Package ‘ECOSolveR’

May 10, 2019

Type Package

Title Embedded Conic Solver in R

Version 0.5.2

Date 2019-05-09

VignetteBuilder knitr

SystemRequirements GNU make

URL https://bnaras.github.io/ECOSolveR

BugReports https://github.com/bnaras/ECOSolveR/issues

Suggests knitr, rmarkdown, testthat, Matrix, covr, slam

Description R interface to the Embedded COnic Solver (ECOS), an efficient and robust C library for convex problems. Conic and equality constraints can be specified in addition to integer and boolean variable constraints for mixed-integer problems. This R interface is inspired by the python interface and has similar calling conventions.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation yes

Author Anqi Fu [aut], Balasubramanian Narasimhan [aut, cre], Florian Schwendinger [ctb]

Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>

Repository CRAN

Date/Publication 2019-05-10 08:00:03 UTC
R topics documented:

- ecos.control
- ECOSolveR
- ECOS_csolve
- ECOS_exitcodes

Description

This is used to control the behavior of the underlying optimization code.

Usage

```r
ecos.control(maxit = 100L, feastol = 1e-08, reltol = 1e-08,
             abstol = 1e-08, feastol_inacc = 1e-04, abstol_inacc = 5e-05,
             reltol_inacc = 5e-05, verbose = 0L, mi_max_iters = 1000L,
             mi_int_tol = 1e-04, mi_abs_eps = 1e-06, mi_rel_eps = 1e-06)
```

Arguments

- `maxit`: the maximum number of iterations for ecos, default 100L
- `feastol`: the tolerance on the primal and dual residual, default 1e-8
- `reltol`: the relative tolerance on the duality gap, default 1e-8
- `abstol`: the absolute tolerance on the duality gap, default 1e-8
- `feastol_inacc`: the tolerance on the primal and dual residual if reduced precisions, default 1e-4
- `abstol_inacc`: the absolute tolerance on the duality gap if reduced precision, default 5e-5
- `reltol_inacc`: the relative tolerance on the duality gap if reduced precision, default 5e-5
- `verbose`: verbosity level, default 0L. A verbosity level of 1L will show more detail, but clutter session transcript.
- `mi_max_iters`: the maximum number of branch and bound iterations (mixed integer problems only), default 1000L
- `mi_int_tol`: the integer tolerance (mixed integer problems only), default 1e-4
- `mi_abs_eps`: the absolute tolerance between upper and lower bounds (mixed integer problems only), default 1e-6
- `mi_rel_eps`: the relative tolerance, \((U - L)/L\), between upper and lower bounds (mixed integer problems only), default 1e-6
Value

a list with the following elements:

- **FEASTOL** the tolerance on the primal and dual residual, parameter `feastol`
- **ABSTOL** the absolute tolerance on the duality gap, parameter `abstol`
- **RELTOL** the relative tolerance on the duality gap, parameter `reltol`
- **FEASTOL_INACC** the tolerance on the primal and dual residual if reduced precisions, parameter `feastol_inacc`
- **ABSTOL_INACC** the absolute tolerance on the duality gap if reduced precision, parameter `abstol_inacc`
- **RELTOL_INACC** the relative tolerance on the duality gap if reduced precision, parameter `reltol_inacc`
- **MAXIT** the maximum number of iterations for ecos, parameter `maxit`
- **MI_MAX_ITERS** the maximum number of branch and bound iterations (mixed integer problems only), parameter `mi_max_iters`
- **MI_INT_TOL** the integer tolerance (mixed integer problems only), parameter `mi_int_tol`
- **MI_ABS_EPS** the absolute tolerance between upper and lower bounds (mixed integer problems only), parameter `mi_abs_eps`
- **MI_REL_EPS** the relative tolerance, \((U - L)/L\), between upper and lower bounds (mixed integer problems only), parameter `mi_rel_eps`
- **VERBOSE** verbosity level, parameter `verbose`

ECOSolveR

ECOSolveR: Embedded Conic Solver in R

Description

ECOSolveR is a wrapper around the ecos library. Please see the examples and documentation for the function `ECOS_csolve`.

