Package ‘ECOSolveR’

November 6, 2019

Type Package
Title Embedded Conic Solver in R
Version 0.5.3
Date 2019-11-05
VignetteBuilder knitr
SystemRequirements GNU make

URL https://bnaras.github.io/ECOSolveR

BugReports https://github.com/bnaras/ECOSolveR/issues

Suggests knitr, rmarkdown, testthat, Matrix, covr, slam

Description R interface to the Embedded Conic Solver (ECOS), an efficient and robust C library for convex problems. Conic and equality constraints can be specified in addition to integer and boolean variable constraints for mixed-integer problems. This R interface is inspired by the python interface and has similar calling conventions.

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 6.1.1

NeedsCompilation yes

Author Anqi Fu [aut],
Balasubramanian Narasimhan [aut, cre],
Florian Schwendinger [ctb]

Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>

Repository CRAN

Date/Publication 2019-11-06 09:30:02 UTC
R topics documented:

ecos.control ... 2
ECOSolveR ... 3
ECOS_csolve ... 4
ECOS_exitcodes .. 6

Index 7

ecos.control Return the default optimization parameters for ECOS

Description
This is used to control the behavior of the underlying optimization code.

Usage
ecos.control(maxit = 100L, feastol = 1e-08, reltol = 1e-08,
abstol = 1e-08, feastol_inacc = 1e-04, abstol_inacc = 5e-05,
realtol_inacc = 5e-05, verbose = 0L, mi_max_iters = 1000L,
mi_int_tol = 1e-04, mi_abs_eps = 1e-06, mi_rel_eps = 1e-06)

Arguments
maxit the maximum number of iterations for ecos, default 100L
feastol the tolerance on the primal and dual residual, default 1e-8
realtol the relative tolerance on the duality gap, default 1e-8
abstol the absolute tolerance on the duality gap, default 1e-8
feastol_inacc the tolerance on the primal and dual residual if reduced precisions, default 1e-4
abstol_inacc the absolute tolerance on the duality gap if reduced precision, default 5e-5
realtol_inacc the relative tolerance on the duality gap if reduced precision, default 5e-5
verbose verbosity level, default 0L. A verbosity level of 1L will show more detail, but clutter session transcript.
mi_max_iters the maximum number of branch and bound iterations (mixed integer problems only), default 1000L
mi_int_tol the integer tolerance (mixed integer problems only), default 1e-4
mi_abs_eps the absolute tolerance between upper and lower bounds (mixed integer problems only), default 1e-6
mi_rel_eps the relative tolerance, \((\bar{U} - \bar{L})/L\), between upper and lower bounds (mixed integer problems only), default 1e-6
Value

a list with the following elements:

FEASTOL the tolerance on the primal and dual residual, parameter `feastol`

ABSTOL the absolute tolerance on the duality gap, parameter `abstol`

RELTOL the relative tolerance on the duality gap, parameter `reltol`

FEASTOL_INACC the tolerance on the primal and dual residual if reduced precisions, parameter `feastol_inacc`

ABSTOL_INACC the absolute tolerance on the duality gap if reduced precision, parameter `abstol_inacc`

RELTOL_INACC the relative tolerance on the duality gap if reduced precision, parameter `reltol_inacc`

MAXIT the maximum number of iterations for ecos, parameter `maxit`

MI_MAX_ITERS the maximum number of branch and bound iterations (mixed integer problems only), parameter `mi_max_iters`

MI_INT_TOL the integer tolerance (mixed integer problems only), parameter `mi_int_tol`

MI_ABS_EPS the absolute tolerance between upper and lower bounds (mixed integer problems only), parameter `mi_abs_eps`

MI_REL_EPS the relative tolerance, $(U - L)/L$, between upper and lower bounds (mixed integer problems only), parameter `mi_rel_eps`

VERBOSE verbosity level, parameter `verbose`

ECOSolveR **ECOSolveR: Embedded Conic Solver in R**

Description

ECOSolveR is a wrapper around the ecos library. Please see the examples and documentation for the function `ECOS_csolve`.

References

https://github.com/embotech/ecos
ECOS_csolve

Solve a conic optimization problem

Description

The function ECOS_csolve is a wrapper around the ecos csolve C function. Conic constraints are specified using the \(G \) and \(h \) parameters and can be NULL and zero length vector respectively indicating an absence of conic constraints. Similarly, equality constraints are specified via \(A \) and \(b \) parameters with NULL and empty vector values representing a lack of such constraints. At most one of the pair \((G, h)\) or \((A, b)\) is allowed to be absent.

Usage

```r
ECOS_csolve(c = numeric(0), G = NULL, h = numeric(0), dims = list(l = integer(0), q = NULL, e = integer(0)), A = NULL, b = numeric(0), bool_vars = integer(0), int_vars = integer(0), control = ecos.control())
```

Arguments

- **c**
 - the coefficients of the objective function; the length of this determines the number of variables \(n \) in the problem.

- **G**
 - the inequality constraint matrix in one of three forms: a plain matrix, simple triplet matrix, or compressed column format, e.g. \(\text{dgCMatrix-class} \). Can also be NULL.

- **h**
 - the right hand size of the inequality constraint. Can be empty numeric vector.

- **dims**
 - is a list of three named elements: \(\text{dims['l']} \) an integer specifying the dimension of positive orthant cone, \(\text{dims['q']} \) an integer vector specifying dimensions of second-order cones, \(\text{dims['e']} \) an integer specifying the number of exponential cones.

