Package ‘DunnettTests’

February 19, 2015

Type Package
Title Software implementation of step-down and step-up Dunnett test procedures
Version 2.0
Date 2013-12-14
Author FAN XIA
Maintainer FAN XIA <phoebexia@yahoo.com>
Description For the implementation of the step-down or step-up Dunnett testing procedures, the package includes R functions to calculate critical constants and R functions to calculate adjusted P-values of the test statistics. In addition, the package also contains functions to evaluate testing powers and hence the necessary sample sizes specially for the classical problem of comparisons of several treatments with a control.
License GPL-2
Depends mvtnorm
NeedsCompilation no
Repository CRAN
Date/Publication 2013-12-14 11:52:15

R topics documented:

DunnettTests-package .. 2
cvSDDT .. 3
cvSUDT .. 4
nvDT ... 6
powDT .. 7
qvSDDT .. 9
qvSUDT ... 10

Index 12
Description

For the implementation of the step-down or step-up Dunnett test procedures, the package includes R functions to calculate critical constants and R functions to calculate adjusted P-values of test statistics. In addition, the package also contains functions to evaluate testing powers and hence the necessary sample sizes for the classic statistical problem of comparing multiple treatments with a control.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>DunnettTests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-11-11</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

FAN XIA Maintainer: FAN XIA <phoebexia@yahoo.com>

References

Examples

```r
# critical constants
cvSDDT(k=4, alpha=0.05, alternative="U", corr=0.5, df=30)
cvSUDT(k=4, alpha=0.05, alternative="U", corr=0.5, df=30)
```
To calculate the critical constants for step-down Dunnett test procedure

Description

The function applies to testing problem with either t distributed test statistics or (approximately) normally distributed test statistics. The function accommodates both equally correlated and unequally correlated test statistics.

Usage

```r
cvSDDT(k, alpha=0.05, alternative="U", df = Inf, corr = 0.5, corr.matrix=NA)
```

Arguments

- **k**: Number of hypotheses to be tested, \(k \geq 2 \) and \(k \leq 16 \).
- **alpha**: The pre-specified overall significance level, default=0.05.
- **alternative**: The alternative hypothesis: "U"=upper one-sided test (default); "B"=two-sided test. For lower one-sided tail test, specify alternative="U" and use the negations of the return critical constants.
- **df**: Degree of freedom of the t-test statistics. When (approximately) normally distributed test statistics are applied, set df=Inf (default).
- **corr**: Specified for equally correlated test statistics, which is the common correlation between the test statistics, default=0.5.
- **corr.matrix**: Specified for unequally correlated test statistics, which is the correlation matrix of the test statistics, default=NA.

Value

Return a \(k \)-vector of critical constants from smallest to largest.
Author(s)

FAN XIA <phoebexia@yahoo.com>

References

Examples

To test four hypotheses, the test statistics are
2.2 (H1), 2.7 (H2), 2.1(H3), 0.85(H4), respectively.
The test statistics are equally correlated at 0.6 and have df=30.
At overall one-sided significance level 0.05, the critical constants are given by:

cvsudt(k=4, df=30, corr=0.6)

Based on the critical values, we reject H2, H1, H3 in a sequence and accept H4.

To calculate the critical constants for step-up Dunnett test procedure

description

The function applies to testing problem with either t distributed test statistics or (approximately) normally distributed test statistics. The function accomodates both equally correlated and unequally correlated test statistics. The calculation relies on recursive formulas as proposed in Kwong and Liu (2000) that the calculation needs increasing computation time with the increasing number of hypotheses to be tested. The function fastly calculate critical constants for up to 16 hypotheses.

