Package ‘EGAnet’

April 22, 2024

Title Exploratory Graph Analysis – a Framework for Estimating the Number of Dimensions in Multivariate Data using Network Psychometrics

Version 2.0.6

Date 2024-04-22

Maintainer Hudson Golino <hfg9s@virginia.edu>

Description Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments.

Depends R (>= 3.5.0)

License GPL (>= 3.0)

Encoding UTF-8

LazyData true

Imports dendextend, fungible, future, future.apply, glasso, GGally, ggplot2, ggpurb, GPArotation, igraph (>= 1.3.0), lavaan, Matrix, methods, network, progressr, qgraph, semPlot, sna, stats

Suggests fitdistrplus, gridExtra, knitr, markdown, pbapply, progress, psych, pwr, RColorBrewer

URL https://r-ega.net

BugReports https://github.com/hfgolino/EGAnet/issues

RoxygenNote 7.3.1
R topics documented:

- EGA.net-package
- auto.correlate
- boot.ergoInfo
- boot.wmt
- bootEGA
- CFA
- color_palette_EGA
- community.compare
- community.consensus
- community.detection
- community.homogenize
- community.unidimensional
- compare.EGA.plots
- convert2igraph
- convert2tidygraph
- depression
- dimensionStability
- dnn.weights
- dynEGA
- dynEGA.ind.pop
- EBICglasso.qgraph
- EGA
- EGA.estimate
- EGA.fit
- ega.wmt
- EGAnet-plot
- Embed
- entropyFit
- ergoInfo
- genTEFI
- glla
- hierEGA
- igraph2matrix
- infoCluster
- intelligenceBattery
Description

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments.

Author(s)

Hudson Golino <hfg9s@virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
References

Related functions: community.unidimensional

Related functions: UVA

Related functions: EGA

Related functions: bootEGA, dimensionStability, # and itemStability

Related functions: LCT

Related functions: LCT and net.loads

Related functions: bootEGA, dimensionStability, # EGA, itemStability, and UVA

Related functions: dynEGA and simDFM

Related functions: EGA

Related functions: CFA, EGA, and bootEGA

Related functions: entropyFit, tefi, and vn.entropy

Related functions: boot.ergoInfo, ergoInfo, jsd, and infoCluster

Related functions: EGA

Related functions: EGA.fit and tefi

Related functions: EGA.fit and tefi

Related functions: invariance

Related functions: EGA

See Also

Useful links:

- https://r-ega.net
- Report bugs at https://github.com/hfgolino/EGAnet/issues

auto.correlate

Automatic correlations

Description

This wrapper is similar to *cor_auto*. There are some minor adjustments that make this function simpler and to function within *EGAnet*. NA values are not treated as categories (this behavior differs from *cor_auto*).

Usage

```r
auto.correlate(
  data,
  corr = c("kendall", "pearson", "spearman"),
  ordinal.categories = 7,
  forcePD = TRUE,
  na.data = c("pairwise", "listwise"),
  empty.method = c("none", "zero", "all"),
  empty.value = c("none", "point_five", "one_over"),
)```

```r
auto.correlate(
data,
 corr = c("kendall", "pearson", "spearman"),
 ordinal.categories = 7,
 forcePD = TRUE,
 na.data = c("pairwise", "listwise"),
 empty.method = c("none", "zero", "all"),
 empty.value = c("none", "point_five", "one_over"),
)```

```r
auto.correlate(  
data,
  corr = c("kendall", "pearson", "spearman"),
  ordinal.categories = 7,
  forcePD = TRUE,
  na.data = c("pairwise", "listwise"),
  empty.method = c("none", "zero", "all"),
  empty.value = c("none", "point_five", "one_over"),
)```
verbatim

verbose = FALSE,
...
)

Arguments

data
Matrix or data frame. Should consist only of variables to be used in the analysis
corr
Character (length = 1). The standard correlation method to be used. Defaults to "pearson". Using "pearson" will compute polychoric, tetrachoric, polyserial, and biserial correlations for categorical and categorical/continuous correlations by default. To obtain "pearson" correlations regardless, use cor. Other options of "kendall" and "spearman" are provided for completeness and use cor

ordinal.categories
Numeric (length = 1). Up to the number of categories before a variable is considered continuous. Defaults to 7 categories before 8 is considered continuous

forcePD
Boolean (length = 1). Whether positive definite matrix should be enforced. Defaults to TRUE

na.data
Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

eempty.method
Character (length = 1). Method for empty cell correction in polychoric.matrix. Defaults to "none". Available options:
- "none" — Adds no value (empty.value = "none") to the empirical joint frequency table between two variables
- "zero" — Adds empty.value to the cells with zero in the joint frequency table between two variables
- "all" — Adds empty.value to all in the joint frequency table between two variables

eempty.value
Character (length = 1). Value to add to the joint frequency table cells in polychoric.matrix. Defaults to "none". Accepts numeric values between 0 and 1 or specific methods:
- "none" — Adds no value (0) to the empirical joint frequency table between two variables
- "point_five" — Adds .5 to the cells defined by empty.method
- "one_over" — Adds 1 / n where n equals the number of cells based on empty.method. For empty.method = "zero", n equals the number of zero cells

verbose
Boolean (length = 1). Whether messages should be printed. Defaults to FALSE

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>
Examples

```r
Load data
wmt <- wmt2[,7:24]

Obtain correlations
wmt_corr <- auto.correlate(wmt)
```

---

*boot.ergoInfo*

**Bootstrap Test for the Ergodicity Information Index**

**Description**

Tests the Ergodicity Information Index obtained in the empirical sample with a distribution of EII obtained by a variant of bootstrap sampling (see Details for the procedure).

**Usage**

```r
boot.ergoInfo(
 dynEGA.object,
 EII,
 use = c("edge.list", "unweighted", "weighted"),
 shuffles = 5000,
 iter = 100,
 ncores,
 verbose = TRUE
)
```

**Arguments**

- `dynEGA.object` A `dynEGA` or a `dynEGA.ind.pop` object. If a `dynEGA` object, then `level = c("individual", "population")` is required.
- `EII` A `ergoInfo` object used to estimate the Empirical Ergodicity Information Index or the estimated value of EII estimated using the `ergoInfo` function. Inherits `use` from `ergoInfo`. If no `ergoInfo` object is provided, then it is estimated.
- `use` Character (length = 1). A string indicating what network element will be used to compute the algorithm complexity, the list of edges or the weights of the network. Defaults to `use = "unweighted"`. Current options are:
  - "edge.list" — Calculates the algorithm complexity using the list of edges
  - "unweighted" — Calculates the algorithm complexity using the binary weights of the encoded prime transformed network. 0 = edge absent and 1 = edge present
  - "weighted" — Calculates the algorithm complexity using the weights of encoded prime-weight transformed network
- `shuffles` Numeric. Number of shuffles used to compute the Kolmogorov complexity. Defaults to 5000.
In traditional bootstrap sampling, individual participants are resampled with replacement from the empirical sample. This process is time consuming when carried out across $v$ number of variables, $n$ number of participants, $t$ number of time points, and $i$ number of iterations. Instead, `boot.ergoInfo` uses the premise of an ergodic process to establish more efficient tests that work directly on the sample's networks.

With an ergodic process, the expectation is that all individuals will have a systematic relationship with the population. Destroying this relationship should result in a significant loss of information. Following this conjecture, `boot.ergoInfo` shuffles a random subset of edges that exist in the population that is equal to the number of shared edges it has with an individual. An individual's unique edges remain the same, controlling for their unique information. The result is a replicate individual that contains the same total number of edges as the actual individual but its shared information with the population has been scrambled.

This process is repeated over each individual to create a replicate sample and is repeated for $X$ iterations (e.g., 100). This approach creates a sampling distribution that represents the expected information between the population and individuals when a random process generates the shared information between them. If the shared information between the population and individuals in the empirical sample is sufficiently meaningful, then this process should result in significant information loss.

How to interpret the results: the result of `boot.ergoInfo` is a sampling distribution of EII values that would be expected if the process was random (null distribution). If the empirical EII value is greater than or not significantly different from the null distribution, then the empirical data can be expected to be generated from a nonergodic process and the population structure is not sufficient to describe all individuals. If the empirical EII value is significantly lower than the null distribution, then the empirical data can be described by the population structure – the population structure is sufficient to describe all individuals.

**Value**

Returns a list containing:

- `empirical.ergoInfo` Empirical Ergodicity Information Index
- `boot.ergoInfo` The values of the Ergodicity Information Index obtained in the bootstrap
- `p.value` The two-sided $p$-value of the bootstrap test for the Ergodicity Information Index. The null hypothesis is that the empirical Ergodicity Information index is equal to the expected value of the EII with small variation in the population structure
boot.ergoInfo

effect Indicates whether the empirical EII is greater or less than the bootstrap distribution of EII.

interpretation How you can interpret the result of the test in plain English

Author(s)
Hudson Golino <hfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at vanderbilt.edu>

References

Original Implementation

See Also
plot.EGAnet for plot usage in EGAnet

Examples

# Obtain simulated data
sim.data <- sim.dynEGA

## Not run:
# Dynamic EGA individual and population structures
dyn1 <- dynEGA.ind.pop(
  data = sim.dynEGA[, -26], n.embed = 5, tau = 1,
  delta = 1, id = 25, use.derivatives = 1,
  model = "glasso", ncores = 2, corr = "pearson"
)

# Empirical Ergodicity Information Index
eii1 <- ergoInfo(dynEGA.object = dyn1, use = "unweighted")

# Bootstrap Test for Ergodicity Information Index
testing.ergoinfo <- boot.ergoInfo(
  dynEGA.object = dyn1, EII = eii1,
  ncores = 2, use = "unweighted"
)

# Plot result
plot(testing.ergoinfo)

# Example using `dynEGA`
dyn2 <- dynEGA(
  data = sim.dynEGA, n.embed = 5, tau = 1,
  delta = 1, use.derivatives = 1, ncores = 2,
  level = c("individual", "population")
)

# Empirical Ergodicity Information Index
ei2 <- ergoInfo(dynEGA.object = dyn2, use = "unweighted")

# Bootstrap Test for Ergodicity Information Index
testing.ergoinfo2 <- boot.ergoInfo(
  dynEGA.object = dyn2, EII = ei2,
  ncores = 2
)

# Plot result
plot(testing.ergoinfo2)
## End(Not run)

---

**boot.wmt**

**bootEGA Results of wmt2Data**

**Description**

*bootEGA* results from `boot.wmt <- bootEGA(wmt2[,7:24], seed = 1234)`

**Usage**

data(boot.wmt)

**Format**

A list with 12 objects (see **Value** in *bootEGA*)

**Examples**

data("boot.wmt")

---

**bootEGA**

**Bootstrap Exploratory Graph Analysis**

**Description**

*bootEGA* Estimates the number of dimensions of *iter* bootstraps using the empirical zero-order correlation matrix ("parametric") or "resampling" from the empirical dataset (non-parametric). *bootEGA* estimates a typical median network structure, which is formed by the median or mean pairwise (partial) correlations over the *iter* bootstraps (see **Details** for information about the typical median network structure).
Usage

bootEGA(
  data,  
  n = NULL,  
  corr = c("auto", "cor_auto", "pearson", "spearman"),  
  na.data = c("pairwise", "listwise"),  
  model = c("BGGM", "glasso", "TMFG"),  
  algorithm = c("leiden", "louvain", "walktrap"),  
  uni.method = c("expand", "LE", "louvain"),  
  iter = 500,  
  type = c("parametric", "resampling"),  
  ncores,  
  EGA.type = c("EGA", "EGA.fit", "hierEGA", "riEGA"),  
  plot.itemStability = TRUE,  
  typicalStructure = FALSE,  
  plot.typicalStructure = FALSE,  
  seed = NULL,  
  verbose = TRUE,  
  ...

)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
n Numeric (length = 1). Sample size if data provided is a correlation matrix
corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
  • "auto" — Automatically computes appropriate correlations for the data using Pearson's for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
  • "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
  • "pearson" — Pearson's correlation is computed for all variables regardless of categories
  • "spearman" — Spearman's rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
  • "pairwise" — Computes correlation for all available cases between two variables
  • "listwise" — Computes correlation for all complete cases in the dataset
model Character (length = 1). Defaults to "glasso". Available options:
  • "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See BGGM::estimate for more details
  • "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
  • "TMFG" — Computes the TMFG method. See TMFG for more details
algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
  • "leiden" — See cluster_leiden for more details
  • "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
  • "walktrap" — See cluster_walktrap for more details
uni.method Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
  • "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.'s (2020) Psychological Methods simulation
  • "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.'s (2023) Behavior Research Methods simulation
  • "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen's (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"
iter Numeric (length = 1). Number of replica samples to generate from the bootstrap analysis. Defaults to 500 (recommended)
type Character (length = 1). What type of bootstrap should be performed? Defaults to "parametric". Available options:
  • "parametric" — Generates iter new datasets from (multivariate normal random distributions) based on the original dataset using mvrnorm
  • "resampling" — Generates iter new datasets from random subsamples of the original data
ncores Numeric (length = 1). Number of cores to use in computing results. Defaults to ceiling(parallel::detectCores() / 2) or half of your computer’s processing power. Set to 1 to not use parallel computing
  If you’re unsure how many cores your computer has, then type: parallel::detectCores()
EGA.type

Character (length = 1). Type of EGA model to use. Defaults to “EGA” Available options:

- "EGA" — Uses standard exploratory graph analysis
- "EGA.fit" — Uses tefi to determine best fit of EGA
- "hierEGA" — Uses hierarchical exploratory graph analysis
- "riEGA" — Uses random-intercept exploratory graph analysis

Arguments for EGA.type can be added (see links for details on specific function arguments)

plot.itemStability

Boolean (length = 1). Should the plot be produced for item.replication? Defaults to TRUE

typicalStructure

Boolean (length = 1). If TRUE, returns the median ("glasso" or "BGGM") or mean ("TMFG") network structure and estimates its dimensions (see Details for more information). Defaults to FALSE

plot.typicalStructure

Boolean (length = 1). If TRUE, returns a plot of the typical network structure. Defaults to FALSE

seed

Numeric (length = 1). Defaults to NULL or random results. Set for reproducible results. See Reproducibility and PRNG for more details on random number generation in EGAnet

verbose

Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress

... Additional arguments that can be passed on to auto.correlate, network.estimation, community.detection, community.consensus, EGA, EGA.fit, hierEGA, and riEGA

Details

The typical network structure is derived from the median (or mean) value of each pairwise relationship. These values tend to reflect the “typical” value taken by an edge across the bootstrap networks. Afterward, the same community detection algorithm is applied to the typical network as the bootstrap networks.

Because the community detection algorithm is applied to the typical network structure, there is a possibility that the community algorithm determines a different number of dimensions than the median number derived from the bootstraps. The typical network structure (and number of dimensions) may not match the empirical EGA number of dimensions or the median number of dimensions from the bootstrap. This result is known and not a bug.

Value

Returns a list containing:

iter

Number of replica samples in bootstrap

bootGraphs

A list containing the networks of each replica sample
bootEGA

boot.wc A matrix of membership assignments for each replica network with variables down the columns and replicas across the rows

boot.ndim Number of dimensions identified in each replica sample

summary.table A data frame containing number of replica samples, median, standard deviation, standard error, 95% confidence intervals, and quantiles (lower = 2.5% and upper = 97.5%)

frequency A data frame containing the proportion of times the number of dimensions was identified (e.g., .85 of 1,000 = 850 times that specific number of dimensions was found)

TEFI tefi value for each replica sample

type Type of bootstrap used

EGA Output of the empirical EGA results (output will vary based on EGA.type)

EGA.type Type of *EGA function used

typicalGraph A list containing:

• graph — Network matrix of the median network structure
• typical.dim.variables — An ordered matrix of item allocation
• wc — Membership assignments of the median network

plot.typical.ega Plot output if plot.typicalStructure = TRUE

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Original implementation of bootEGA


See Also

itemStability to estimate the stability of the variables in the empirical dimensions and dimensionStability to estimate the stability of the dimensions (structural consistency)

Examples

# Load data
wmt <- wmt2[,7:24]

## Not run:
# Standard EGA parametric example
boot.wmt <- bootEGA(
  data = wmt, iter = 500,
  type = "parametric", ncores = 2
)
# Standard resampling example
boot.wmt <- bootEGA(
    data = wmt, iter = 500,
    type = "resampling", ncores = 2
)

# Example using (igraph) 'cluster_*' function
boot.wmt.spinglass <- bootEGA(
    data = wmt, iter = 500,
    algorithm = igraph::cluster_spinglass,
    # use any function from (igraph)
    type = "parametric", ncores = 2
)

# EGA fit example
boot.wmt.fit <- bootEGA(
    data = wmt, iter = 500,
    EGA.type = "EGA.fit",
    type = "parametric", ncores = 2
)

# Hierarchical EGA example
boot.wmt.hier <- bootEGA(
    data = wmt, iter = 500,
    EGA.type = "hierEGA",
    type = "parametric", ncores = 2
)

# Random-intercept EGA example
boot.wmt.ri <- bootEGA(
    data = wmt, iter = 500,
    EGA.type = "riEGA",
    type = "parametric", ncores = 2
)

## End(Not run)

---

CFA

### CFA Fit of EGA or hierEGA Structure

**Description**

Verifies the fit of the structure suggested by EGA or by hierEGA using confirmatory factor analysis

**Usage**

CFA(ega.obj, data, estimator, plot.CFA = TRUE, layout = "spring", ...)

Arguments

ega.obj An EGA object or an hierEGA
data Matrix or data frame. Should consist only of variables to be used in the analysis
estimator The estimator used in the confirmatory factor analysis. 'WLSMV' is the estimator of choice for ordinal variables. 'ML' or 'WLS' for interval variables. See lavOptions for more details
plot.CFA Logical. Should the CFA structure with its standardized loadings be plot? Defaults to TRUE
layout Layout of plot (see semPaths). Defaults to "spring"
... Arguments passed to cfa

Value

Returns a list containing:

fit Output from cfa
summary Summary output from lavaan-class
fit.measures Fit measures: chi-squared, degrees of freedom, p-value, CFI, RMSEA, GFI, and NFI. Additional fit measures can be applied using the fitMeasures function (see examples)

Author(s)

Hudson F. Golino <hfg9s at virginia.edu>

References

Demonstrative use

Initial implementation

Examples

# Load data
wmt <- wmt2[,7:24]

## Not run:
# Estimate EGA
ega.wmt <- EGA(
  data = wmt,
  plot.EGA = FALSE # No plot for CRAN checks
)

# Fit CFA model to EGA results
cfa.wmt <- CFA(
  ega.obj = ega.wmt, estimator = "WLSMV",
  plot.CFA = FALSE, # No plot for CRAN checks
  data = wmt
)

# Additional fit measures
lavaan::fitMeasures(cfa.wmt$fit, fit.measures = "all")
## End(Not run)

color_palette_EGA EGA Color Palettes

Description

Color palettes for plotting ggnet2 EGA network plots

Usage

color_palette_EGA(
  name = c("polychrome", "blue.ridge1", "blue.ridge2", "rainbow", "rio", "itacare", "grayscale"),
  wc,
  sorted = FALSE
)

Arguments

name Character. Name of color scheme (see RColorBrewer). Defaults to "polychrome". EGA palettes:
  • "polychrome" — Default 40 color palette
  • "grayscale" — "grayscale", "greyscale", or "colorblind" will produce plots suitable for publication purposes
  • "blue.ridge1" — Palette inspired by the Blue Ridge Mountains
  • "blue.ridge2" — Second palette inspired by the Blue Ridge Mountains
  • "rainbow" — Rainbow colors. Default for qgraph
  • "rio" — Palette inspired by Rio de Janeiro, Brazil
  • "itacare" — Palette inspired by Itacare, Brazil

For custom colors, enter HEX codes for each dimension in a vector

wc Numeric vector. A vector representing the community (dimension) membership of each node in the network. NA values mean that the node was disconnected from the network

sorted Boolean. Should colors be sorted by wc? Defaults to FALSE
community.compare

Value

Vector of colors for community memberships

Author(s)

Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen at gmail.com>

See Also

plot.EGA for plot usage in EGA

Examples

# Default
color_palette_EGA(name = "polychrome", wc = ega.wmt$wc)

# Blue Ridge Mountains 1
color_palette_EGA(name = "blue.ridge1", wc = ega.wmt$wc)

# Custom
color_palette_EGA(name = c("#7FD1B9", ":#24547e"), wc = ega.wmt$wc)

community.compare

Compares Community Detection Solutions Using Permutation

Description

A permutation implementation to determine statistical significance of whether the community comparison measure is different from zero

Usage

community.compare(
  base,
  comparison,
  method = c("vi", "nmi", "split.join", "rand", "adjusted.rand"),
  iter = 1000,
  shuffle.base = TRUE,
  verbose = TRUE,
  seed = NULL
)
community.compare

Arguments

base Character or numeric vector. A vector of characters or numbers that are treated as the baseline communities

comparison Character or numeric vector (length = length(base)). A vector of characters or numbers that are treated as the baseline communities

method Character (length = 1). Comparison metrics from compare. Defaults to "adjusted.rand". Available options:
  • "vi" — Variation of information (Meila, 2003)
  • "nmi" — Normalized mutual information (Danon et al., 2003)
  • "split.join" — Split-join distance (Dongen, 2000)
  • "rand" — Rand index (Rand, 1971)
  • "adjusted.rand" — adjusted Rand index (Hubert & Arabie, 1985; Steinley, 2004)

iter Numeric (length = 1). Number of permutations to perform. Defaults to 1000 (recommended)

shuffle.base Boolean (length = 1). Whether the base cluster solution should be shuffled. Defaults to TRUE to remain consistent with original implementation (Qannari et al., 2014); however, from a theoretical standpoint, it might make sense to only shuffle the comparison to determine whether it is specifically different from the recognized base

verbose Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress

seed Numeric (length = 1). Defaults to NULL or random results. Set for reproducible results. See Reproducibility and PRNG for more details on random number generation in EGAnet

Value

Returns data frame containing method used (Method), empirical or observed value (Empirical), and p-value based on the permutation test (p.value)

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Implementation of Permutation Test

Variation of Information
Normalised Mutual Information

Split-join Distance

Rand Index

Adjusted Rand Index

Examples
```r
Load data
wmt <- wmt2[,7:24]