- **A**
 - the optional equality constraint matrix in one of three forms: a plain matrix, simple triplet matrix, or compressed column format, e.g. \(\text{dgCMatrix-class} \). Can be NULL.

- **b**
 - the right hand side of the equality constraint, must be specified if \(A \) is. Can be empty numeric vector.

- **bool_vars**
 - the indices of the variables, 1 through \(n \), that are boolean; that is, they are either present or absent in the solution.

- **int_vars**
 - the indices of the variables, 1 through \(n \), that are integers.

- **control**
 - is a named list that controls various optimization parameters; see \(\text{ecos.control} \).

Value

- a list of 8 named items

- **x** primal variables
ECOS_csolve

- y dual variables for equality constraints
- s slacks for \(Gx + s \leq h, s \in K \)
- z dual variables for inequality constraints \(s \in K \)

infostring gives information about the status of solution

retnodes a named integer vector containing four elements

- **exitflag** 0=ECOS_OPTIMAL, 1=ECOS_PINF, 2=ECOS_DINF, 10=ECOS_INACC_OFFSET, -1=ECOS_MAXIT, -2=ECOS_NUMERICS, -3=ECOS_OUTCONE, -4=ECOS_SIGINT, -7=ECOS_FATAL. See ECOS_exitcodes.
- **iter** the number of iterations used
- **mi_iter** the number of iterations for mixed integer problems
- **numerr** a non-zero number if a numeric error occurred

summary a named numeric vector containing

- **pcost** value of primal objective
- **dcost** value of dual objective
- **pres** primal residual on inequalities and equalities
- **dres** dual residual
- **pinf** primal infeasibility measure
- **dinf** dual infeasibility measure
- **pinfres** primal infeasibility residual
- **dinfres** dual infeasibility residual
- **gap** duality gap
- **relgap** relative duality gap
- **r0** Unknown at the moment to this R package maintainer.

timing a named numeric vector of timing information consisting of

- **runtime** the total runtime in ecos
- **tsetup** the time for setup of the problem
- **tsolve** the time to solve the problem

Details

A call to this function will solve the problem: minimize \(c^T x \), subject to \(Ax = b \), and \(h - G* x \in K \).

Variables can be constrained to be boolean (1 or 0) or integers. This is indicated by specifying parameters bool_vars and/or int_vars respectively. If so indicated, the solutions will be found using a branch and bound algorithm.

Examples

```r
## githubIssue98
cat("Basic matrix interface\n")
Gmat <- matrix(c(0.416757847405471, 2.13619609566845, 1.79343558519486, 0, 0,
0, 0, -1, 0, 0, 0.056266827226329, -1.64027080840499, 0.841747365656204,
0, 0, 0, 0, -1, 0, 0, 0, 0, 0.416757847405471, 2.13619609566845,
1.79343558519486, 0, 0, -1, 0, 0, 0, 0.056266827226329, -1.64027080840499,
0.841747365656204, 0, 0, 0, -1, 0, 0, 0, 0, 0, -0, 0, 0, 0, -1, 0, 0, 0), ncol = 5L)
```
c <- as.numeric(c(0, 0, 0, 0, 0, 0))
h <- as.numeric(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
dims <- list(l = 6L, q = 5L, e = 0L)
ECOS_csolve(c = c, G = Gmat, h = h,
dims = dims,
A = NULL, b = numeric(0))

ECOS csolve(c = c, G = slam::as.simple_triplet_matrix(Gmat), h = h,
dims = dims,
A = NULL, b = numeric(0))

if (requireNamespace("Matrix")) {
 ECOS_csolve(c = c, G = Matrix::Matrix(Gmat), h = h,
dims = dims,
A = NULL, b = numeric(0))
}

Larger problems using saved data can be found in the test suite.
Here is one
if (requireNamespace("Matrix")) {
 MPC01 <- readRDS(system.file("testdata", "MPC01_1.RDS", package = "ECOSolveR"))
 G <- Matrix::sparseMatrix(x = MPC01$Gpr, i = MPC01$Gir, p = MPC01$Gjc,
dims = c(MPC01$m, MPC01$n), index1 = FALSE)
 h <- MPC01$h
 dims <- lapply(list(l = MPC01$l, q=MPC01$q, e=MPC01$e), as.integer)
 retval <- ECOS_csolve(c = MPC01$c, G=G, h = h, dims = dims, A = NULL, b = NULL,
control = ecos.control(verbos=1L))
 retval$retcodes
 retval$infostring
 retval$summary
}

ECOS_exitcodes

ECOS solver exit codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Success</td>
</tr>
<tr>
<td>1</td>
<td>Infeasible</td>
</tr>
<tr>
<td>2</td>
<td>Divergence</td>
</tr>
<tr>
<td>3</td>
<td>Max iterations reached</td>
</tr>
</tbody>
</table>

Description

A two-column data frame consisting of the code and description for the ECOS solver with ECOS symbolic code names as row names.
Index

∗Topic data
 ECOS_exitcodes, 6

dgCMatrix-class, 4

ecos.control, 2, 4
ECOS_csolve, 4
ECOS_exitcodes, 5, 6
ECOSolveR, 3
ECOSolveR-package (ECOSolveR), 3