Usage

cvsudt(k, alpha=0.05, alternative="U", df=Inf, corr=0.5, corr.matrix=NA, mcs=1e+05)

Arguments

k Number of hypotheses to be tested, \(k \geq 2 \) and \(k \leq 16 \).
alpha The pre-specified overall significance level, default=0.05.
alternative The alternative hypothesis: "U"=upper one-sided test (default); "B"=two-sided test. For lower one-sided tail test, specify alternative="U" and use the negations of the return critical constants.
df Degree of freedom of the t-test statistics. When (approximately) normally distributed test statistics are applied, set df=Inf (default).
corr Specified for equally correlated test statistics, which is the common correlation between the test statistics, default=0.5.
cvSUDT

- `corr.matrix`: Specified for unequally correlated test statistics, which is the correlation matrix of the test statistics, default=NA.

- `mcs`: The number of monte carlo sample points to numerically approximate the probability that to solve critical values, refer to Equation (3.3) in Dunnett and Tamhane (1992) or Equation (2) in Kwong and Liu (2000), default=1e+05.

Value

Return a k-vector of critical constants from smallest to largest.

Author(s)

FAN XIA <phoebexia@yahoo.com>

References

Examples

```r
# Compare four treatment arms to one control
# with test statistics 2.2(H1), 2.7(H2), 2.1(H3), 0.85(H4).
# n=c(100,80,80,60)
# n0=60
corr.matrix<-matrix(0,4,4)
diag(corr.matrix)=rep(1,4)
for(i in 1:3){
  for(j in (i+1):4){
    corr.matrix[i,j]=(1/n0)/(sqrt(1/n[i]+1/n0)+sqrt(1/n[j]+1/n0))
    corr.matrix[j,i]= corr.matrix[i,j]
  }
}
# The critical constants are given by
cvSUDT(k=4,df=sum(n)+n0-5,corr.matrix=corr.matrix)

# At overall one-sided significance level 0.05,
# accept H4 but reject H3 and hence H1 and H2.
```
To calculate the least sample size required to achieve a certain power

Description

For the problem of comparing means of \(k\) treatment groups to the mean of one control group, the implementation of the function needs the following three assumptions: 1. The \(k\) treatment groups have identical treatment effect size. 2. The sample allocation ratio is pre-specified, and meanwhile the samples to be assigned to each of the \(k\) treatment groups are expected to be equal at size \(n\). 3. The alternative hypotheses are one-sided. With the violations assumption 2, the sample size could not be evaluated numerically, and with the violation of assumption 1 and 3, the evaluation of sample size needs great computational effort and thus not implemented. In the situation, simulation-based evaluation is suggested.

Usage

\[
\text{nvdT}(\text{ratio}, \text{power}, r, k, \text{mu}, \text{mu0}, \text{contrast}, \text{sigma}=\text{NA}, \text{dist}=\text{zdist}, \text{alpha}=0.05, \text{mcs}=1e+05, \text{testcall})
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratio</td>
<td>The pre-specified ratio of sample size in each of the treatment groups to the sample size in the control group</td>
</tr>
<tr>
<td>power</td>
<td>The power required to be achieved.</td>
</tr>
<tr>
<td>r</td>
<td>The least number of null hypotheses to be rejected, e.g., when (r=1), the sample size is evaluated on disjunctive power and when (r=k), the sample size is evaluated on conjunctive power.</td>
</tr>
<tr>
<td>k</td>
<td>Number of hypotheses to be tested, (k \geq 2) and (k \leq 16).</td>
</tr>
<tr>
<td>mu</td>
<td>Assumed population mean in each of the (k) treatment groups.</td>
</tr>
<tr>
<td>mu0</td>
<td>Assumed population mean in the control group.</td>
</tr>
<tr>
<td>contrast</td>
<td>If mu and mu0 are concerned of means of continuous outcome, specify contrast="means"; if mu and mu0 are concerned of proportions of binary outcome, specify contrast="props".</td>
</tr>
<tr>
<td>sigma</td>
<td>The population error variance, which should be specified when contrast="means"; if contrast="props", set sigma=NA as default and it will be calculated based on mu and mu0 specified within the function.</td>
</tr>
<tr>
<td>dist</td>
<td>Whether the sample size is calculated for (t) -distributed test statistics (dist="tdist") or standard normally distributed test statistics (dist="zdist").</td>
</tr>
<tr>
<td>alpha</td>
<td>The pre-specified overall significance level, default=0.05.</td>
</tr>
<tr>
<td>mcs</td>
<td>The number of monte-carlo sample points to numerically approximate the power for a given sample size, refer to Equation (4.3) and Equation (4.5) in Dunnett and Tamhane (1992).</td>
</tr>
<tr>
<td>testcall</td>
<td>The applied Dunnett test procedure: "SD"=step-down Dunnett test; "SU"=step-up Dunnett test.</td>
</tr>
</tbody>
</table>
Value

