTable,
  switchCohortId = NULL,
  strata = list(),
  followUpDays = Inf,
  censorDate = NULL,
  restrictToFirstDiscontinuation = TRUE
)
```
summariseDrugUse

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohort</td>
<td>A cohort table.</td>
</tr>
<tr>
<td>switchCohortTable</td>
<td>A cohort table in the cdm that contains possible alternative treatments.</td>
</tr>
<tr>
<td>switchCohortId</td>
<td>The cohort ids to be used from switchCohortTable. If NULL all cohort definition ids are used.</td>
</tr>
<tr>
<td>strata</td>
<td>List with column names or vectors of column names groups to stratify results by.</td>
</tr>
<tr>
<td>followUpDays</td>
<td>A vector of number of days to follow up. It can be multiple values.</td>
</tr>
<tr>
<td>censorDate</td>
<td>Date of censoring. Individuals are always censored at the end of observation.</td>
</tr>
<tr>
<td>restrictToFirstDiscontinuation</td>
<td>Whether to consider only the first discontinuation episode or all of them.</td>
</tr>
</tbody>
</table>

Value

A summarised_result object with the percentages of restart, switch and not exposed per window.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()

conceptlist <- list("a" = 1125360, "b" = c(1503297, 1503327))
cdm <- generateDrugUtilisationCohortSet(
  cdm = cdm,
  name = "switch_cohort",
  conceptSet = conceptlist
)

result <- cdm$cohort1 |> summariseDrugRestart(switchCohortTable = "switch_cohort")
tableDrugRestart(result)

CDMConnector::cdmDisconnect(cdm = cdm)
```

summariseDrugUse
This function is used to summarise the dose table over multiple cohorts.

Description

[Deprecated]
summariseDrugUse

Usage

 summariseDrugUse(
 cohort,
 cdm = lifecycle::deprecated(),
 strata = list(),
 estimates = c("min", "q05", "q25", "median", "q75", "q95", "max", "mean", "sd",
 "count_missing", "percentage_missing"),
 minCellCount = lifecycle::deprecated()
)

Arguments

cohort Cohort with drug use variables and strata.
cdm Deprecated.
strata Stratification list.
estimates Estimates that we want for the columns.
minCellCount Deprecated.

Value

A summary of the drug use stratified by cohort_name and strata_name

Examples

 library(DrugUtilisation)
 library(PatientProfiles)

 cdm <- mockDrugUtilisation()
 codelist <- CodelistGenerator::getDrugIngredientCodes(cdm, "acetaminophen")
 cdm <- generateDrugUtilisationCohortSet(
 cdm, "dus_cohort", codelist
)
 cdm[["dus_cohort"]]
 cdm[["dus_cohort"]]
 addDrugUse(ingredientConceptId = 1125315)
 result <- summariseDrugUse(cdm[["dus_cohort"]])
 print(result)

 cdm[["dus_cohort"]]
 addSex()
 addAge(ageGroup = list("<40" = c(0, 39), ">=40" = c(40, 150)))

 cdm[["dus_cohort"]]
 summariseDrugUse(strata = list("age_group", "sex", c("age_group", "sex")))
summariseDrugUtilisation

This function is used to summarise the dose utilisation table over multiple cohorts.

Description

This function is used to summarise the dose utilisation table over multiple cohorts.

Usage

```r
summariseDrugUtilisation(
  cohort,
  strata = list(),
  estimates = c("q25", "median", "q75", "mean", "sd", "count_missing",
    "percentage_missing"),
  ingredientConceptId = NULL,
  conceptSet = NULL,
  indexDate = "cohort_start_date",
  censorDate = "cohort_end_date",
  restrictIncident = TRUE,
  gapEra = 1,
  numberExposures = TRUE,
  numberEras = TRUE,
  exposedTime = TRUE,
  timeToExposure = TRUE,
  initialQuantity = TRUE,
  cumulativeQuantity = TRUE,
  initialDailyDose = TRUE,
  cumulativeDose = TRUE
)
```

Arguments

- **cohort**: Cohort with drug use variables and strata.
- **strata**: Stratification list.
- **estimates**: Estimates that we want for the columns.
- **ingredientConceptId**: Ingredient OMOP concept that we are interested for the study. It is a compulsory input, no default value is provided.
- **conceptSet**: List of concepts to be included. If NULL all the descendants of ingredient concept id will be used.
- **indexDate**: Name of a column that indicates the date to start the analysis.
- **censorDate**: Name of a column that indicates the date to stop the analysis, if NULL end of individuals observation is used.
summariseIndication