Estimate network
network <- EBICglasso.qgraph(data = wmt)

Compute Edge Betweenness
edge_between <- community.detection(network, algorithm = "edge_betweenness")

Compute Fast Greedy
fast_greedy <- community.detection(network, algorithm = "fast_greedy")

Perform permutation test
community.compare(edge_between, fast_greedy)
```

**community.consensus**

*Applies the Consensus Clustering Method (Louvain only)*

**Description**

Applies the consensus clustering method introduced by (Lancichinetti & Fortunato, 2012). The original implementation of this method applies a community detection algorithm repeatedly to the same network. With stochastic networks, the algorithm is likely to identify different community solutions with many repeated applications.

**Usage**

```r
community.consensus(
 network,
 order = c("lower", "higher"),
```
community.consensus

```r
resolution = 1,
consensus.method = c("highest_modularity", "iterative", "most_common", "lowest_tefi"),
consensus.iter = 1000,
correlation.matrix = NULL,
allow.singleton = FALSE,
membership.only = TRUE,
...)
```

**Arguments**

- **network**
  - Matrix or `igraph` network object

- **order**
  - Character (length = 1). Defaults to "higher". Whether "lower" or "higher" order memberships from the Louvain algorithm should be obtained for the consensus. The "lower" order Louvain memberships are from the first initial pass of the Louvain algorithm whereas the "higher" order Louvain memberships are from the last pass of the Louvain algorithm.

- **resolution**
  - Numeric (length = 1). A parameter that adjusts modularity to allow the algorithm to prefer smaller (resolution > 1) or larger (0 < resolution < 1) communities. Defaults to 1 (standard modularity computation).

- **consensus.method**
  - Character (length = 1). Defaults to "most_common". Available options for arriving at a consensus (Note: All methods except "iterative" are considered experimental until validated):
    - "highest_modularity" — EXPERIMENTAL. Selects the community solution with the highest modularity across the applications. Modularity is a reasonable metric for identifying the number of communities in a network but it comes with limitations (e.g., resolution limit).
    - "iterative" — The original approach proposed by Lancichinetti & Fortunato (2012). See "Details" for more information.
    - "most_common" — Selects the community solution that appears the most frequently across the applications. The idea behind this method is that the solution that appears most often will be the most likely solution for the algorithm as well as most reproducible. Can be less stable as the number of nodes increase requiring a larger value for `consensus.iter`. This method is the default.
    - "lowest_tefi" — EXPERIMENTAL. Selects the community solution with the lowest Total Entropy Fit Index (`tefi`) across the applications. TEFI is a reasonable metric to identify the number of communities in a network based on Golino, Moulder et al. (2020).

- **consensus.iter**
  - Numeric (length = 1). Number of algorithm applications to the network. Defaults to 1000.

- **correlation.matrix**
  - Symmetric matrix. Used for computation of `tefi`. Only needed when `consensus.method = "tefi"`
allow.singleton

Boolean (length = 1). Whether singleton or single node communities should be allowed. Defaults to FALSE. When FALSE, singleton communities will be set to missing (NA); otherwise, when TRUE, singleton communities will be allowed.

membership.only

Boolean. Whether the memberships only should be output. Defaults to TRUE. Set to FALSE to obtain all output for the community detection algorithm.

... Not actually used but makes it easier for general functionality in the package

Details

The goal of the consensus clustering method is to identify a stable solution across algorithm applications to derive a "consensus" clustering. The standard or "iterative" approach is to apply the community detection algorithm \(N\) times. Then, a co-occurrence matrix is created representing how often each pair of nodes co-occurred across the applications. Based on some cut-off value (e.g., 0.30), co-occurrences below this value are set to zero, forming a "new" sparse network. The procedure proceeds until all nodes co-occur with all other nodes in their community (or a proportion of 1.00).

Variations of this procedure are also available in this package but are experimental. Use these experimental procedures with caution. More work is necessary before these experimental procedures are validated.

At this time, seed setting for consensus clustering is not supported.

Value

Returns either a vector with the selected solution or a list when membership.only = FALSE:

selected_solution

Resulting solution from the consensus method.

memberships

Matrix of memberships across the consensus iterations.

proportion_table

For methods that use frequency, a table that reports those frequencies alongside their corresponding memberships.

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Louvain algorithm

Consensus clustering
**Entropy fit indices**

**Examples**

```r
Load data
wmt <- wmt2[,7:24]

Estimate correlation matrix
correlation.matrix <- auto.correlate(wmt)

Estimate network
network <- EBICglasso.qgraph(data = wmt)

Compute standard Louvain with highest modularity approach
community.consensus(
 network,
 consensus.method = "highest_modularity"
)

Compute standard Louvain with iterative (original) approach
community.consensus(
 network,
 consensus.method = "iterative"
)

Compute standard Louvain with most common approach
community.consensus(
 network,
 consensus.method = "most_common"
)

Compute standard Louvain with lowest TEFI approach
community.consensus(
 network,
 consensus.method = "lowest_tefi",
 correlation.matrix = correlation.matrix
)
```

---

**community.detection**

**Apply a Community Detection Algorithm**

**Description**

General function to apply community detection algorithms available in *igraph*. Follows the *EGAnet* approach of setting singleton and disconnected nodes to missing (NA).
Usage

```r
community.detection(
 network,
 algorithm = c("edge_betweenness", "fast_greedy", "fluid", "infomap", "label_prop",
 "leading_eigen", "leiden", "louvain", "optimal", "spinglass", "walktrap"),
 allow.singleton = FALSE,
 membership.only = TRUE,
 ...
)
```

Arguments

- **network**: Matrix or `igraph` network object
- **algorithm**: Character or `igraph` cluster_· function (length = 1). Available options:
  - "edge_betweenness" — See `cluster_edge_betweenness` for more details
  - "fast_greedy" — See `cluster_fast_greedy` for more details
  - "fluid" — See `cluster_fluid_communities` for more details
  - "infomap" — See `cluster_infomap` for more details
  - "label_prop" — See `cluster_label_prop` for more details
  - "leading_eigen" — See `cluster_leading_eigen` for more details
  - "leiden" — See `cluster_leiden` for more details. **Note**: The Leiden algorithm will default to the modularity objective function (objective_function = "modularity"). Set objective_function = "CPM" to use the Constant Potts Model instead (see examples)
  - "louvain" — See `cluster_louvain` for more details
  - "optimal" — See `cluster_optimal` for more details
  - "spinglass" — See `cluster_spinglass` for more details
  - "walktrap" — See `cluster_walktrap` for more details
- **allow.singleton**: Boolean (length = 1). Whether singleton or single node communities should be allowed. Defaults to FALSE. When FALSE, singleton communities will be set to missing (NA); otherwise, when TRUE, singleton communities will be allowed
- **membership.only**: Boolean (length = 1). Whether the memberships only should be output. Defaults to TRUE. Set to FALSE to obtain all output for the community detection algorithm
- **...**: Additional arguments to be passed on to `igraph`'s community detection functions (see `algorithm` for link to arguments of each algorithm)

Value

Returns memberships from a community detection algorithm

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
community.detection

References


Examples

```r
Load data
wmt <- wmt2[,7:24]

Estimate network
network <- EBICglasso.qgraph(data = wmt)

Compute Edge Betweenness
community.detection(network, algorithm = "edge_betweenness")

Compute Fast Greedy
community.detection(network, algorithm = "fast_greedy")

Compute Fluid
community.detection(
 network, algorithm = "fluid",
 no.of.communities = 2 # needs to be set
)

Compute Infomap
community.detection(network, algorithm = "infomap")

Compute Label Propagation
community.detection(network, algorithm = "label_prop")

Compute Leading Eigenvector
community.detection(network, algorithm = "leading_eigen")

Compute Leiden (with modularity)
community.detection(
 network, algorithm = "leiden",
 objective_function = "modularity"
)

Compute Leiden (with CPM)
community.detection(
 network, algorithm = "leiden",
 objective_function = "CPM",
 resolution_parameter = 0.05 # "edge density"
)

Compute Louvain
community.detection(network, algorithm = "louvain")

Compute Optimal (identifies maximum modularity solution)
community.detection(network, algorithm = "optimal")
```
# Compute Spinglass
community.detection(network, algorithm = "spinglass")

# Compute Walktrap
community.detection(network, algorithm = "walktrap")

# Example with (igraph) network
community.detection(
    convert2igraph(network), algorithm = "walktrap"
)

community.homogenize  

Homogenize Community Memberships

Description

Memberships from community detection algorithms do not always align numerically. This function seeks to homogenize community memberships between a target membership (the membership to homogenize toward) and one or more other memberships. This function is the core of the `dimensionStability` and `itemStability` functions.

Usage

community.homogenize(target.membership, convert.membership)

Arguments

- **target.membership**: Vector, matrix, or data frame. The target memberships that all other memberships input into `convert.membership` should be homogenize toward.

- **convert.membership**: Vector, matrix, or data frame. Either a vector of memberships the same length as `target.membership` or a matrix or data frame of many membership solutions with either across rows or down columns the same length as `target.membership` (this function will automatically determine this orientation for you with precedence given solutions across rows).

Value

Returns a vector or matrix the length or size of `convert.membership` with memberships homogenized toward `target.membership`.

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
community.unidimensional

References

**Original implementation of bootEGA**

Examples