Return a LIST containing:

"least sample size required in each treatment groups"
value of n
"least sample size required in the control group"
value of n0

Author(s)

FAN XIA <phoebexia@yahoo.com>

References

See Also

powDT

Examples

nvDT(2, 0.95, r=1, k=3, mu=0.7, mu0=0.5, contrast="props", dist="zdist", testcall="SD")

Description

For the problem of comparing means of k treatment groups to the mean of one control group. The implementation of the function needs the following three assumptions: 1. The k treatment groups have identical treatment effect size. 2. The samples to be assigned to each of the k treatment groups are expected to be equal at size n. 3. The alternative hypotheses are one-sided. With the violations of either of the assumptions, simulation-based power evaluation is suggested.

Usage

powDT(r,k,mu,mu0,n,n0,contrast,sigma=NA,df=Inf,alpha=0.05,mcs=1e+05,testcall)
Arguments

- **r**: The least number of null hypotheses to be rejected, e.g., when \(r=1 \), the disjunctive power is returned and when \(r=k \), the conjunctive power is returned.

- **k**: Number of hypotheses to be tested, \(k \geq 2 \) and \(k \leq 16 \).

- **mu**: Assumed population mean in each of the \(k \) treatment groups.

- **mu0**: Assumed population mean in the control group.

- **n**: Sample size in each of the \(k \) treatment groups.

- **nP**: Sample size in the control group.

- **contrast**: If \(\mu \) and \(\mu_0 \) are concerned of mean of a continuous outcome, specify contrast="means"; if \(\mu \) and \(\mu_0 \) are concerned of proportion of binary outcome, specify contrast="props".

- **sigma**: The population error variance, which should be specified when contrast="means"; if contrast="props", set sigma=NA as default and it will be calculated based on \(\mu \) and \(\mu_0 \) specified within the function.

- **df**: Degree of freedom of the t-test statistics. When (approximately) normally distributed test statistics are applied, set df=Inf (default).

- **alpha**: The pre-specified overall significance level, default=0.05.

- **mcs**: The number of monte-carlo sample points to numerically approximate the power for a given sample size, refer to Equation (4.3) and Equation (4.5) in Dunnett and Tamhane (1992).

- **testcall**: The applied Dunnett test procedure: "SD"=step-down Dunnett test; "SU"=step-up Dunnett test.

Value

Return the power of rejecting at least \(r \) out of the \(k \) false null hypotheses.

Author(s)

FAN XIA <phoebexia@yahoo.com>

References

See Also

- nvDT

Examples

```r
# Compare group means of four treatment arms to a control arm (upper one-sided tests)
# Setting
k <- 4
mu <- 22 # assumed mean of each treatment arm
```
mu0 <- 20 # assumed mean of the control arm
n <- 100
nv <- 80
sigma <- 5 # assumed population error variance
df <- n*k+nv-k-1 # consider the t distribution

at one-sided significance level 0.05
compare the testing powers of SD and SU Dunnett for rejecting at least one nulls
powSD <- powDT(r=1,k,mu,mu0,n,nv,"means",sigma=sigma,df=df,testcall="SD")
powSU <- powDT(r=1,k,mu,mu0,n,nv,"means",sigma=sigma,df=df,testcall="SU")

qvSDDT

To calculate adjusted P-values (Q-values) for step-down Dunnett test procedure

Description

In multiple testing problem, the adjusted P-values correspond to test statistics can be used with any fixed alpha to determine which hypotheses to be rejected.