Summarise the indications of individuals in a drug cohort

Value

A summary of drug utilisation stratified by cohort_name and strata_name

Examples

```r
library(DrugUtilisation)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(cdm, "acetaminophen")
cdm <- generateDrugUtilisationCohortSet(
  cdm, "dus_cohort", codelist
)
cdm[["dus_cohort"]] %>%
  summariseDrugUtilisation(ingredientConceptId = 1125315)
```

Description

Summarise the observed indications of patients in a drug cohort based on their presence in an indication cohort in a specified time window. If an individual is not in one of the indication cohorts, they will be considered to have an unknown indication if they are present in one of the specified OMOP CDM clinical tables. Otherwise, if they are neither in an indication cohort or a clinical table they will be considered as having no observed indication.
Usage

summariseIndication(
 cohort,
 strata = list(),
 indicationCohortName,
 indicationCohortId = NULL,
 indicationWindow = list(c(0, 0)),
 unknownIndicationTable = NULL,
 indexDate = "cohort_start_date",
 censorDate = NULL
)

Arguments

cohort A cohort table in a cdm reference.

strata List of variables to stratify results by. These variables must be present in the cohort table.

indicationCohortName Name of the cohort table with potential indications.

indicationCohortId The target cohort ID to add indication. If NULL all cohorts will be considered.

indicationWindow The time window over which to identify indications.

unknownIndicationTable Tables in the OMOP CDM to search for unknown indications.

indexDate A date variable in the cohort table for which indications will be found relative to.

censorDate After that day no indication will be considered.

Value

A summarised result

Examples

library(DrugUtilisation)
library(CDMConnector)
library(dplyr)

cdm <- mockDrugUtilisation()

indications <- list("headache" = 378253, "asthma" = 317009)
cdm <- generateConceptCohortSet(cdm, indications, "indication_cohorts")

cdm <- generateIngredientCohortSet(
 cdm = cdm, name = "drug_cohort",
 ingredient = "acetaminophen"
)
summariseProportionOfPatientsCovered

Description

Gives the proportion of patients still in observation who are in the cohort on any given day following their first cohort entry. This is known as the “proportion of patients covered” (PPC) method for assessing treatment persistence.

Usage

summariseProportionOfPatientsCovered(
 cohort,
 cohortId = NULL,
 strata = list(),
 followUpDays = NULL
)

Arguments

cohort A cohort table
cohortId Cohort definition ID of interest. If NULL, results for all cohorts will be returned.
strata List of variables to stratify by.
followUpDays Number of days to follow up individuals for. If NULL the maximum amount of days from an individuals first cohort start date to their last cohort end date will be used

Value

A summarised result
summariseTreatment

This function is used to summarise treatments received

Description

This function is used to summarise treatments received

Usage

summariseTreatment(
 cohort,
 window,
 treatmentCohortName,
 treatmentCohortId = NULL,
 strata = list(),
 indexDate = "cohort_start_date",
 censorDate = NULL,
 minCellCount = lifecycle::deprecated()
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohort</td>
<td>A cohort table in a cdm reference.</td>
</tr>
<tr>
<td>window</td>
<td>Time window over which to summarise the treatments.</td>
</tr>
<tr>
<td>treatmentCohortName</td>
<td>Name of a cohort in the cdm that contains the treatments of interest.</td>
</tr>
<tr>
<td>treatmentCohortId</td>
<td>Cohort definition id of interest from treatmentCohortName.</td>
</tr>
<tr>
<td>strata</td>
<td>List with column names or vectors of column names groups to stratify results by.</td>
</tr>
<tr>
<td>indexDate</td>
<td>Variable in x that contains the date to compute the intersection.</td>
</tr>
<tr>
<td>censorDate</td>
<td>Whether to censor overlap events at a specific date or a column date of x. If NULL, end of observation will be used.</td>
</tr>
<tr>
<td>minCellCount</td>
<td>[Deprecated] (https://lifecycle.r-lib.org/articles/stages.html#deprecated)</td>
</tr>
</tbody>
</table>

Value

A summary of treatments stratified by cohort_name and strata_name

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

cdm$cohort1 |> summariseTreatment
tableDoseCoverage

Format a dose_coverage object into a visual table.

Description

[Experimental]

Usage

tableDoseCoverage(
 result,
 header = c("variable", "estimate"),
 splitStrata = TRUE,
 ingredientName = TRUE,
 cdmName = TRUE,
 groupColumn = NULL,
 type = "gt",
 formatEstimateName = c(`N (%)` = "<count_missing> (<percentage_missing> %)", N = "<count>", `Mean (SD)` = "<mean> (<sd>)", `Median (Q25 - Q75)` = "<median> (<q25> - <q75>)"),
 .options = list()
)

Arguments

result A summarised_result object with results from summariseDoseCoverage().
header A vector containing which elements should go into the header in order. Allowed are: cdm_name, group, strata, variable, and estimate.
splitStrata If TRUE strata columns will be split.
ingredientName If TRUE cohort names will be displayed.
cdmName If TRUE database names will be displayed.
groupColumn Column to use as group labels.
type Type of desired formatted table, possibilities: "gt", "flextable", "tibble".
formatEstimateName Named list of estimate name’s to join, sorted by computation order. Indicate estimate_name’s between <...>.
.options Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.
Value

A table with a formatted version of summariseDrugCoverage() results.