```r
Get network
network <- network.estimation(wmt2[,7:24])

Apply Walktrap
network_walktrap <- community.detection(
 network, algorithm = "walktrap"
)

Apply Louvain
network_louvain <- community.detection(
 network, algorithm = "louvain"
)

Homogenize toward Walktrap
community.homogenize(network_walktrap, network_louvain)
```

---

**community.unidimensional**

*Approaches to Detect Unidimensional Communities*

**Description**

A function to apply several approaches to detect a unidimensional community in networks. There have many different approaches recently such as expanding the correlation matrix to have orthogonal correlations ("expand"), applying the Leading Eigenvalue community detection algorithm `cluster_leading_eigen` to the correlation matrix ("LE"), and applying the Louvain community detection algorithm `cluster_louvain` to the correlation matrix ("louvain"). Not necessarily intended for individual use – it’s better to use `EGA`

**Usage**

```r
community.unidimensional(
 data,
 n = NULL,
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
 uni.method = c("expand", "LE", "louvain"),
 verbose = FALSE,
 ...
)
```
Arguments

**data**
Matrix or data frame. Should consist only of variables that are desired to be in analysis

**n**
Numeric (length = 1). Sample size if data provided is a correlation matrix

**corr**
Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:

- "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
- "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
- "pearson" — Pearson’s correlation is computed for all variables regardless of categories
- "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

**na.data**
Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:

- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

**model**
Character (length = 1). Defaults to "glasso". Available options:

- "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
- "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
- "TMFG" — Computes the TMFG method. See TMFG for more details

**uni.method**
Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:

- "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) Psychological Methods simulation
- "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) Behavior Research Methods simulation
"louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter" verbose

Value

Returns the memberships of the community detection algorithm. The memberships will output regardless of whether the network is unidimensional

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Expand approach

Leading Eigenvector approach

Louvain approach

Examples

# Load data
wmt <- wmt2[,7:24]

# Louvain with Consensus Clustering (default)
community.unidimensional(wmt)

# Leading Eigenvector
community.unidimensional(wmt, uni.method = "LE")

# Expand
community.unidimensional(wmt, uni.method = "expand")
compare.EGA.plots  Visually Compare Two or More EGAnet plots

Description

Organizes EGA plots for comparison. Ensures that nodes are placed in the same layout to maximize comparison.

Usage

```r
compare.EGA.plots(
 ...,
 input.list = NULL,
 base = 1,
 labels = NULL,
 rows = NULL,
 columns = NULL,
 plot.all = TRUE
)
```

Arguments

```r
... Handles multiple arguments:
• *EGA objects — can be dropped in without any argument designation. The function will search across input to find necessary EGAnet objects
• ggnet2 arguments — can be passed along to ggnet2
• gplot.layout — can be specified using mode = or layout = using the name of the layout (e.g., mode = "circle" will produce the circle layout from gplot.layout). By default, the layout is the same as qgraph
```

```r
input.list List. Bypasses ... argument in favor of using a list as an input
base Numeric (length = 1). Plot to be used as the base for the configuration of the networks. Uses the number of the order in which the plots are input. Defaults to 1 or the first plot
labels Character (same length as input). Labels for each EGAnet object
rows Numeric (length = 1). Number of rows to spread plots across
columns Numeric (length = 1). Number of columns to spread plots down
plot.all Boolean (length = 1). Whether plot should be produced or just output. Defaults to TRUE. Set to FALSE to avoid plotting (but still obtain plot objects)
```

Value

Visual comparison of EGAnet objects

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>
### Description

Converts networks to `igraph` format

### Usage

```r
convert2igraph(A, diagonal = 0)
```

### Arguments

- **A**: Matrix or data frame. \( N \times N \) matrix where \( N \) is the number of nodes
- **diagonal**: Numeric. Value to be placed on the diagonal of \( A \). Defaults to 0

### Examples

```r
Obtain WMT-2 data
wmt <- wmt2[,7:24]

Draw random samples of 300 cases
sample1 <- wmt[sample(1:nrow(wmt), 300),]
sample2 <- wmt[sample(1:nrow(wmt), 300),]

Estimate EGAs
ega1 <- EGA(sample1)
ega2 <- EGA(sample2)

Compare EGAs via plot
compare.EGA.plots(
 ega1, ega2,
 base = 1, # use "ega1" as base for comparison
 labels = c("Sample 1", "Sample 2"),
 rows = 1, columns = 2
)

Change layout to circle plots
compare.EGA.plots(
 ega1, ega2,
 labels = c("Sample 1", "Sample 2"),
 mode = "circle"
)
```
Value

Returns a network in the `igraph` format

Author(s)

Hudson Golino <hfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>

Examples

```r
convert2igraph(ega.wmt$network)
```

---

convert2tidygraph  Convert networks to tidygraph

Description

Converts networks to tidygraph format

Usage

```r
convert2tidygraph(EGA.object)
```

Arguments

- `EGA.object` A single `EGAnet` object containing the outputs `$network` and `$wc`

Value

Returns a network in the tidygraph format

Author(s)

Dominique Makowski, Hudson Golino <hfg9s at virginia.edu>, & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>

Examples

```r
convert2tidygraph(ega.wmt)
```
**depression**

---

### Depression Data

**Description**

A response matrix \( n = 574 \) of the Beck Depression Inventory, Beck Anxiety Inventory, and the Athens Insomnia Scale.

**Usage**

```r
data(depression)
```

**Format**

A 574x78 response matrix

**Examples**

```r
data("depression")
```

---

### dimensionStability

**Description**

Based on the `bootEGA` results, this function computes the stability of dimensions. Stability is computed by assessing the proportion of times the original dimension is exactly replicated in across bootstrap samples.

**Usage**

```r
dimensionStability(bootega.obj, IS.plot = TRUE, structure = NULL, ...)
```

**Arguments**

- `bootega.obj`: A `bootEGA` object
- `IS.plot`: Boolean (length = 1). Should the plot be produced for `item.replication`? Defaults to TRUE
- `structure`: Numeric (length = number of variables). A theoretical or pre-defined structure. Defaults to NULL or the empirical `EGA` result in the `bootega.obj`
- `...`: Additional arguments. Used for deprecated arguments from previous versions of `itemStability`
Value

Returns a list containing:

dimension.stability

A list containing:

- structural.consistency — The proportion of times that each empirical EGA dimension exactly replicates across the bootEGA samples
- average.item.stability — The average item stability in each empirical EGA dimension

item.stability Results from itemStability

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Original implementation of bootEGA

Conceptual introduction

Examples

# Load data
wmt <- wmt2[,7:24]

## Not run:
# Estimate bootstrap EGA
boot.wmt <- bootEGA(
  data = wmt, iter = 500,
  type = "parametric", ncores = 2
)
## End(Not run)

# Estimate stability statistics
dimensionStability(boot.wmt)
**dnn.weights**

**Loadings Comparison Test Deep Learning Neural Network Weights**

**Description**
A list of weights from four different neural network models: random vs. non-random model (r_nr_weights), low correlation factor vs. network model (lf_n_weights), high correlation with variables less than or equal to factors vs. network model (hlf_n_weights), and high correlation with variables greater than factors vs. network model (hgf_n_weights)

**Usage**
```r
data(dnn.weights)
```

**Format**
A list of with a length of 4

**Examples**
```r
data("dnn.weights")
```

---

**dynEGA**

**Dynamic Exploratory Graph Analysis**

**Description**
Estimates dynamic communities in multivariate time series (e.g., panel data, longitudinal data, intensive longitudinal data) at multiple time scales and at different levels of analysis: individuals (intraindividual structure), groups, and population (interindividudal structure)

**Usage**
```r
dynEGA(
 data,
 id = NULL,
 group = NULL,
 n.embed = 5,
 tau = 1,
 delta = 1,
 use.derivatives = 1,
 level = c("individual", "group", "population"),
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
)```
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
ncores,
verbose = TRUE,
...)

Arguments

data Matrix or data frame. Participants and variable should be in long format such that row \(t \) represents observations for all variables at time point \(t \) for a participant. The next row, \(t + 1 \), represents the next measurement occasion for that same participant. The next participant’s data should immediately follow, in the same pattern, after the previous participant data should have an ID variable labeled "ID"; otherwise, it is assumed that the data represent the population
For groups, data should have a Group variable labeled "Group"; otherwise, it is assumed that there are no groups in data
Arguments id and group can be specified to tell the function which column in data it should use as the ID and Group variable, respectively
A measurement occasion variable is not necessary and should be removed from the data before proceeding with the analysis

id Numeric or character (length = 1). Number or name of the column identifying each individual. Defaults to NULL

group Numeric or character (length = 1). Number of the column identifying group membership. Defaults to NULL

n.embed Numeric (length = 1). Defaults to 5. Number of embedded dimensions (the number of observations to be used in the Embed function). For example, an "n. embed = 5" will use five consecutive observations to estimate a single derivative

tau Numeric (length = 1). Defaults to 1. Number of observations to offset successive embeddings in the Embed function. Generally recommended to leave "as is"
delta Numeric (length = 1). Defaults to 1. The time between successive observations in the time series (i.e, lag). Generally recommended to leave "as is"

use.derivatives Numeric (length = 1). Defaults to 1. The order of the derivative to be used in the analysis. Available options:
- 0 — No derivatives; consistent with moving average
- 1 — First-order derivatives; interpreted as "velocity" or rate of change over time
- 2 — Second-order derivatives; interpreted as "acceleration" or rate of the rate of change over time
Generally recommended to leave "as is"

level Character vector (up to length of 3). A character vector indicating which level(s) to estimate:
• "individual" — Estimates EGA for each individual in data (intraindividual structure; requires an "ID" column, see data)
• "group" — Estimates EGA for each group in data (group structure; requires a "Group" column, see data)
• "population" — Estimates EGA across all data (interindividual structure)

corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
• "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
• "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
• "pearson" — Pearson’s correlation is computed for all variables regardless of categories
• "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
• "pairwise" — Computes correlation for all available cases between two variables
• "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
• "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
• "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
• "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
• "leiden" — See cluster_leiden for more details
• "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
• "walktrap" — See cluster_walktrap for more details

uni.method Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
• "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.'s (2020) *Psychological Methods* simulation.

• "LE" — Applies the Leading Eigenvector algorithm (`clusterLeadingEig` on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.'s (2023) *Behavior Research Methods* simulation.

• "louvain" — Applies the Louvain algorithm (`cluster_louvain`) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen's (2022) *PsyArXiv* simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter".

ncores Numeric (length = 1). Number of cores to use in computing results. Defaults to ceiling(parallel::detectCores() / 2) or half of your computer's processing power. Set to 1 to not use parallel computing.

If you're unsure how many cores your computer has, then type: `parallel::detectCores()`

verbose Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress.

... Additional arguments to be passed on to `auto.correlate`, `network.estimation`, `community.detection`, `community.consensus`, and `EGA`.

Details

Derivatives for each variable's time series for each participant are estimated using generalized local linear approximation (see [glla](#)). EGA is then applied to these derivatives to model how variables are changing together over time. Variables that change together over time are detected as communities.

Value

A list containing:

Derivatives A list containing:

• **Estimates** — A list the length of the unique IDs containing data frames of zero- to second-order derivatives for each ID in `data`.

• **EstimatesDF** — A data frame of derivatives across all IDs containing columns of the zero- to second-order derivatives as well as `id` and `group` variables (group is automatically set to 1 for all if no group is provided).

dynEGA A list containing:

• **population** — If `level` includes "population", then the `EGA` results for the entire sample.

• **group** — If `level` includes "group", then a list containing the `EGA` results for each group.

• **individual** — If `level` includes "individual", then a list containing the `EGA` results for each id.
Author(s)
Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Generalized local linear approximation

Original dynamic EGA implementation

Time delay embedding procedure

See Also

plot.EGAnet for plot usage in EGAnet

Examples

Population structure
simulated_population <- dynEGA(
 data = sim.dynEGA, level = "population"
 # uses simulated data in package
 # useful to understand how data should be structured
)

Group structure
simulated_group <- dynEGA(
 data = sim.dynEGA, level = "group"
 # uses simulated data in package
 # useful to understand how data should be structured
)

Not run:
Individual structure
simulated_individual <- dynEGA(
 data = sim.dynEGA, level = "individual",
 ncores = 2, # use more for quicker results
 verbose = TRUE # progress bar
)

Population, group, and individual structure
simulated_all <- dynEGA(
 data = sim.dynEGA,
 level = c("individual", "group", "population"),
 ncores = 2, # use more for quicker results
 verbose = TRUE # progress bar
)

Plot population
plot(simulated_all$dynEGA$population)

Plot groups
plot(simulated_all$dynEGA$group)

Plot individual
plot(simulated_all$dynEGA$individual, id = 1)

Step through all plots
Unless `id` is specified, 4 random IDs
will be drawn from individuals
plot(simulated_all)
End(Not run)

dynEGA.ind.pop

Description

A wrapper function to estimate both intraindividual (level = "individual") and interindividal (level = "population") structures using `dynEGA`

Usage

dynEGA.ind.pop(
 data,
 id = NULL,
 n.embed = 5,
 tau = 1,
 delta = 1,
 use.derivatives = 1,
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
 algorithm = c("leiden", "louvain", "walktrap"),
 uni.method = c("expand", "LE", "louvain"),
 ncores,
 verbose = TRUE,
 ...
)
Arguments

- **data**: Matrix or data frame. Participants and variable should be in long format such that row \(t \) represents observations for all variables at time point \(t \) for a participant. The next row, \(t + 1 \), represents the next measurement occasion for that same participant. The next participant’s data should immediately follow, in the same pattern, after the previous participant.

- **id**: Numeric or character (length = 1). Number or name of the column identifying each individual. Defaults to NULL.

- **n.embed**: Numeric (length = 1). Defaults to 5. Number of embedded dimensions (the number of observations to be used in the Embed function). For example, an \("n. embed = 5" \) will use five consecutive observations to estimate a single derivative.

- **tau**: Numeric (length = 1). Defaults to 1. Number of observations to offset successive embeddings in the Embed function. Generally recommended to leave "as is".

- **delta**: Numeric (length = 1). Defaults to 1. The time between successive observations in the time series (i.e, lag). Generally recommended to leave “as is”.

- **use.derivatives**: Numeric (length = 1). Defaults to 1. The order of the derivative to be used in the analysis. Available options:
 - 0 — No derivatives; consistent with moving average
 - 1 — First-order derivatives; interpreted as "velocity" or rate of change over time
 - 2 — Second-order derivatives; interpreted as "acceleration" or rate of the rate of change over time

 Generally recommended to leave "as is"

- **corr**: Character (length = 1). Method to compute correlations. Defaults to “auto”. Available options:
 - "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
 - "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
 - "pearson" — Pearson’s correlation is computed for all variables regardless of categories
• "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories.

For other similarity measures, compute them first and input them into data with
the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
• "pairwise" — Computes correlation for all available cases between two variables
• "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to “glasso”. Available options:
• "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
• "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
• "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
• "leiden" — See cluster_leiden for more details
• "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
• "walktrap" — See cluster_walktrap for more details

uni.method Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
• "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) Psychological Methods simulation
• "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) Behavior Research Methods simulation
• "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"

ncores Numeric (length = 1). Number of cores to use in computing results. Defaults to ceiling(parallel::detectCores() / 2) or half of your computer’s processing power. Set to 1 to not use parallel computing.

