EESPCA: Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA)

Contains logic for computing sparse principal components via the EESPCA method, which is based on an approximation of the eigenvector/eigenvalue identity. Includes logic to support execution of the TPower and rifle sparse PCA methods, as well as logic to estimate the sparsity parameters used by EESPCA, TPower and rifle via cross-validation to minimize the out-of-sample reconstruction error. H. Robert Frost (2021) <arXiv:2006.01924>.

Version: 0.3.0
Depends: R (≥ 3.6.0), rifle (≥ 1.0.0), MASS, PMA
Published: 2021-07-16
Author: H. Robert Frost
Maintainer: H. Robert Frost <rob.frost at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Copyright: Dartmouth College
NeedsCompilation: no
CRAN checks: EESPCA results


Reference manual: EESPCA.pdf
Vignettes: EESPCA example
Package source: EESPCA_0.3.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): EESPCA_0.3.0.tgz, r-release (x86_64): EESPCA_0.3.0.tgz, r-oldrel: EESPCA_0.3.0.tgz


Please use the canonical form to link to this page.