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

result <- summariseDoseCoverage(cdm, 1125315)

tableDoseCoverage(result)

Description

[Experimental]

Usage

tableDrugRestart(
 result,
 header = c("strata"),
 splitStrata = TRUE,
 cohortName = TRUE,
 cdmName = TRUE,
 groupColumn = c("cdm_name", "cohort_name"),
 type = "gt",
 formatEstimateName = c("N (%)" = "<count> (<percentage> %)",
 .options = list()
)

Arguments

result A summarised_result object with results from summariseDrugRestart().
header A vector containing which elements should go into the header in order. Allowed values: cdm_name, cohort_name, strata, variable, estimate.
splitStrata If TRUE strata columns will be split.
cohortName If TRUE cohort names will be displayed.
cdmName If TRUE database names will be displayed.
groupColumn Column to use as group labels. Allowed values: cdm_name, cohort_name, strata, variable_name, variable_level, estimate_name.
type

Type of desired formatted table, possibilities: "gt", "flextable", "tibble".

formatEstimateName

Named list of estimate name’s to join, sorted by computation order. Indicate estimate_name’s between <...>.

.options

Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.

Value

A table with a formatted version of summariseDrugRestart() results.

Examples

library(DrugUtilisation)

cdm <- mockDrugUtilisation()

conceptlist <- list("a" = 1125360, "b" = c(1503297, 1503327))

result <- cdm$cohort1 |>
 summariseDrugRestart(switchCohortTable = "switch_cohort")

tableDrugRestart(result)

CDMConnector::cdmDisconnect(cdm = cdm)
conceptSet = TRUE,
ingredient = TRUE,
groupColumn = NULL,
type = "gt",
formatEstimateName = c(`N (%)` = "<count_missing> (<percentage_missing> %)", N = "<count>", `Mean (SD)` = "<mean> (<sd>)", `Median (Q25 - Q75)` = "<median> (<q25> - <q75>)",
.options = list()
)

Arguments

result A summarised_result object with results from summariseDrugUtilisation().
header A vector containing which elements should go into the header in order. Allowed are: cdm_name, group, strata, variable, estimate.

splitStrata If TRUE strata columns will be split.
cohortName If TRUE cohort names will be displayed.
cdmName If TRUE database names will be displayed.
conceptSet If TRUE concept sets name will be displayed.
ingredient If TRUE ingredients names will be displayed for dose calculation.
groupColumn Column to use as group labels, these can be: "cdm_name", "cohort_name", "concept_set", "variable_name", and/or "ingredient". If strata is split, any of the levels can be used, otherwise "strata_name" and "strata_level" can be used for table group format.

Type of desired formatted table, possibilities: "gt", "flextable", "tibble".
formatEstimateName Named list of estimate name's to join, sorted by computation order. Indicate estimate_name's between <...>.
.options Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.

Value

A table with a formatted version of summariseIndication() results.

Examples

library(DrugUtilisation)
library(CodelistGenerator)

cdm <- mockDrugUtilisation()
codelist <- CodelistGenerator::getDrugIngredientCodes(cdm, "acetaminophen")
cdm <- generateDrugUtilisationCohortSet(cdm, "dus_cohort", codelist)
cdm[["dus_cohort"]]

summariseDrugUtilisation(ingredientConceptId = 1125315) |>

tableDrugUtilisation()
tableIndication

Create a table showing indication results

Description

[Experimental]

Usage

```r
tableIndication(
  result,
  header = c("group", "strata"),
  splitStrata = TRUE,
  cohortName = TRUE,
  cdmName = TRUE,
  groupColumn = "variable_name",
  type = "gt",
  .options = list()
)
```

Arguments

- `result`: A summarised_result created by summariseIndication().
- `header`: A vector containing which elements should go into the header in order. Allowed are: cdm_name, group, strata, variable.
- `splitStrata`: If TRUE strata columns will be split.
- `cohortName`: If TRUE cohort names will be displayed.
- `cdmName`: If TRUE database names will be displayed.
- `groupColumn`: Column to use as group labels.
- `type`: Type of desired formatted table, possibilities: "gt", "flextable", "tibble".
- `.options`: Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.