If you’re unsure how many cores your computer has, then type: parallel::detectCores()
verbose Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress

... Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, community.consensus, and EGA

Value

Same output as EGAnet{dynEGA} returning list objects for level = "individual" and level = "population"

Author(s)

Hudson Golino <hfg9s at virginia.edu>

See Also

plot.EGAnet for plot usage in EGAnet

Examples

```r
# Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks

## Not run:
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
data = sim.dynEGA, n.embed = 5, tau = 1,
delta = 1, id = 25, use.derivatives = 1,
ncores = 2, corr = "pearson"
)
## End(Not run)
```

Description

This function uses the glasso package (Friedman, Hastie and Tibshirani, 2011) to compute a sparse gaussian graphical model with the graphical lasso (Friedman, Hastie & Tibshirani, 2008). The tuning parameter is chosen using the Extended Bayesian Information criterion (EBIC) described by Foygel & Drton (2010).
Usage

EBICglasso.qgraph(
 data,
 n = NULL,
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 gamma = 0.5,
 penalize.diagonal = FALSE,
 nlambda = 100,
 lambda.min.ratio = 0.1,
 returnAllResults = FALSE,
 penalizeMatrix,
 countDiagonal = FALSE,
 refit = FALSE,
 model.selection = c("EBIC", "JSD"),
 verbose = FALSE,
 ...
)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
n Numeric (length = 1). Sample size if data provided is a correlation matrix
corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
 - "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
 - "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
 - "pearson" — Pearson’s correlation is computed for all variables regardless of categories
 - "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories
na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
 - "pairwise" — Computes correlation for all available cases between two variables
 - "listwise" — Computes correlation for all complete cases in the dataset
gamma Numeric (length = 1) EBIC tuning parameter. Defaults to 0.50 and is generally a good choice. Setting to 0 will cause regular BIC to be used
penalize.diagonal Boolean (length = 1). Should the diagonal be penalized? Defaults to FALSE
EBICglasso::qgraph

nlambda Numeric (length = 1). Number of lambda values to test. Defaults to 100

lambda.min.ratio Numeric (length = 1). Ratio of lowest lambda value compared to maximal lambda. Defaults to 0.1. **NOTE** *qgraph* sets the default to 0.01

returnAllResults Boolean (length = 1). Whether all results should be returned. Defaults to FALSE (network only). Set to TRUE to access *glassopath* output

penalizeMatrix Boolean matrix. Optional logical matrix to indicate which elements are penalized

countDiagonal Boolean (length = 1). Should diagonal be counted in EBIC computation? Defaults to FALSE. Set to TRUE to mimic *qgraph* < 1.3 behavior (not recommended!)

refit Boolean (length = 1). Should the optimal graph be refitted without LASSO regularization? Defaults to FALSE

model.selection Character (length = 1). How lambda should be selected within GLASSO. Defaults to "EBIC". "JSD" is experimental and should not be used otherwise

verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

... Arguments sent to *glasso*

Details

The glasso is run for 100 values of the tuning parameter logarithmically spaced between the maximal value of the tuning parameter at which all edges are zero, lambda_max, and lambda_max/100. For each of these graphs the EBIC is computed and the graph with the best EBIC is selected. The partial correlation matrix is computed using *wi2net* and returned.

Value

A partial correlation matrix

Author(s)

Sacha Epskamp; for maintainence, Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen at gmail.com>

References

Instantiation of GLASSO

glasso + EBIC

glasso package

Tutorial on EBICglasso

Examples

```r
# Obtain data
wmt <- wmt2[,7:24]

# Compute graph with tuning = 0 (BIC)
BICgraph <- EBICglasso.qgraph(data = wmt, gamma = 0)

# Compute graph with tuning = 0.5 (EBIC)
EBICgraph <- EBICglasso.qgraph(data = wmt, gamma = 0.5)
```

EGA

Exploratory Graph Analysis

Description

Estimates the number of communities (dimensions) of a dataset or correlation matrix using a network estimation method (Golino & Epskamp, 2017; Golino et al., 2020). After, a community detection algorithm is applied (Christensen et al., 2023) for multidimensional data. A unidimensional check is also applied based on findings from Golino et al. (2020) and Christensen (2023)

Usage

```r
EGA(
  data,
  n = NULL,
  corr = c("auto", "cor_auto", "pearson", "spearman"),
  na.data = c("pairwise", "listwise"),
  model = c("BGGM", "glasso", "TMFG"),
  algorithm = c("leiden", "louvain", "walktrap"),
  uni.method = c("expand", "LE", "louvain"),
  plot.EGA = TRUE,
  verbose = FALSE,
  ...
)
```
Arguments

- **data**: Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix.

- **n**: Numeric (length = 1). Sample size if data provided is a correlation matrix.

- **corr**: Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
 - "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details).
 - "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function.
 - "pearson" — Pearson’s correlation is computed for all variables regardless of categories.
 - "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories.

For other similarity measures, compute them first and input them into data with the sample size (n).

- **na.data**: Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
 - "pairwise" — Computes correlation for all available cases between two variables.
 - "listwise" — Computes correlation for all complete cases in the dataset.

- **model**: Character (length = 1). Defaults to "glasso". Available options:
 - "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details.
 - "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details.
 - "TMFG" — Computes the TMFG method. See TMFG for more details.

- **algorithm**: Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
 - "leiden" — See cluster_leiden for more details.
 - "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise.
 - "walktrap" — See cluster_walktrap for more details.

- **uni.method**: Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
EGA

• "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.'s (2020) Psychological Methods simulation

• "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.'s (2023) Behavior Research Methods simulation

• "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"

plot.EGA Boolean (length = 1). Defaults to TRUE. Whether the plot should be returned with the results. Set to FALSE for no plot

verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

... Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, community.consensus, and community.unidimensional

Value

Returns a list containing:

network A matrix containing a network estimated using link[EGAnet]{network.estimation}

wc A vector representing the community (dimension) membership of each node in the network. NA values mean that the node was disconnected from the network

n.dim A scalar of how many total dimensions were identified in the network

correlation The zero-order correlation matrix

n Number of cases in data

dim.variables An ordered matrix of item allocation

TEFI link[EGAnet]{tefi} for the estimated structure

plot.EGA Plot output if plot.EGA = TRUE

Author(s)

Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen at gmail.com>, Maria Dolores Nieto <acinodam at gmail.com> and Luis E. Garrido <garrido.luiseduardo at gmail.com>
References

Original simulation and implementation of EGA

Current implementation of EGA, introduced unidimensional checks, continuous and dichotomous data

Compared all igraph community detection algorithms, introduced Louvain algorithm, simulation with continuous and polytomous data
Also implements the Leading Eigenvalue unidimensional method

Comprehensive unidimensionality simulation

Compared all igraph community detection algorithms, simulation with continuous and polytomous data

See Also

plot.EGAnet for plot usage in *EGAnet*

Examples

```r
# Obtain data
wmt <- wmt2[,7:24]

# Estimate EGA
ega.wmt <- EGA(
  data = wmt,
  plot.EGA = FALSE # No plot for CRAN checks
)

# Print results
print(ega.wmt)

# Estimate EGAtmfg
ega.wmt.tmfg <- EGA(
  data = wmt, model = "TMFG",
  plot.EGA = FALSE # No plot for CRAN checks
)

# Estimate EGA with Louvain algorithm
```
ega.wmt.louvain <- EGA(
 data = wmt, algorithm = "louvain",
 plot.EGA = FALSE # No plot for CRAN checks
)

Estimate EGA with an (igraph) function (Fast-greedy)
ega.wmt.greedy <- EGA(
 data = wmt,
 algorithm = igraph::cluster_fast_greedy,
 plot.EGA = FALSE # No plot for CRAN checks
)

EGA.estimate

Estimates EGA for Multidimensional Structures

Description

A basic function to estimate EGA for multidimensional structures. This function does not include the unidimensional check and it does not plot the results. This function can be used as a streamlined approach for quick EGA estimation when unidimensionality or visualization is not a priority.

Usage

EGA.estimate(
 data,
 n = NULL,
 corr = c("auto", "cor.auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
 algorithm = c("leiden", "louvain", "walktrap"),
 verbose = FALSE,
 ...
)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
n Numeric (length = 1). Sample size if data provided is a correlation matrix
corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:

- "auto" — Automatically computes appropriate correlations for the data using Pearson's for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
EGA.estimate

- "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
- "pearson" — Pearson’s correlation is computed for all variables regardless of categories
- "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
- "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
- "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
- "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
- "leiden" — See cluster_leiden for more details
- "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
- "walktrap" — See cluster_walktrap for more details

verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

... Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, and community.consensus

Value

Returns a list containing:

network A matrix containing a network estimated using link[EGAnet]{network.estimation}
wc A vector representing the community (dimension) membership of each node in the network. NA values mean that the node was disconnected from the network
n.dim A scalar of how many total dimensions were identified in the network
cor.data The zero-order correlation matrix
n Number of cases in data
EGA.fit

Author(s)
Alexander P. Christensen <alexpaulchristensen at gmail.com> and Hudson Golino <hfg9s at virginia.edu>

References

Original simulation and implementation of EGA

Introduced unidimensional checks, simulation with continuous and dichotomous data

Compared all igraph community detection algorithms, simulation with continuous and polychotomous data

See Also

`plot.EGAnet` for plot usage in `EGAnet`

Examples

```r
# Obtain data
wmt <- wmt2[,7:24]

# Estimate EGA
ega.wmt <- EGA.estimate(data = wmt)

# Estimate EGA with TMFG
ega.wmt.tmfg <- EGA.estimate(data = wmt, model = "TMFG")

# Estimate EGA with an igraph function (Fast-greedy)
ega.wmt.greedy <- EGA.estimate(
  data = wmt,
  algorithm = igraph::cluster_fast_greedy
)
```

EGA.fit EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
EGA.fit

Description

Estimates the best fitting model using EGA. The number of steps in the cluster_walktrap detection algorithm is varied and unique community solutions are compared using tefi.

Usage

EGA.fit(
 data,
 n = NULL,
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
 algorithm = c("leiden", "louvain", "walktrap"),
 plot.EGA = TRUE,
 verbose = FALSE,
 ...
)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
n Numeric (length = 1). Sample size if data is a correlation matrix
corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
 • "auto" — Automatically computes appropriate correlations for the data using Pearson's for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
 • "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
 • "pearson" — Pearson's correlation is computed for all variables regardless of categories
 • "spearman" — Spearman's rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
 • "pairwise" — Computes correlation for all available cases between two variables
 • "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
 • "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
EGA.fit

- "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
- "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm

Character or igraph cluster_* function. Three options are listed below but all are available (see community.detection for other options):

- "leiden" — See cluster_leiden for more details. Note: The Leiden algorithm will default to the Constant Potts Model objective function (objective_function = "CPM"). Set objective_function = "modularity" to use modularity instead (see examples). By default, searches along resolutions from 0 to max(abs(network)) or the maximum absolute edge weight in the network in 0.01 increments (resolution_parameter = seq.int(0, max(abs(network)), 0.01)). For modularity, searches along resolutions from 0 to 2 in 0.05 increments (resolution_parameter = seq.int(0, 2, 0.05)) by default. Use the argument resolution_parameter to change the search parameters (see examples)
- "louvain" — See community.consensus for more details. By default, searches along resolutions from 0 to 2 in 0.05 increments (resolution_parameter = seq.int(0, 2, 0.05)). Use the argument resolution_parameter to change the search parameters (see examples)
- "walktrap" — This algorithm is the default. See cluster_walktrap for more details. By default, searches along 3 to 8 steps (steps = 3:8). Use the argument steps to change the search parameters (see examples)

plot.EGA

Boolean. If TRUE, returns a plot of the network and its estimated dimensions. Defaults to TRUE

verbose

Boolean. Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, community.consensus, and EGA.estimate

Value

Returns a list containing:

EGA EGA results of the best fitting solution
EntropyFit tefi fit values for each solution
Lowest.EntropyFit

The best fitting solution based on tefi parameter.space

Parameter values used in search space

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
References

Entropy fit measures

Simulation for EGA.fit

Leiden algorithm

Louvain algorithm

Walktrap algorithm

See Also

plot.EGAnet for plot usage in EGAnet

Examples

Load data
wmt <- wmt2[,7:24]

Estimate optimal EGA with Walktrap
fit.walktrap <- EGA.fit(
 data = wmt, algorithm = "walktrap",
 steps = 3:8, # default
 plot.EGA = FALSE # no plot for CRAN checks
)

Estimate optimal EGA with Leiden and CPM
fit.leiden <- EGA.fit(
 data = wmt, algorithm = "leiden",
 objective_function = "CPM", # default
 # resolution_parameter = seq.int(0, max(abs(network)), 0.01),
 # For CPM, the default max resolution parameter
 # is set to the largest absolute edge in the network
 plot.EGA = FALSE # no plot for CRAN checks
)

Estimate optimal EGA with Leiden and modularity
fit.leiden <- EGA.fit(
 data = wmt, algorithm = "leiden",
 }
objective_function = "modularity",
resolution_parameter = seq.int(0, 2, 0.05),
default for modularity
plot.EGA = FALSE # no plot for CRAN checks
)

Not run:
Estimate optimal EGA with Louvain
fit.louvain <- EGA.fit(
 data = wmt, algorithm = "louvain",
 resolution_parameter = seq.int(0, 2, 0.05), # default
 plot.EGA = FALSE # no plot for CRAN checks
)
End(Not run)

ega.wmt

EGA Network of wmt2Data

Description

EGA results from ega.wmt <- EGA(wmt2[,7:24]) for the Wiener Matrizen-Test (WMT-2)

Usage

data(ega.wmt)

Format

A list with 8 objects (see Value in EGA)

Examples

data("ega.wmt")

EGAnet-plot

S3 Plot Methods for EGAnet

Description

General usage for plots created by EGAnet’s S3 methods. Plots across the EGAnet package leverage {GGally}’s ggnet2 and {ggplot2}’s ggplot.

Most plots allow the full usage of the gg* series functionality and therefore plotting arguments should be referenced through those packages rather than here in EGAnet.

The sections below list the functions and their usage for the S3 plot methods. The plot methods are intended to be generic and without many arguments so that nearly all arguments are passed to ggnet2 and ggplot.
There are some constraints placed on certain plots to keep the **EGAnet** style throughout the (network) plots in the package, so be aware that if some settings are not changing your plot output, then these settings might be fixed to maintain the **EGAnet** style

General Usage

\[
\text{plot}(x, \ldots) \\
\text{plot.dynEGA}(x, \text{base} = 1, \text{id} = \text{NULL}, \ldots) \\
\text{plot.dynEGA.Group}(x, \text{base} = 1, \ldots) \\
\text{plot.dynEGA.Individual}(x, \text{base} = 1, \text{id} = \text{NULL}, \ldots) \\
\text{plot.hierEGA}(\\
\quad \text{x, plot.type} = \text{c("multilevel", "separate"),} \\
\quad \text{color.match} = \text{FALSE,} \ldots \\
\) \\
\text{plot.invariance}(x, \text{p.type} = \text{c("p", "p_BH")}, \text{p.value} = 0.05, \ldots)
\]

General Arguments

- **x** — **EGAnet** object with available S3 plot method (see full list below)
- **color.palette** — Character (vector). Either a character (length = 1) from the pre-defined palettes in **color_palette_EGA** or character (length = total number of communities) using HEX codes (see **Color Palettes** and **Examples** sections)
- **layout** — Character (length = 1). Layouts can be set using **gplot.layout** and the ending layout name; for example, **gplot.layout.circle** can be set in these functions using layout = "circle" or mode = "circle" (see **Examples**)
- **base** — Numeric (length = 1). Plot to be used as the base for the configuration of the networks. Uses the number of the order in which the plots are input. Defaults to 1 or the first plot
- **id** — Numeric index(es) or character name(s). IDs to use when plotting **dynEGA** level = "individual". Defaults to NULL or 4 IDs drawn at random
- **plot.type** — Character (length = 1). Whether **hierEGA** networks should plotted in a stacked, "multilevel" fashion or as "separate" plots. Defaults to "multilevel"
- **color.match** — Boolean (length = 1). Whether lower order community colors in the **hierEGA** plot should be "matched" and used as the border color for the higher order communities. Defaults to FALSE
- **p.type** — Character (length = 1). Type of p-value when plotting **invariance**. Defaults to "p" or uncorrected p-value. Set to "p_BH" for the Benjamini-Hochberg corrected p-value
- **p.value** — Numeric (length = 1). The p-value to use alongside p.type when plotting **invariance**. Defaults to 0.05
- **...** — Additional arguments to pass on to **gnet2** and **gplot.layout** (see **Examples**)

EGAnet-plot

57
EGA Plots

`bootEGA, dynEGA, EGA, EGAestimate, EGAfit, hierEGA, invariance, riEGA`

All Available S3 Plot Methods

`boot.ergoInfo, bootEGA, dynEGA, dynEGA.Group, dynEGA.Individual, dynEGA.Population, EGA, EGAestimate, EGAfit, hierEGA, infoCluster, invariance, itemStability, riEGA`

Color Palettes

`color_palette_EGA` will implement some color palettes in EGAnet. The main EGAnet style palette is "polychrome". This palette currently has 40 colors but there will likely be a need to expand it further (e.g., `hierEGA` demands a lot of colors).