Usage

qvSDDT(teststats,alternative="U",df=Inf,corr = 0.5,corr.matrix = NA)

Arguments

teststats The k-vector of test statistics, k ≥ 2.

alternative The alternative hypothesis: "U"=upper one-sided test (default); "L"=lower one-sided test; "B"=two-sided test. For lower one-sided tail test, use the negations of each of the test statistics.

df Degree of freedom of the t-test statistics. When (approximately) normally distributed test statistics are applied, set df=Inf (default).

corr Specified for equally correlated test statistics, which is the common correlation between the test statistics, default=0.5.

corr.matrix Specified for unequally correlated test statistics, which is the correlation matrix of the test statistics, default=NA.

Value

Return a LIST containing:

"ordered test statistics" ordered test statistics from largest to smallest

"Adjusted P-values of ordered test statistics" adjusted P-values correspond to the ordered test statistics
Author(s)
FAN XIA <phoebexia@yahoo.com>

References

See Also
qvSUDT

Examples
qvSDDT(c(2.20,2.70,2.10,0.85), df=30)

qvSUDT To calculate adjusted P-values (Q-values) for step-up Dunnett test procedure.

Description
In multiple testing problem, the adjusted P-values correspond to test statistics can be used with any fixed alpha to determine which hypotheses to be rejected.

Usage
qvSUDT(teststats, alternative="U", df=Inf, corr=0.5, corr.matrix=NA, mcs=1e+05)

Arguments

teststats The k-vector of test statistics, k ≥ 2 and k ≤ 16.
alternative The alternative hypothesis: "U"=upper one-sided test (default); "L"=lower one-sided test; "B"=two-sided test. For lower one-sided tail test, use the negations of each of the test statistics.
df Degree of freedom of the t-test statistics. When (approximately) normally distributed test statistics are applied, set df=Inf (default).
corr Specified for equally correlated test statistics, which is the common correlation between the test statistics, default=0.5.
corr.matrix Specified for unequally correlated test statistics, which is the correlation matrix of the test statistics, default=NA.
mcs The number of monte carlo sample points to numerically approximate the probability that to solve critical values for a given P value, refer to Equation (3.3) in Dunnett and Tamhane (1992), default=1e+05.
Value

Return a LIST containing:

"ordered test statistics"
ordered test statistics from smallest to largest

"Adjusted P-values of ordered test statistics"
adjusted P-values correspond to the ordered test statistics

Author(s)

FAN XIA <phoebexia@yahoo.com>

References

See Also

qvSDDT

Examples

qvSUDT(c(2.20, 2.70), df=30)
Index

*Topic **adjusted P-value**
 DunnettTests-package, 2
 qvSDDT, 9
 qvSUDT, 10

*Topic **critical value**
 cvSDDT, 3
 cvSUDT, 4
 DunnettTests-package, 2

*Topic **package**
 DunnettTests-package, 2

*Topic **sample size**
 DunnettTests-package, 2
 nvDT, 6

*Topic **step-down Dunnett**
 cvSDDT, 3
 DunnettTests-package, 2
 nvDT, 6
 powDT, 7
 qvSDDT, 9

*Topic **step-up Dunnett**
 cvSUDT, 4
 DunnettTests-package, 2
 nvDT, 6
 powDT, 7
 qvSUDT, 10

*Topic **testing power**
 DunnettTests-package, 2
 powDT, 7

 cvSDDT, 3
 cvSUDT, 4

DunnettTests (DunnettTests-package), 2
DunnettTests-package, 2

nvDT, 6, 8

powDT, 7, 7

qvSDDT, 9, 11
qvSUDT, 10, 10