References

https://github.com/embotech/ecos
ECOS_csolve

Solve a conic optimization problem

Description

The function ECOS_csolve is a wrapper around the ecos csolve C function. Conic constraints are specified using the G and h parameters and can be NULL and zero length vector respectively indicating an absence of conic constraints. Similarly, equality constraints are specified via A and b parameters with NULL and empty vector values representing a lack of such constraints. At most one of the pair (G, h) or (A, b) is allowed to be absent.

Usage

ECOS_csolve(c = numeric(0), G = NULL, h = numeric(0), dims = list(l = integer(0), q = NULL, e = integer(0)), A = NULL, b = numeric(0), bool_vars = integer(0), int_vars = integer(0), control = ecos.control())

Arguments

c the coefficients of the objective function; the length of this determines the number of variables n in the problem.
G the inequality constraint matrix in one of three forms: a plain matrix, simple triplet matrix, or compressed column format, e.g. dgCMatrix-class. Can also be NULL
h the right hand size of the inequality constraint. Can be empty numeric vector.
dims is a list of three named elements: dims[['l']] an integer specifying the dimension of positive orthant cone, dims[['q']] an integer vector specifying dimensions of second-order cones, dims[['e']] an integer specifying the number of exponential cones
A the optional equality constraint matrix in one of three forms: a plain matrix, simple triplet matrix, or compressed column format, e.g. dgCMatrix-class. Can be NULL
b the right hand side of the equality constraint, must be specified if A is. Can be empty numeric vector.
bool_vars the indices of the variables, 1 through n, that are boolean; that is, they are either present or absent in the solution
int_vars the indices of the variables, 1 through n, that are integers
control is a named list that controls various optimization parameters; see ecos.control.

Value

a list of 8 named items
x primal variables
ECOS_csolve

y dual variables for equality constraints
s slacks for $Gx + s \leq h$, $s \in K$
z dual variables for inequality constraints $s \in K$

infostring gives information about the status of solution
retdcodes a named integer vector containing four elements
 exitflag 0=ECOS_OPTIMAL, 1=ECOS_PINF, 2=ECOS_DINF, 10=ECOS_INACC_OFFSET, -1=ECOS_MAXIT, -2=ECOS_NUMERICS, -3=ECOS_OUTCOME, -4=ECOS_SIGINT, -7=ECOS_FATAL. See ECOS_exitcodes.
 iter the number of iterations used
 mi_iter the number of iterations for mixed integer problems
 numer a non-zero number if a numeric error occurred

summary a named numeric vector containing
 pcost value of primal objective
 dcost value of dual objective
 pres primal residual on inequalities and equalities
 dres dual residual
 pinf primal infeasibility measure
 dinf dual infeasibility measure
 pinfres primal infeasibility residual
 dinfres dual infeasibility residual
 gap duality gap
 relgap relative duality gap
 r0 Unknown at the moment to this R package maintainer.

timing a named numeric vector of timing information consisting of
 runtime the total runtime in ecos
 tsetup the time for setup of the problem
 tsolve the time to solve the problem

Details

A call to this function will solve the problem: minimize $c^T x$, subject to $Ax = b$, and $h - Gx \in K$.

Variables can be constrained to be boolean (1 or 0) or integers. This is indicated by specifying parameters bool_vars and/or int_vars respectively. If so indicated, the solutions will be found using a branch and bound algorithm.

Examples

```r
## githubIssue98
cat("Basic matrix interface\n")
Gmat <- matrix(c(0.416757847405471, 2.13619605956845, 1.79343558519486, 0, 0, 0, 0, -1, 0, 0, 0, 0.056268287226329, -1.64027080840999, 0.841747365656204, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0.416757847405471, 2.13619605956845, 1.79343558519486, 0, 0, -1, 0, 0, 0, 0, 0.056268287226329, -1.64027080840999, 0.841747365656204, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, ncol = 5L)
```
ECOS exitcodes

ECOS solver exit codes

Description

A two-column data frame consisting of the code and description for the ECOS solver with ECOS symbolic code names as row names.
Index

*Topic data
 ECOS_exitcodes, 6

dgCMatrix-class, 4

ecos.control, 2, 4
ECOS_csolve, 4
ECOS_exitcodes, 5, 6
ECOSolveR, 3
ECOSolveR-package (ECOSolveR), 3