The `color.palette` argument will also accept HEX code colors that are the same length as the number of communities in the plot.

In any network plots, the `color.palette` argument can be used to select color palettes from `color_palette_EGA` as well as those in the color scheme of RColorBrewer

For more worked examples than below, see Plots in {EGAnet}

Examples

```r
# Using different arguments in {GGally}'s 'ggnet2'
plot(ega.wmt, node.size = 6, edge.size = 4)

# Using a different layout in {sna}'s 'gplot.layout'
plot(ega.wmt, layout = "circle") # 'layout' argument
plot(ega.wmt, mode = "circle") # 'mode' argument

# Using different color palettes with 'color_palette_EGA'

## Pre-defined palette
plot(ega.wmt, color.palette = "blue.ridge2")

## University of Virginia colors
plot(ega.wmt, color.palette = c("#232D4B", "#F84C1E"))

## Vanderbilt University colors
## (with additional {GGally} 'ggnet2' argument)
plot(ega.wmt, color.palette = c("#FFFFFF", "#866D4B"), label.color = "#000000")
```

Embed

Time-delay Embedding

Description

Reorganizes a single observed time series into an embedded matrix. The embedded matrix is constructed with replicates of an individual time series that are offset from each other in time. The function requires two parameters, one that specifies the number of observations to be used (i.e., the number of embedded dimensions) and the other that specifies the number of observations to offset successive embeddings.

Usage

`Embed(x, E, tau)`

Arguments

- **x**: Numeric vector. An observed time series to be reorganized into a time-delayed embedded matrix.
- **E**: Numeric (length = 1). Number of embedded dimensions or the number of observations to be used. `E = 5`, for example, will generate a matrix with five columns corresponding to five consecutive observations across each row of the embedded matrix.
- **tau**: Numeric (length = 1). Number of observations to offset successive embeddings. A `tau` of one uses adjacent observations. Default is `tau = 1`.

Value

Returns a numeric matrix.

Author(s)

Pascal Deboeck <pascal.deboeck at psych.utah.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Examples

```r
# A time series with 8 time points
time_series <- 49:56

# Time series embedding
Embed(time_series, E = 5, tau = 1)
```
entropyFit

Entropy Fit Index

Description

Computes the fit of a dimensionality structure using empirical entropy. Lower values suggest better fit of a structure to the data.

Usage

```r
entropyFit(data, structure)
```

Arguments

- `data`
 Matrix or data frame. Contains variables to be used in the analysis
- `structure`
 Numeric or character vector (length = ncol(data)). A vector representing the structure (numbers or labels for each item). Can be theoretical factors or the structure detected by EGA

Value

Returns a list containing:

- `Total.Correlation`
 The total correlation of the dataset
- `Total.Correlation.MM`
 Miller-Madow correction for the total correlation of the dataset
- `Entropy.Fit`
 The Entropy Fit Index
- `Entropy.Fit.MM`
 Miller-Madow correction for the Entropy Fit Index
- `Average.Entropy`
 The average entropy of the dataset

Author(s)

Hudson F. Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com> and Robert Moulder <rgm4fd@virginia.edu>

References

- **Initial formalization and simulation**
ergoInfo

Examples

```r
# Load data
wmt <- wmt2[,7:24]

# Not run:
# Estimate EGA model
ega.wmt <- EGA(data = wmt)
# End(Not run)

# Compute entropy indices
entropyFit(data = wmt, structure = ega.wmt$wc)
```

ergoInfo *Ergodicity Information Index*

Description

Computes the Ergodicity Information Index

Usage

```r
ergoInfo(
  dynEGA.object,
  use = c("edge.list", "unweighted", "weighted"),
  shuffles = 5000
)
```

Arguments

- `dynEGA.object` A `dynEGA.ind.pop` object
- `use` Character (length = 1). A string indicating what network element will be used to compute the algorithm complexity, the list of edges or the weights of the network. Defaults to use = "unweighted". Current options are:
 - "edge.list" — Calculates the algorithm complexity using the list of edges
 - "unweighted" — Calculates the algorithm complexity using the binary weights of the encoded prime transformed network. 0 = edge absent and 1 = edge present
 - "weighted" — Calculates the algorithm complexity using the weights of encoded prime-weight transformed network
- `shuffles` Numeric. Number of shuffles used to compute the Kolmogorov complexity. Defaults to 5000
Value
Returns a list containing:

- PrimeWeight: The prime-weight encoding of the individual networks
- PrimeWeight.pop: The prime-weight encoding of the population network
- Kcomp: The Kolmogorov complexity of the prime-weight encoded individual networks
- Kcomp.pop: The Kolmogorov complexity of the prime-weight encoded population network
- complexity: The complexity metric proposed by Santora and Nicosia (2020)
- EII: The Ergodicity Information Index

Author(s)
Hudson Golino <hfg9s@virginia.edu> and Alexander Christensen <alexpaulchristensen@gmail.com>

References

Original Implementation

Examples

```r
# Obtain data
sim.dynEGA <- sim.dynEGA  # bypasses CRAN checks

## Not run:
# Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
data = sim.dynEGA[-26], n.embed = 5, tau = 1,
delta = 1, id = 25, use.derivatives = 1,
ncores = 2, corr = "pearson"
)
# Compute empirical ergodicity information index
eii <- ergoInfo(dyn.ega1)
## End(Not run)
```

Description
Computes the fit (Generalized TEFI) of a hierarchical or correlated bifactor dimensionality structure (or `hierEGA` objects) using Von Neumann’s entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.
Usage

genTEFI(data, structure = NULL, verbose = TRUE)

Arguments

data Matrix, data frame, or hierEGA object. Can be raw data or correlation matrix
structure For high-order and correlated bifactor structures, structure should be a list containing:
• lower_order — A vector (length = ncol(data)) representing the first-order structure (numbers or labels for each item in each first-order factor or community)
• higher_order — A vector (length = ncol(data) or number of lower_order communities) representing the second-order structure (numbers or labels for each item in each second-order factor or community)
verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to TRUE to see all messages and warnings for every function call. Set to FALSE to ignore messages and warnings

Value

Returns a three-column data frame of the Generalized Total Entropy Fit Index using Von Neumann’s entropy (VN.Entropy.Fit) (first column), as well as Lower.Order.VN - TEFI for the first-order factors (second column), and Higher.Order.VN, the equivalent for the second-order factors.

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Example using network scores
opt.hier <- hierEGA(
 data = optimism, scores = "network",
 plot.EGA = FALSE # No plot for CRAN checks
)

Compute the Generalized Total Entropy Fit Index
genTEFI(opt.hier)

glla Generalized Local Linear Approximation

Description

Estimates the derivatives of a time series using generalized local linear approximation (GLLA). GLLA is a filtering method for estimating derivatives from data that uses time delay embedding and a variant of Savitzky-Golay filtering to accomplish the task.
Usage

glla(x, n.embed, tau, delta, order)

Arguments

- **x**: Numeric vector. An observed time series
- **n.embed**: Numeric (length = 1). Number of embedded dimensions (the number of observations to be used in the Embed function)
- **tau**: Numeric (length = 1). Number of observations to offset successive embeddings in the Embed function. A tau of one uses adjacent observations. Default is 1
- **delta**: Numeric (length = 1). The time between successive observations in the time series. Default is 1
- **order**: Numeric (length = 1). The maximum order of the derivative to be estimated. For example, "order = 2" will return a matrix with three columns with the estimates of the observed scores and the first and second derivative for each row of the embedded matrix (i.e. the reorganization of the time series implemented via the Embed function)

Value

Returns a matrix containing \(n \) columns in which \(n \) is one plus the maximum order of the derivatives to be estimated via generalized local linear approximation

Author(s)

Hudson Golino <hfg9s at virginia.edu>

References

- **GLLA implementation**

- **Filtering procedure**

Examples

A time series with 8 time points
tseries <- 49:56
deriv.tseries <- glla(tseries, n.embed = 4, tau = 1, delta = 1, order = 2)
Description

Estimates EGA using the lower-order solution of the Louvain algorithm (cluster_louvain) to identify the lower-order dimensions and then uses factor or network loadings to estimate factor or network scores, which are used to estimate the higher-order dimensions (for more details, see Jiménez et al., 2023).

Usage

```r
hierEGA(
  data,
  loading.method = c("BRM", "experimental"),
  rotation = NULL,
  scores = c("factor", "network"),
  loading.structure = c("simple", "full"),
  impute = c("mean", "median", "none"),
  corr = c("auto", "cor_auto", "pearson", "spearman"),
  na.data = c("pairwise", "listwise"),
  model = c("BGGM", "glasso", "TMFG"),
  lower.algorithm = "louvain",
  higher.algorithm = c("leiden", "louvain", "walktrap"),
  uni.method = c("expand", "LE", "louvain"),
  plot.EGA = TRUE,
  verbose = FALSE,
  ...
)
```

Arguments

- **data**: Matrix or data frame. Should consist only of variables to be used in the analysis (does not accept correlation matrices).
- **loading.method**: Character (length = 1). Sets network loading calculation based on implementation described in "BRM" (Christensen & Golino, 2021) or an "experimental" implementation. Defaults to "BRM".
- **rotation**: Character. A rotation to use to obtain a simpler structure. For a list of rotations, see rotations for options. Defaults to NULL or no rotation. By setting a rotation, scores estimation will be based on the rotated loadings rather than unrotated loadings.
- **scores**: Character (length = 1). How should scores for the higher-order structure be estimated? Defaults to "network" for network scores computed using the net.scores function. Set to "factor" for factor scores computed using fa. Factors scores will be based on EFA (as in Jiménez et al., 2023).
Factor scores use the number of communities from EGA. Estimated factor loadings may not align with these communities. The plots using factor scores will have higher order factors that may not completely map on to the lower order communities. Look at the hierarchical higher order lower loadings to determine the composition of the lower order factors.

loading.structure

Character (length = 1). Whether simple structure or the saturated loading matrix should be used when computing scores (scores = "network" only). Defaults to "simple"

"simple" structure more closely mirrors traditional hierarchical factor analytic methods such as CFA; "full" structure more closely mirrors EFA methods

Simple structure is the more conservative (established) approach and is therefore the default. Treat "full" as experimental as proper vetting and validation has not been established

impute

Character (length = 1). If there are any missing data, then imputation can be implemented. Available options:

- "none" — Default. No imputation is performed
- "mean" — The mean value of each variable is used to replace missing data for that variable
- "median" — The median value of each variable is used to replace missing data for that variable

corr

Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:

- "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polychoric/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
- "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
- "pearson" — Pearson’s correlation is computed for all variables regardless of categories
- "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data

Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:

- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

model

Character (length = 1). Defaults to "glasso". Available options:

- "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
• "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
• "TMFG" — Computes the TMFG method. See TMFG for more details

lower.algorithm
Character or igraph cluster_* function (length = 1). Defaults to the lower order "louvain" with most common consensus clustering (1000 iterations; see community.consensus for more details)

Louvain with consensus clustering is strongly recommended. Using any other algorithm is considered experimental as they have not been designed to capture lower order communities

higher.algorithm
Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):

• "leiden" — See cluster_leiden for more details
• "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
• "walktrap" — See cluster_walktrap for more details

Using algorithm will set only higher.algorithm and lower.algorithm will default to Louvain with most common consensus clustering (1000 iterations)

uni.method
Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:

• "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) Psychological Methods simulation
• "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) Behavior Research Methods simulation
• "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"

plot.EGA
Boolean. If TRUE, returns a plot of the network and its estimated dimensions. Defaults to TRUE

verbose
Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

... Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, community.consensus, EGA, and rotations
Value

Returns a list of lists containing:

- **lower_order**
 EGA results for the lower order structure
- **higher_order**
 EGA results for the higher order structure
- **parameters**
 A list containing **lower_loadings** and **lower_scores** that were used to estimate scores and the higher order EGA results, respectively
- **dim.variables**
 A data frame with variable names and their lower and higher order assignments
- **TEFI**
 Generalized TEFI using `tefi`
- **plot.hierEGA**
 Plot output if `plot.EGA = TRUE`

Author(s)

Marcos Jiménez <marcosjnezquez@gmail.com>, Francisco J. Abad <fjose.abad@uam.es>, Eduardo Garcia-Garzon <egarcia@ucjc.edu>, Hudson Golino <hfg9s@virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Luis Eduardo Garrido <luisgarrido@pucmm.edu.do>

References

Hierarchical EGA simulation

Conceptual implementation

See Also

- `plot.EGAnet` for plot usage in `EGAnet`

Examples

```r
# Example using network scores
opt.hier <- hierEGA(
  data = optimism, scores = "network",
  plot.EGA = FALSE # No plot for CRAN checks
)

# Plot multilevel plot
plot(opt.hier, plot.type = "multilevel")

# Plot multilevel plot with higher order
# border color matching the corresponding lower order color
```
igraph2matrix

Convert *igraph* network to matrix

Description

Converts *igraph* network to matrix.

Usage

```r
igraph2matrix(igraph_network, diagonal = 0)
```

Arguments

- `igraph_network` *igraph* network object
- `diagonal` Numeric (length = 1). Value to be placed on the diagonal of network. Defaults to 0.

Value

Returns a network in the *igraph* format.

Author(s)

Hudson Golino <hfg9s@virginia.edu> & Alexander P. Christensen <alexander.christensen@Vanderbilt.Edu>

Examples

```r
# Convert network to *igraph*
igraph_network <- convert2igraph(ega.wmt$network)

# Convert network back to matrix
igraph2matrix(igraph_network)
```
infoCluster Information Theoretic Mixture Clustering for dynEGA

Description
Performs hierarchical clustering using Jensen-Shannon distance followed by the Louvain algorithm with consensus clustering. The method iteratively identifies smaller and smaller clusters until there is no change in the clusters identified.

Usage
infoCluster(dynEGA.object, plot.cluster = TRUE)

Arguments
dynEGA.object A dynEGA or a dynEGA.ind.pop object that is used to match the arguments of the EII object
plot.cluster Boolean (length = 1). Should plot of optimal and hierarchical clusters be output? Defaults to TRUE. Set to FALSE to not plot.

Value
Returns a list containing:
custers A vector corresponding to cluster each participant belongs to
clusterTree The dendogram from hclust the hierarchical clustering
clusterPlot Plot output from results
JSD Jensen-Shannon Distance

Author(s)
Hudson Golino <hfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>

See Also
plot.EGAnet for plot usage in EGAnet

Examples
Obtain data
sim.dynEGA <- sim.dynEGA # bypasses CRAN checks

Not run:
Dynamic EGA individual and population structure
dyn.ega1 <- dynEGA.ind.pop(
 data = sim.dynEGA, n.embed = 5, tau = 1,
\begin{verbatim}

 delta = 1, id = 25, use.derivatives = 1,
 ncores = 2, corr = "pearson"

Perform information-theoretic clustering
clust1 <- infoCluster(dynEGA.object = dyn.ega1)
End(Not run)

\end{verbatim}

\section*{intelligenceBattery \hspace{1cm} \textit{Intelligence Data}}

\subsection*{Description}

A response matrix (n = 1152) of the International Cognitive Ability Resource (ICAR) intelligence battery developed by Condon and Revelle (2016).