Value

A table with a formatted version of summariseIndication() results.
tableProportionOfPatientsCovered

Create a table with proportion of patients covered results

Description

[Experimental]

Usage

 tableProportionOfPatientsCovered(
 result, # A summarised_result object with results from summariseProportionOfPatientsCovered().
 times = NULL, # Days to include in the table. If NULL all days will be included.
 header = c("group", "strata"), # A vector containing which elements should go into the header in order. Allowed are: cdm_name, group, strata, variable.
 splitStrata = TRUE, # If TRUE strata columns will be split.
 .options = list() # To add any other options.
)
tableTreatment

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohortName</td>
<td>If TRUE cohort names will be displayed.</td>
</tr>
<tr>
<td>cdmName</td>
<td>If TRUE database names will be displayed.</td>
</tr>
<tr>
<td>groupColumn</td>
<td>Column to use as group labels.</td>
</tr>
<tr>
<td>type</td>
<td>Type of desired formatted table, possibilities: "gt", "flextable", "tibble".</td>
</tr>
<tr>
<td>.options</td>
<td>Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.</td>
</tr>
</tbody>
</table>

Value

A table with a formatted version of summariseProportionOfPatientsCovered() results.

tableTreatment

Format a summarised_treatment result into a visual table.

Description

[Experimental]

Usage

```r
tableTreatment(
  result,
  header = c("window_name"),
  splitStrata = TRUE,
  cdmName = TRUE,
  groupColumn = c("cdm_name", "cohort_name"),
  type = "gt",
  formatEstimateName = c(\^N (%)\ = "<count> (<percentage> %)",
                          .options = list()
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>A summarised_result object with results from summariseTreatmentFromCohort() or summariseTreatmentFromConceptSet().</td>
</tr>
<tr>
<td>header</td>
<td>A vector containing which elements should go into the header in order. Allowed values: cdm_name, cohort_name, strata, variable, estimate and window_name.</td>
</tr>
<tr>
<td>splitStrata</td>
<td>If TRUE strata columns will be split.</td>
</tr>
<tr>
<td>cdmName</td>
<td>If TRUE database names will be displayed.</td>
</tr>
<tr>
<td>groupColumn</td>
<td>Column to use as group labels. Allowed values: cdm_name, cohort_name, strata, variable, estimate and window_name.</td>
</tr>
<tr>
<td>type</td>
<td>Type of desired formatted table, possibilities: "gt", "flextable", "tibble".</td>
</tr>
<tr>
<td>formatEstimateName</td>
<td>Named list of estimate name’s to join, sorted by computation order. Indicate estimate_name’s between <...>.</td>
</tr>
<tr>
<td>.options</td>
<td>Named list with additional formatting options. DrugUtilisation::defaultTableOptions() shows allowed arguments and their default values.</td>
</tr>
</tbody>
</table>
Value

A table with a formatted version of summariseTreatment() results.

Examples

```r
library(DrugUtilisation)

cdm <- mockDrugUtilisation()
result <- cdm$cohort1 |> summariseTreatment(
  treatmentCohortName = "cohort2",
  window = list(c(0, 30), c(31, 365))
)
tableTreatment(result)
```
Index

* datasets
 patternsWithFormula, 28
 addCumulativeDose, 3
 addCumulativeQuantity, 4
 addDailyDose, 5
 addDrugUse, 6
 addDrugUtilisation, 8
 addExposedTime, 10
 addIndication, 11
 addInitialDailyDose, 12
 addInitialQuantity, 14
 addNumberEras, 15
 addNumberExposures, 16
 addRoute, 17
 addTimeToExposure, 18
 benchmarkDrugUtilisation, 19
 cohortGapEra, 20
 dailyDoseCoverage, 21
 defaultTableOptions, 21
 generateAtcCohortSet, 22
 generateDrugUtilisationCohortSet, 23
 generateIngredientCohortSet, 25
 mockDrugUtilisation, 27
 patternsWithFormula, 28
 patternTable, 28
 plotDrugRestart, 29
 plotIndication, 30
 plotProportionOfPatientsCovered, 31
 plotTreatment, 32
 readConceptList, 33
 requireDrugInDateRange, 33
 requireIsFirstDrugEntry, 34
 requireObservationBeforeDrug, 35
 requirePriorDrugWashout, 36
 stratifyByUnit, 37
 summariseDoseCoverage, 38
 summariseDrugRestart, 39
 summariseDrugUse, 40
 summariseDrugUtilisation, 42
 summariseIndication, 43
 summariseProportionOfPatientsCovered, 45
 summariseTreatment, 46
 tableDoseCoverage, 47
 tableDrugRestart, 48
 tableDrugUtilisation, 49
 tableIndication, 51
 tableProportionOfPatientsCovered, 52
 tableTreatment, 53