\subsection*{Usage}

\begin{verbatim}
data(intelligenceBattery)
\end{verbatim}

\subsection*{Format}

A 1185x125 response matrix

\subsection*{Examples}

\begin{verbatim}
data("intelligenceBattery")
\end{verbatim}

\section*{invariance \hspace{1cm} \textit{Measurement Invariance of EGA Structure}}

\subsection*{Description}

Estimates configural invariance using \texttt{bootEGA} on all data (across groups) first. After configural variance is established, then metric invariance is tested using the community structure that established configural invariance (see \texttt{Details} for more information on this process)
Usage

invariance(
 data,
 groups,
 structure = NULL,
 iter = 500,
 configural.threshold = 0.7,
 configural.type = c("parametric", "resampling"),
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("BGGM", "glasso", "TMFG"),
 algorithm = c("leiden", "louvain", "walktrap"),
 uni.method = c("expand", "LE", "louvain"),
 ncores,
 seed = NULL,
 verbose = TRUE,
 ...
)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
groups Numeric or character vector (length = nrow(data)). Group membership corres-
 ponding to each case in data
structure Numeric or character vector (length = ncol(data)). A vector representing
 the structure (numbers or labels for each item). Can be theoretical factors or
 the structure detected by EGA. If supplied, then configural invariance check
 is skipped (i.e., configural invariance is assumed based on the given structure)
iter Numeric (length = 1). Number of iterations to perform for the permutation. Defaults to 500 (recommended)
configural.threshold
 Numeric (length = 1). Value to use a threshold in itemStability to determine
 which items should be removed during configural invariance (see Details for
 more information). Defaults to 0.70 (recommended)
configural.type
 Character (length = 1). Type of bootstrap to use for configural invariance in
 bootEGA. Defaults to "parametric"
corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:

 • "auto" — Automatically computes appropriate correlations for the data using
 Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary,
 and polychoric/biserial for ordinal/binary with continuous. To change the
 number of categories that are considered ordinal, use ordinal.categories
 (see polychoric.matrix for more details)
 • "cor_auto" — Uses cor_auto to compute correlations. Arguments can be
 passed along to the function
• "pearson" — Pearson’s correlation is computed for all variables regardless of categories
• "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
• "pairwise" — Computes correlation for all available cases between two variables
• "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
• "BGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGM::estimate for more details
• "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
• "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
• "leiden" — See cluster_leiden for more details
• "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
• "walktrap" — See cluster_walktrap for more details

uni.method Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
• "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) Psychological Methods simulation
• "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) Behavior Research Methods simulation
• "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"
invariance

ncores
Numeric (length = 1). Number of cores to use in computing results. Defaults to `ceiling(parallel::detectCores() / 2)` or half of your computer's processing power. Set to 1 to not use parallel computing.
If you're unsure how many cores your computer has, then type: `parallel::detectCores()`

seed
Numeric (length = 1). Defaults to NULL or random results. Set for reproducible results. See Reproducibility and PRNG for more details on random number generation in EGAnet.

verbose
Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress.

... Additional arguments that can be passed on to `auto.correlate`, `network.estimation`, `community.detection`, `community.consensus`, `EGA`, `bootEGA`, and `net.loads`

Details
In traditional psychometrics, measurement invariance is performed in sequential testing from more flexible (more free parameters) to more rigid (fewer free parameters) structures. Measurement invariance in network psychometrics is no different.

Configural Invariance
To establish configural invariance, the data are collapsed across groups and a common sample structure is identified using `bootEGA` and `itemStability`. If some variables have a replication less than 0.70 in their assigned dimension, then they are considered unstable and therefore not invariant. These variables are removed and this process is repeated until all items are considered stable (replication values greater than 0.70) or there are no variables left. If configural invariance cannot be established, then the last run of results are returned and metric invariance is not tested (because configural invariance is not met). Importantly, if any variables are removed, then configural invariance is not met for the original structure. Any removal would suggest only partial configural invariance is met.

Metric Invariance
The variables that remain after configural invariance are submitted to metric invariance. First, each group estimates a network and then network loadings (net.loads) are computed using the assigned community memberships (determined during configural invariance). Then, the difference between the assigned loadings of the groups is computed. This difference represents the empirical values. Second, the group memberships are permuted and networks are estimated based on these permuted groups for `iter` times. Then, network loadings are computed and the difference between the assigned loadings of the group is computed, resulting in a null distribution. The empirical difference is then compared against the null distribution using a two-tailed p-value based on the number of null distribution differences that are greater and less than the empirical differences for each variable. Both uncorrected and false discovery rate corrected p-values are returned in the results. Uncorrected p-values are flagged for significance along with the direction of group differences.

Three or More Groups
At this time, only two groups are supported. There is a method proposed to test three or more groups in Jamison, Golino, and Christensen (2023) but this approach has not been thoroughly vetted and validated. Future versions of the package will provide support for three or more groups once there is an established consensus for best practice.

For more details, see Jamison, Golino, and Christensen (2023)
Value

Returns a list containing:

- `configural.results` bootEGA results from the final run that produced configural invariance. This output will be output on the final run of unsuccessful configural invariance runs.
- `memberships` Original memberships provided in structure or from EGA if structure = NULL.
- `EGA` Original EGA results for the full sample.
- `groups` A list containing:
 - `EGA` — EGA results for each group
 - `loadings` — Network loadings (net.loads) for each group
 - `loadingsDifference` — Difference between the dominant loadings of each group
- `permutation` A list containing:
 - `groups` — Permuted groups across iterations
 - `loadings` — Network loadings (net.loads) for each group for each permutation
 - `loadingsDifference` — Difference between the dominant loadings of each group for each permutation
- `results` Data frame of the results (which are printed)

Author(s)

Laura Jamison <lj5yn@virginia.edu>, Hudson F. Golino <hfg9s at virginia.edu>, and Alexander P. Christensen <alexpaulchristensen@gmail.com>.

References

Original implementation

See Also

- `plot.EGAnet` for plot usage in `EGAnet`

Examples

```r
# Load data
wmt <- wmt2[-1,7:24]

# Groups
groups <- rep(1:2, each = nrow(wmt) / 2)

## Not run:
# Measurement invariance
results <- invariance(wmt, groups, ncores = 2)
```
Plot with uncorrected alpha = 0.05
plot(results, p_type = "p", p_value = 0.05)

Plot with BH-corrected alpha = 0.10
plot(results, p_type = "p_BH", p_value = 0.10)
End(Not run)

itemStability
Item Stability Statistics from bootEGA

Description
Based on the bootEGA results, this function computes and plots the number of times an variable is estimated in the same dimension as originally estimated by an empirical EGA structure or a theoretical/input structure. The output also contains each variable’s replication frequency (i.e., proportion of bootstraps that a variable appeared in each dimension

Usage

```
itemStability(bootega.obj, IS.plot = TRUE, structure = NULL, ...)
```

Arguments

- **bootega.obj**
 A bootEGA object

- **IS.plot**
 Boolean (length = 1). Should the plot be produced for item.replication? Defaults to TRUE

- **structure**
 Numeric (length = number of variables). A theoretical or pre-defined structure. Defaults to NULL or the empirical EGA result in the bootega.obj

- **...**
 Deprecated arguments from previous versions of itemStability

Value

Returns a list containing:

- **membership**
 A list containing:

 - **empirical** — A vector of the empirical memberships from the empirical EGA result
 - **bootstrap** — A matrix of the homogenized memberships from the replicate samples in the bootEGA results
 - **structure** — A vector of the structure used in the analysis. If structure = NULL, then this output will be the same as empirical

- **item.stability**
 A list containing:

 - **empirical.dimensions** — A vector of the proportion of times each item replicated within the structure defined by structure
itemStability

- `all.dimensions` — A matrix of the proportion of times each item replicated in each of the structure defined dimensions

`plot`
Plot output if `IS.plot = TRUE`

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Original implementation of `bootEGA`

Conceptual introduction

See Also

`plot.EGAnet` for plot usage in `EGAnet`

Examples

```r
# Load data
wmt <- wmt2[,7:24]

## Not run:
# Standard EGA example
boot.wmt <- bootEGA(
  data = wmt, iter = 500,
  type = "parametric", ncores = 2
)
## End(Not run)

# Standard item stability
wmt.is <- itemStability(boot.wmt)

## Not run:
# EGA fit example
boot.wmt.fit <- bootEGA(
  data = wmt, iter = 500,
  EGA.type = "EGA.fit",
  type = "parametric", ncores = 2
)

# EGA fit item stability
wmt.is.fit <- itemStability(boot.wmt.fit)

# Hierarchical EGA example
boot.wmt.hier <- bootEGA(
```

data = wmt, iter = 500,
EGA.type = "hierEGA",
 type = "parametric", ncores = 2
)

Hierarchical EGA item stability
wmt.is.hier <- itemStability(boot.wmt.hier)

Random-intercept EGA example
boot.wmt.ri <- bootEGA(
 data = wmt, iter = 500,
 EGA.type = "riEGA",
 type = "parametric", ncores = 2
)

Random-intercept EGA item stability
wmt.is.ri <- itemStability(boot.wmt.ri)
End(Not run)

Jensen-Shannon Distance

Description

Computes the Jensen-Shannon Distance between two networks

Usage

```r
jsd(network1, network2, method = c("kld", "spectral"))
```

Arguments

- `network1`: Matrix or data frame. Network to be compared
- `network2`: Matrix or data frame. Second network to be compared
- `method`: Character (length = 1). Method to compute Jensen-Shannon Distance. Defaults to "spectral". Available options:
 - "kld" — Uses Kullback-Leibler Divergence
 - "spectral" — Uses eigenvalues of combinatorial Laplacian matrix to compute Von Neumann entropy

Value

Returns Jensen-Shannon Distance

Author(s)

Hudson Golino <chfg9s at virginia.edu> & Alexander P. Christensen <alexander.christensen at Vanderbilt.Edu>
Examples

```r
# Obtain wmt2 data
wmt <- wmt2[, 7:24]

# Set seed (for reproducibility)
set.seed(1234)

# Split data
split1 <- sample(1:nrow(wmt), floor(nrow(wmt) / 2))
split2 <- setdiff(1:nrow(wmt), split1)

# Obtain split data
data1 <- wmt[split1,]
data2 <- wmt[split2,]

# Perform EBICglasso
glas1 <- EBICglasso.qgraph(data1)
glas2 <- EBICglasso.qgraph(data2)

# Spectral JSD
jsd(glas1, glas2)
# 0.1595893

# Spectral JSS (similarity)
1 - jsd(glas1, glas2)
# 0.8404107

# Jensen-Shannon Divergence
jsd(glas1, glas2, method = "kld")
# 0.1393621
```

LCT

Loadings Comparison Test

Description

An algorithm to identify whether data were generated from a factor or network model using factor and network loadings. The algorithm uses heuristics based on theory and simulation. These heuristics were then submitted to several deep learning neural networks with 240,000 samples per model with varying parameters.

Usage

```r
LCT(
data,
n = NULL,
```

```r
```
corr = c("auto", "cor_auto", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
model = c("BGGM", "glasso", "TMFG"),
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
iter = 100,
seed = NULL,
verbose = TRUE,
...

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix

n Numeric (length = 1). Sample size if data provided is a correlation matrix

corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
• "auto" — Automatically computes appropriate correlations for the data using Pearson's for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
• "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
• "pearson" — Pearson's correlation is computed for all variables regardless of categories
• "spearman" — Spearman's rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
• "pairwise" — Computes correlation for all available cases between two variables
• "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
• "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
• "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
• "TMFG" — Computes the TMFG method. See TMFG for more details

algorithm Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
• "leiden" — See \texttt{cluster_leiden} for more details

• "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see \texttt{community.consensus} for more information). This function will implement \texttt{consensus.method = "most_common"} and \texttt{consensus.iter = 1000} unless specified otherwise

• "walktrap" — See \texttt{cluster_walktrap} for more details

\begin{itemize}
\item \texttt{uni.method} Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
 \begin{itemize}
 \item "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) \textit{Psychological Methods} simulation
 \item "LE" — Applies the Leading Eigenvector algorithm (\texttt{cluster_leading_eigen}) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) \textit{Behavior Research Methods} simulation
 \item "louvain" — Applies the Louvain algorithm (\texttt{cluster_louvain}) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) \textit{PsyArXiv} simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"
 \end{itemize}
\end{itemize}

\begin{itemize}
\item \texttt{iter} Numeric (length = 1). Number of replicate samples to be drawn from a multivariate normal distribution (uses \texttt{MASS::mvrnorm}). Defaults to 100 (recommended)
\item \texttt{seed} Numeric (length = 1). Defaults to NULL or random results. Set for reproducible results. See \textit{Reproducibility and PRNG} for more details on random number generation in \texttt{EGAnet}
\item \texttt{verbose} Boolean (length = 1). Should progress be displayed? Defaults to TRUE. Set to FALSE to not display progress
\end{itemize}

\texttt{...}

Additional arguments that can be passed on to \texttt{auto.correlate, network.estimation, community.detection, community.consensus, and EGA}

\subsection*{Value}

Returns a list containing:

\begin{itemize}
\item \texttt{empirical} Prediction of model based on empirical dataset only
\item \texttt{bootstrap} Prediction of model based on means of the loadings across the bootstrap replicate samples
\item \texttt{proportion} Proportions of models suggested across bootstraps
\end{itemize}

\subsection*{Author(s)}

Hudson F. Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen at gmail.com>
modularity

References

Model training and validation

Examples

```r
# Get data
data <- psych::bfi[,1:25]

## Not run: # Compute LCT
## Factor model
LCT(data)
## End(Not run)
```

modularity Computes the (Signed) Modularity Statistic

Description

Computes (signed) modularity statistic given a network and community structure. Allows the resolution parameter to be set

Usage

`modularity(network, memberships, resolution = 1, signed = FALSE)`

Arguments

- `network`: Matrix or data frame. A symmetric matrix representing a network
- `memberships`: Numeric (length = ncol(network)). A numeric vector of integer values corresponding to each node’s community membership
- `resolution`: Numeric (length = 1). A parameter that adjusts modularity to prefer smaller (resolution > 1) or larger (0 < resolution < 1) communities. Defaults to 1 (standard modularity computation)
- `signed`: Boolean (length = 1). Whether signed or absolute modularity should be computed. The most common modularity metric is defined by positive values only. Gomez et al. (2009) introduced a signed version of modularity that will discount modularity for edges with negative values. This property isn’t always desired for psychometric networks. If TRUE, then this signed modularity metric will be computed. If FALSE, then the absolute value of the edges in the network (using abs) will be used to compute modularity. Defaults to FALSE

Value

Returns the modularity statistic
Examples

```r
# Load data
wmt <- wmt2[,7:24]

# Estimate EGA
ega.wmt <- EGA(wmt, model = "glasso")

# Compute standard (absolute values) modularity
modularity(network = ega.wmt$network,
           memberships = ega.wmt$wc,
           signed = FALSE)
# 0.1697952

# Compute signed modularity
modularity(network = ega.wmt$network,
           memberships = ega.wmt$wc,
           signed = TRUE)
# 0.1701946
```

Description

Computes the between- and within-community strength of each variable for each community.

Usage

```r
net.loads(A,
          wc,
          loading.method = c("BRM", "experimental"),
          scaling = 2,
          rotation = NULL,
          ...
)
```
Arguments

\(A \)
Network matrix, data frame, or \texttt{EGA} object

\(wc \)
Numeric or character vector (length = ncol(A)). A vector of community assignments. If input into \(A \) is an \texttt{EGA} object, then \(wc \) is automatically detected.

\(\text{loading.method} \)
Character (length = 1). Sets network loading calculation based on implementation described in "BRM" (Christensen & Golino, 2021) or an "experimental" implementation. Defaults to "BRM".

\(\text{scaling} \)
Numeric (length = 1). Scaling factor for the magnitude of the "experimental" network loadings. Defaults to 2. 10 makes loadings roughly the size of factor loadings when correlations between factors are orthogonal.

\(\text{rotation} \)
Character. A rotation to use to obtain a simpler structure. For a list of rotations, see \texttt{rotations} for options. Defaults to NULL or no rotation. By setting a rotation, scores estimation will be based on the rotated loadings rather than unrotated loadings.

...
Additional arguments to pass on to \texttt{rotations}.

Details

Simulation studies have demonstrated that a node’s strength centrality is roughly equivalent to factor loadings (Christensen & Golino, 2021; Hallquist, Wright, & Molenaar, 2019). Hallquist and colleagues (2019) found that node strength represented a combination of dominant and cross-factor loadings. This function computes each node’s strength within each specified dimension, providing a rough equivalent to factor loadings (including cross-loadings; Christensen & Golino, 2021).

Value

Returns a list containing:

\(\text{unstd} \)
A matrix of the unstandardized within- and between-community strength values for each node.

\(\text{std} \)
A matrix of the standardized within- and between-community strength values for each node.

\(\text{rotated} \)
NULL if \(\text{rotation} = \text{NULL} \); otherwise, a list containing the rotated standardized network loadings (loadings) and correlations between dimensions (\(\Phi \)) from the rotation.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com> and Hudson Golino <hfg9s at virginia.edu>

References

Original implementation and simulation
Demonstration of node strength similarity to CFA loadings

Examples

```r
# Load data
wmt <- wmt2[,7:24]

# Estimate EGA
ega.wmt <- EGA(
data = wmt,
  plot.EGA = FALSE) # No plot for CRAN checks

# Network loadings
net.loads(ega.wmt)
```

net.scores

Network Scores

Description

This function computes network scores computed based on each node's strength within each community in the network (see `net.loads`). These values are used as "network loadings" for the weights of each variable.

Network scores are computed as a formative composite rather than a reflective factor. This composite representation is consistent with no latent factors that psychometric network theory proposes.

Scores can be computed as a "simple" structure, which is equivalent to a weighted sum scores or as a "full" structure, which is equivalent to an EFA approach. Conservatively, the "simple" structure approach is recommended until further validation.

Usage

```r
net.scores(
data,
  A,
  wc,
  loading.method = c("BRM", "experimental"),
  rotation = NULL,
  scores = c("Anderson", "Bartlett", "components", "Harman", "network", "tenBerge", "Thurstone"),
  loading.structure = c("simple", "full"),
  impute = c("mean", "median", "none"),
  ...
)
```
Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis
A Network matrix, data frame, or EGA object
wc Numeric or character vector (length = ncol(A)). A vector of community assignments. If input into A is an EGA object, then wc is automatically detected
loading.method Character (length = 1). Sets network loading calculation based on implementation described in "BRM" (Christensen & Golino, 2021) or an "experimental" implementation. Defaults to "BRM"
rotation Character. A rotation to use to obtain a simpler structure. For a list of rotations, see rotations for options. Defaults to NULL or no rotation. By setting a rotation, scores estimation will be based on the rotated loadings rather than unrotated loadings
scores Character (length = 1). How should scores be estimated? Defaults to "network" for network scores. Set to other scoring methods which will be computed using factor.scores (see link for arguments and explanations for other methods)
loading.structure Character (length = 1). Whether simple structure or the saturated loading matrix should be used when computing scores. Defaults to "simple" "simple" structure more closely mirrors sum scores and CFA; "full" structure more closely mirrors EFA Simple structure is the more "conservative" (established) approach and is therefore the default. Treat "full" as experimental as proper vetting and validation has not been established
impute Character (length = 1). If there are any missing data, then imputation can be implemented. Available options:
 • "none" — Default. No imputation is performed
 • "mean" — The mean value of each variable is used to replace missing data for that variable
 • "median" — The median value of each variable is used to replace missing data for that variable

Additional arguments to be passed on to net.loads and factor.scores

Value

Returns a list containing:

scores A list containing the standardized (std.scores) rotated (rot.scores) scores. If rotation = NULL, then rot.scores will be NULL
loadings Output from net.loads

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com> and Hudson F. Golino <hfg9s at virginia.edu>
network.estimation

References

Original implementation and simulation for loadings

Preliminary simulation for scores

Examples

```r
# Load data
wmt <- wmt2[,7:24]

# Estimate EGA
ega.wmt <- EGA(
  data = wmt,
  plot.EGA = FALSE # No plot for CRAN checks
)

# Network scores
net.scores(data = wmt, A = ega.wmt)
```

network.estimation

Apply a Network Estimation Method

Description

General function to apply network estimation methods in *EGAnet*

Usage

```r
network.estimation(
  data,
  n = NULL,
  corr = c("auto", "cor_auto", "pearson", "spearman"),
  na.data = c("pairwise", "listwise"),
  model = c("BGGM", "glasso", "TMFG"),
  network.only = TRUE,
  verbose = FALSE,
  ...
)
```
network.estimation

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis

n Numeric (length = 1). Sample size if data provided is a correlation matrix

corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
 • "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
 • "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
 • "pearson" — Pearson’s correlation is computed for all variables regardless of categories
 • "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
 • "pairwise" — Computes correlation for all available cases between two variables
 • "listwise" — Computes correlation for all complete cases in the dataset

model Character (length = 1). Defaults to "glasso". Available options:
 • "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
 • "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
 • "TMFG" — Computes the TMFG method. See TMFG for more details

network.only Boolean (length = 1). Whether the network only should be output. Defaults to TRUE. Set to FALSE to obtain all output for the network estimation method

verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

... Additional arguments to be passed on to auto.correlate and the different network estimation methods (see model for model specific details)

Value

Returns a matrix populated with a network from the input data

Author(s)

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>
network.generalizability

References

Graphical Least Absolute Shrinkage and Selection Operator (GLASSO)

GLASSO with Extended Bayesian Information Criterion (EBICglasso)

Bayesian Gaussian Graphical Model (BGGM)

Triangulated Maximally Filtered Graph (TMFG)

Examples

```r
# Load data
wmt <- wmt2[,7:24]

# EBICglasso (default for EGA functions)
glasso_network <- network.estimation(data = wmt, model = "glasso")

# TMFG
tmfg_network <- network.estimation(data = wmt, model = "TMFG")
```

network.generalizability

Estimate the Generalizability of Network

Description

General function to compute a network’s predictive power on new data, following Haslbeck and Waldorp (2018) and Williams and Rodriguez (2022) and using generalizability methods of data splitting, k-folds cross-validation, and leave-one-out cross-validation

Uses `network.predictability` as the basis to then perform generalizability methods over

Usage

```r
network.generalizability(
  data,
  method = c("split", "cv", "loocv"),
)```
number,
corr = c("auto", "cor_auto", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
model = c("BGGM", "glasso", "TMFG"),
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
seed = NULL,
...)
Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix

method Character (length = 1). Generalizability method. Available options:

• "split" — Performs train/test data split on the data using number to adjust
  the size of the training split
• "cv" — (default) Performs k-folds cross-validation using number to adjust
  the number of folds (e.g., 5 = 80/20 splits; 10 = 90/10 splits)
• "loocv" — Performs leave-one-out cross-validation. Leave-one-out has
  a tendency to overestimate the generalizability of the model and is not
  recommended (k-folds cross-validation should be preferred)

number Numeric (length = 1). Parameter to adjust the method argument. Ranges 0-1 for method = "split" and 1-N for method = "cv". Defaults to 0.80 and 5, respectively

corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:

• "auto" — Automatically computes appropriate correlations for the data using
  Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary,
  and polyserial/biserial for ordinal/binary with continuous. To change
  the number of categories that are considered ordinal, use ordinal.categories
  (see polychoric.matrix for more details)
• "cor_auto" — Uses cor_auto to compute correlations. Arguments can be
  passed along to the function
• "pearson" — Pearson’s correlation is computed for all variables regardless
  of categories
• "spearman" — Spearman’s rank-order correlation is computed for all vari-
  ables regardless of categories

For other similarity measures, compute them first and input them into data with
the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:

• "pairwise" — Computes correlation for all available cases between two
  variables
• "listwise" — Computes correlation for all complete cases in the dataset
**network.generalizability**

`model` Character (length = 1). Defaults to "glasso". Available options:

- "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument `ordinal.categories` to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
- "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
- "TMFG" — Computes the TMFG method. See TMFG for more details

`algorithm` Character or igraph `cluster_*` function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):

- "leiden" — See cluster_leiden for more details
- "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement `consensus.method = "most_common"` and `consensus.iter = 1000` unless specified otherwise
- "walktrap" — See cluster_walktrap for more details

`uni.method` Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:

- "expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.’s (2020) Psychological Methods simulation
- "LE" — Applies the Leading Eigenvector algorithm (cluster_leading_eigen) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.’s (2023) Behavior Research Methods simulation
- "louvain" — Applies the Louvain algorithm (cluster_louvain) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) PsyArXiv simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter"

`seed` Numeric (length = 1). Defaults to NULL or random results. Set for reproducible results. See Reproducibility and PRNG for more details on random number generation in EGAnet

... Additional arguments to be passed on to auto.correlate, network.estimation, community.detection, community.consensus, and community.unidimensional

**Details**

This implementation of network predictability proceeds in several steps with important assumptions:

1. Network was estimated using (partial) correlations (not regression like the mgm package!)
2. Original data that was used to estimate the network in 1. is necessary to apply the original scaling to the new data.

3. (Linear) regression-like coefficients are obtained by reserve engineering the inverse covariance matrix using the network’s partial correlations (i.e., by setting the diagonal of the network to -1 and computing the inverse of the opposite signed partial correlation matrix; see `EGAnet:::pcor2inv`).

4. Predicted values are obtained by matrix multiplying the new data with these coefficients.

5. **Dichotomous and polytomous** data are given categorical values based on the original data’s thresholds and these thresholds are used to convert the continuous predicted values into their corresponding categorical values.

6. Evaluation metrics:
   - dichotomous — Accuracy or the percent correctly predicted for the 0s and 1s
   - polytomous — Accuracy based on the correctly predicting the ordinal category exactly (i.e., $1 = 1$, $2 = 2$, etc.) and a weighted accuracy such that absolute distance of the predicted value from the actual value (e.g., $|\text{prediction} - \text{actual}| = 1$) is used as the power of 0.5. This weighted approach provides an overall distance in terms of accuracy where each predicted value away from the actual value is given a harsher penalty (absolute difference = accuracy value): $0 = 1.000$, $1 = 0.500$, $2 = 0.2500$, $3 = 0.1250$, $4 = 0.0625$, etc.
   - continuous — R-squared and root mean square error

**Value**

Returns a list containing:

- `node` Node-wise metrics output from `network.predictability`
- `community` Community-wise metrics output from `tefi`

**Author(s)**

Hudson Golino <hfg9s@virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

**References**

**Original Implementation of Node Predictability**


**Derivation of Regression Coefficients Used (Formula 3)**


**Examples**

```r
Data splitting
network.generalizability(
 data = wmt2[,7:24], method = "split",
 number = 0.80 # 80/20 training/testing
)
```
# k-folds cross-validation
def network.generalizability(
    data = wmt2[,7:24], method = "cv",
    number = 5 # 5-fold cross-validation
)

## Not run:
# Leave-one-out cross-validation
def network.generalizability(
    data = wmt2[,7:24], method = "loocv"
)

---

**network.predictability**

*Predict New Data based on Network*

**Description**

General function to compute a network’s predictive power on new data, following Haslbeck and Waldorp (2018) and Williams and Rodriguez (2022).

This implementation is different from the predictability in the mgm package (Haslbeck), which is based on (regularized) regression. This implementation uses the network directly, converting the partial correlations into an implied precision (inverse covariance) matrix. See **Details** for more information.

**Usage**

```r
network.predictability(network, original.data, newdata, ordinal.categories = 7)
```

**Arguments**

- **network**: Matrix or data frame. A partial correlation network.
- **original.data**: Matrix or data frame. Must consist only of variables to be used to estimate the network. See **Examples**.
- **newdata**: Matrix or data frame. Must consist of the same variables in the same order as original.data. See **Examples**.
- **ordinal.categories**: Numeric (length = 1). *Up to* the number of categories before a variable is considered continuous. Defaults to 7 categories before 8 is considered continuous.

**Details**

This implementation of network predictability proceeds in several steps with important assumptions:

1. Network was estimated using (partial) correlations (not regression like the mgm package!)
2. Original data that was used to estimate the network in 1. is necessary to apply the original scaling to the new data

3. (Linear) regression-like coefficients are obtained by reserve engineering the inverse covariance matrix using the network’s partial correlations (i.e., by setting the diagonal of the network to -1 and computing the inverse of the opposite signed partial correlation matrix; see `EGAnet:::pcor2inv`)

4. Predicted values are obtained by matrix multiplying the new data with these coefficients

5. **Dichotomous and polytomous** data are given categorical values based on the original data’s thresholds and these thresholds are used to convert the continuous predicted values into their corresponding categorical values

6. Evaluation metrics:
   - dichotomous — “Accuracy” or the percent correctly predicted for the 0s and 1s and “Kappa” or Cohen’s Kappa (see cite)
   - polytomous — “Linear Kappa” or linearly weighted Kappa and “Krippendorff’s alpha” (see cite)
   - continuous — R-squared (“R2”) and root mean square error (“RMSE”)

**Value**

Returns a list containing:

- `predictions` Predicted values of `newdata` based on the network
- `betas` Beta coefficients derived from the network
- `results` Performance metrics for each variable in `newdata`

**Author(s)**

Hudson Golino <hfg9s at virginia.edu> and Alexander P. Christensen <alexpaulchristensen@gmail.com>

**References**

**Original Implementation of Node Predictability**

**Derivation of Regression Coefficients Used (Formula 3)**

**Cohen’s Kappa**


**Krippendorff’s alpha**
Examples

```r
Load data
wmt <- wmt2[,7:24]

Set seed (to reproduce results)
set.seed(42)

Split data
training <- sample(1:nrow(wmt), round(nrow(wmt) * 0.80)) # 80/20 split

Set splits
wmt_train <- wmt[training,]
wmt_test <- wmt[-training,]

glasso_network <- network.estimation(data = wmt_train, model = "glasso")

Check predictability
network.predictability(network = glasso_network, original.data = wmt_train, newdata = wmt_test)
```

**optimism**

### Optimism Data

**Description**

A response matrix (n = 282) containing responses to 10 items of the Revised Life Orientation Test (LOT-R), developed by Scheier, Carver, & Bridges (1994).

**Usage**

`data(optimism)`

**Format**

A 282x10 response matrix

**References**

Examples

data("optimism")

polychoric.matrix  Computes Polychoric Correlations

Description

A fast implementation of polychoric correlations in C. Uses the Beasley-Springer-Moro algorithm (Boro & Springer, 1977; Moro, 1995) to estimate the inverse univariate normal CDF, the Drezner-Wesolosky approximation (Drezner & Wesolosky, 1990) to estimate the bivariate normal CDF, and Brent’s method (Brent, 2013) for optimization of rho.

Usage

polychoric.matrix(
  data,
  na.data = c("pairwise", "listwise"),
  empty.method = c("none", "zero", "all"),
  empty.value = c("none", "point_five", "one_over"),
  ...
)

Arguments

- **data**: Matrix or data frame. A dataset with all ordinal values (rows = cases, columns = variables). Data are required to be between 0 and 11. Proper adjustments should be made prior to analysis (e.g., scales from -3 to 3 in increments of 1 should be shifted by added 4 to all values).

- **na.data**: Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
  - "pairwise" — Computes correlation for all available cases between two variables
  - "listwise" — Computes correlation for all complete cases in the dataset

- **empty.method**: Character (length = 1). Method for empty cell correction. Available options:
  - "none" — Adds no value (empty.value = "none") to the empirical joint frequency table between two variables
  - "zero" — Adds empty.value to the cells with zero in the joint frequency table between two variables
  - "all" — Adds empty.value to all in the joint frequency table between two variables

- **empty.value**: Character (length = 1). Value to add to the joint frequency table cells. Accepts numeric values between 0 and 1 or specific methods.
polychoric.matrix

- "none" — Adds no value (0) to the empirical joint frequency table between two variables
- "point_five" — Adds 0.5 to the cells defined by empty.method
- "one_over" — Adds 1/n where n equals the number of cells based on empty.method. For empty.method = "zero", n equals the number of zero cells

... Not used but made available for easier argument passing

Value

Returns a polychoric correlation matrix

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com> with assistance from GPT-4

References

**Beasley-Moro-Springer algorithm**


**Brent optimization**

**Drezner-Wesolowsky bivariate normal approximation**

Examples

```r
Load data (ensure matrix for missing data example)
wmt <- as.matrix(wmt2[,7:24])

Compute polychoric correlation matrix
correlations <- polychoric.matrix(wmt)

Randomly assign missing data
wmt[sample(1:length(wmt), 1000)] <- NA

correlations <- polychoric.matrix(wmt, na.data = "pairwise")

Compute polychoric correlation matrix
with pairwise missing
pairwise_correlations <- polychoric.matrix(wmt, na.data = "pairwise")

Compute polychoric correlation matrix
with listwise missing
pairwise_correlations <- polychoric.matrix(wmt)
```
prime.num  

*Prime Numbers through 100,000*

### Description

Numeric vector of primes generated from the primes package. Used in the function [EGAnet]{ergoInfo}. Not for general use.

### Usage

```r
data(prime.num)
```

### Format

A 1185x24 response matrix

### Examples

```r
data("prime.num")
```

---

riEGA  

*Random-Intercept EGA*

### Description

Estimates the number of substantive dimensions after controlling for wording effects. EGA is applied to a residual correlation matrix after subtracting and random intercept factor with equal unstandardized loadings from all the regular and unrecoded reversed items in the database.

### Usage

```r
riEGA(
 data,
 n = NULL,
 corr = c("auto", "cor_auto", "pearson", "spearman"),
 na.data = c("pairwise", "listwise"),
 model = c("glasso", "TMFG"),
 algorithm = c("leiden", "louvain", "walktrap"),
 uni.method = c("expand", "LE", "louvain"),
 estimator = c("auto", "WLSMV", "MLR"),
 plot.EGA = TRUE,
 verbose = FALSE,
 ...
)
```
Arguments

**data**
Matrix or data frame. Should consist only of variables to be used in the analysis. **Must** be raw data and not a correlation matrix.

**n**
Numeric (length = 1). Sample size if data provided is a correlation matrix.

**corr**
Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
- "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
- "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
- "pearson" — Pearson’s correlation is computed for all variables regardless of categories
- "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

**na.data**
Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

**model**
Character (length = 1). Defaults to "glasso". Available options:
- "BGGM" — Computes the Bayesian Gaussian Graphical Model. Set argument ordinal.categories to determine levels allowed for a variable to be considered ordinal. See ?BGGM::estimate for more details
- "glasso" — Computes the GLASSO with EBIC model selection. See EBICglasso.qgraph for more details
- "TMFG" — Computes the TMFG method. See TMFG for more details

**algorithm**
Character or igraph cluster_* function (length = 1). Defaults to "walktrap". Three options are listed below but all are available (see community.detection for other options):
- "leiden" — See cluster_leiden for more details
- "louvain" — By default, "louvain" will implement the Louvain algorithm using the consensus clustering method (see community.consensus for more information). This function will implement consensus.method = "most_common" and consensus.iter = 1000 unless specified otherwise
- "walktrap" — See cluster_walktrap for more details

**uni.method**
Character (length = 1). What unidimensionality method should be used? Defaults to "louvain". Available options:
"expand" — Expands the correlation matrix with four variables correlated 0.50. If number of dimension returns 2 or less in check, then the data are unidimensional; otherwise, regular EGA with no matrix expansion is used. This method was used in the Golino et al.'s (2020) *Psychological Methods* simulation.

"LE" — Applies the Leading Eigenvector algorithm (*cluster_leading_eigen*) on the empirical correlation matrix. If the number of dimensions is 1, then the Leading Eigenvector solution is used; otherwise, regular EGA is used. This method was used in the Christensen et al.'s (2023) *Behavior Research Methods* simulation.

"louvain" — Applies the Louvain algorithm (*cluster_louvain*) on the empirical correlation matrix. If the number of dimensions is 1, then the Louvain solution is used; otherwise, regular EGA is used. This method was validated Christensen’s (2022) *PsyArXiv* simulation. Consensus clustering can be used by specifying either "consensus.method" or "consensus.iter".

---

**estimator**

Character (length = 1). Estimator to use for random-intercept model (see Estimators for more details). Defaults to "auto", which selects "MLR" for continuous data and "WLSMV" for mixed and categorical data. Data are considered continuous data if they have 8 or more categories (see Rhemtulla, Brosseau-Liard, & Savalei, 2012). To change this behavior, set `ordinal.categories` as an argument.

**plot.EGA**

Boolean (length = 1). If TRUE, returns a plot of the network and its estimated dimensions. Defaults to TRUE.

**verbose**

Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call.

---

**Value**

Returns a list containing:

**EGA**

Results from EGA.

**RI**

A list containing information about the random-intercept model (if the model converged):

- `fit` — The fit object for the random-intercept model using `cfa`
- `lavaan.args` — The arguments used in `cfa`
- `loadings` — Standardized loadings from the random-intercept model
- `correlation` — Residual correlations after accounting for the random-intercept model

**TEFI**

`link[EGAnet]{tefi}` for the estimated structure.

**plot.EGA**

Plot output if `plot.EGA = TRUE`.
Author(s)
Alejandro Garcia-Pardina <alejandrogp97@gmail.com>, Francisco J. Abad <fjose.abad@uam.es>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s at virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu.do>, and Robert Moulder <rgm4fd@virginia.edu>

References

Selection of CFA Estimator

See Also

plot.EGAnet for plot usage in EGAnet

Examples

# Obtain example data
wmt <- wmt2[,7:24]

# riEGA example
riEGA(data = wmt, plot.EGA = FALSE)
# no plot for CRAN checks

Description

A simulated (multivariate time series) data with 24 variables, 100 individual observations, 50 time points per individual and 2 groups of individuals

Usage

data(sim.dynEGA)

Format

A 5000 x 26 multivariate time series
Details

Data were generated using the simDFM function with the following arguments:

**Group 1**

```
simDFM(variab = 12, timep = 50, nfact = 2, error = 0.125, dfm = "DAFS", loadings = EGAnet:::runif_xoshiro(1, min = 0.50, max = 0.70), autoreg = 0.80, crossreg = 0.00, var.shock = 0.36, cov.shock = 0.18)
```

**Group 2**

```
simDFM(variab = 8, timep = 50, nfact = 3, error = 0.125, dfm = "DAFS", loadings = EGAnet:::runif_xoshiro(1, min = 0.50, max = 0.70), autoreg = 0.80, crossreg = 0.00, var.shock = 0.36, cov.shock = 0.18)
```

Examples

```r
data("sim.dynEGA")
```

---

**simDFM**

*Simulate data following a Dynamic Factor Model*

Description

Function to simulate data following a dynamic factor model (DFM). Two DFMs are currently available: the direct autoregressive factor score model (Engle & Watson, 1981; Nesselroade, McArdle, Aggen, and Meyers, 2002) and the dynamic factor model with random walk factor scores.

Usage

```r
simDFM(
 variab,
 timep,
 nfact,
 error,
 dfm = c("DAFS", "RandomWalk"),
 loadings,
 autoreg,
 crossreg,
 var.shock,
 cov.shock,
 burnin = 1000,
 variation = FALSE
)
```
**simDFM**

**Arguments**

- `variab` Number of variables per factor.
- `timep` Number of time points.
- `nfact` Number of factors.
- `error` Value to be used to construct a diagonal matrix $Q$. This matrix is $p \times p$ covariance matrix $Q$ that will generate random errors following a multivariate normal distribution with mean zeros. The value provided is squared before constructing $Q$.
- `dfm` A string indicating the dynamical factor model to use. Current options are:
  - `DAFS` — Simulates data using the direct autoregressive factor score model. This is the default method.
  - `RandomWalk` — Simulates data using a dynamic factor model with random walk factor scores.
- `loadings` Magnitude of the loadings.
- `autoreg` Magnitude of the autoregression coefficients.
- `crossreg` Magnitude of the cross-regression coefficients.
- `var.shock` Magnitude of the random shock variance.
- `cov.shock` Magnitude of the random shock covariance.
- `burnin` Number of $n$ first samples to discard when computing the factor scores. Defaults to 1000.
- `variation` Boolean. Whether parameters should be varied. Defaults to `FALSE`. Set to `TRUE` to add slight variation to all parameters.

**Author(s)**

Hudson F. Golino <hfg9s at virginia.edu>

**References**


**Examples**

```r
Not run:
Estimate EGA network
data1 <- simDFM(variab = 5, timep = 50, nfact = 3, error = 0.05,
dfm = "DAFS", loadings = 0.7, autoreg = 0.8,
crossreg = 0.1, var.shock = 0.36,
cov.shock = 0.18, burnin = 1000)
End(Not run)
```
**tefi**

*Total Entropy Fit Index using Von Neumann’s entropy (Quantum Information Theory) for correlation matrices*

**Description**

Computes the fit (TEFI) of a dimensionality structure using Von Neumann’s entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.

**Usage**

```r
tefi(data, structure = NULL, verbose = TRUE)
```

**Arguments**

- `data`: Matrix, data frame, or *EGA* class object. Matrix or data frame can be raw data or a correlation matrix. All *EGA* objects are accepted. *hierEGA* input will produced the Generalized TEFI (see `genTEFI`).
- `structure`: Numeric or character vector (length = ncol(data)). Can be theoretical factors or the structure detected by `EGA`.
- `verbose`: Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to `TRUE` to see all messages and warnings for every function call. Set to `FALSE` to ignore messages and warnings.

**Value**

Returns a data frame with columns:

**Non-hierarchical Structure**

- `VN.Entropy.Fit`: The Total Entropy Fit Index using Von Neumann’s entropy
- `Total.Correlation`: The total correlation of the dataset
- `Average.Entropy`: The average entropy of the dataset

**Hierarchical Structure**

- `VN.Entropy.Fit`: The Generalized Total Entropy Fit Index using Von Neumann’s entropy
- `Lower.Order.VN`: Lower order (only) Total Entropy Fit Index
- `Higher.Order.VN`: Higher order (only) Total Entropy Fit Index

**Author(s)**

Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
References

**Initial formalization and simulation**

Examples

```r
Load data
data <- wmt2[,7:24]

Estimate EGA model
ega.wmt <- EGA(
data = wmt, model = "glasso",
plot.EGA = FALSE) # no plot for CRAN checks

Compute entropy indices for empirical EGA
tefi(ega.wmt)

User-defined structure (with `EGA` object)
tefi(ega.wmt, structure = c(rep(1, 5), rep(2, 5), rep(3, 8)))
```

**TMFG**

*Triangulated Maximally Filtered Graph*

**Description**

Applies the Triangulated Maximally Filtered Graph (TMFG) filtering method (see Massara et al., 2016). The TMFG method uses a structural constraint that limits the number of zero-order correlations included in the network (3n - 6; where n is the number of variables). The TMFG algorithm begins by identifying four variables which have the largest sum of correlations to all other variables. Then, it iteratively adds each variable with the largest sum of three correlations to nodes already in the network until all variables have been added to the network. This structure can be associated with the inverse correlation matrix (i.e., precision matrix) to be turned into a GGM (i.e., partial correlation network) by using Local-Global Inversion Method (LoGo; see Barfuss et al., 2016 for more details). See **Details** for more information

**Usage**

```r
TMFG(
data,
n = NULL,
corr = c("auto", "cor_auto", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
partial = FALSE,
```

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or correlation matrix

n Numeric (length = 1). Sample size for when a correlation matrix is input into data. Defaults to NULL. n is not necessary and is provided for better functionality in EGAnet

corr Character (length = 1). Method to compute correlations. Defaults to "auto". Available options:
- "auto" — Automatically computes appropriate correlations for the data using Pearson’s for continuous, polychoric for ordinal, tetrachoric for binary, and polyserial/biserial for ordinal/binary with continuous. To change the number of categories that are considered ordinal, use ordinal.categories (see polychoric.matrix for more details)
- "cor_auto" — Uses cor_auto to compute correlations. Arguments can be passed along to the function
- "pearson" — Pearson’s correlation is computed for all variables regardless of categories
- "spearman" — Spearman’s rank-order correlation is computed for all variables regardless of categories

For other similarity measures, compute them first and input them into data with the sample size (n)

na.data Character (length = 1). How should missing data be handled? Defaults to "pairwise". Available options:
- "pairwise" — Computes correlation for all available cases between two variables
- "listwise" — Computes correlation for all complete cases in the dataset

partial Boolean (length = 1). Whether partial correlations should be output. Defaults to FALSE. The TMFG method is based on the zero-order correlations; the Local-Global Inversion Method (LoGo; see Barfuss et al., 2016 for more details) uses the decomposability of the TMFG network to obtain the inverse covariance structure of the network (which is then converted to partial correlations). Set to TRUE to obtain the partial correlations from the LoGo method

returnAllResults Boolean (length = 1). Whether all results should be returned. Defaults to FALSE (network only). Set to TRUE to access separators and cliques

verbose Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call

Additional arguments to be passed on to auto.correlate
Details

The TMFG method applies a structural constraint on the network, which restrains the network to retain a certain number of edges \((3n - 6)\), where \(n\) is the number of nodes; Massara et al., 2016. The network is also composed of 3- and 4-node cliques (i.e., sets of connected nodes; a triangle and tetrahedron, respectively). The TMFG method constructs a network using zero-order correlations and the resulting network can be associated with the inverse covariance matrix (yielding a GGM; Barfuss, Massara, Di Matteo, & Aste, 2016). Notably, the TMFG can use any association measure and thus does not assume the data is multivariate normal.

Construction begins by forming a tetrahedron of the four nodes that have the highest sum of correlations that are greater than the average correlation in the correlation matrix. Next, the algorithm iteratively identifies the node that maximizes its sum of correlations to a connected set of three nodes (triangles) already included in the network and then adds that node to the network. The process is completed once every node is connected in the network. In this process, the network automatically generates what’s called a planar network. A planar network is a network that could be drawn on a sphere with no edges crossing (often, however, the networks are depicted with edges crossing; Tumminello, Aste, Di Matteo, & Mantegna, 2005).

Value

Returns a network or list containing:

- **network**: The filtered adjacency matrix
- **separators**: The separators (3-cliques) in the network
- **cliques**: The cliques (4-cliques) in the network

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

**Local-Global Inversion Method**

**Psychometric network introduction to TMFG**

**Triangulated Maximally Filtered Graph**

Examples

```
TMFG filtered network
TMFG(wmt2[,7:24])

Partial correlations using the LoGo method
```
totalCor

Total Correlation

Description
Computes the total correlation of a dataset

Usage
```
totalCor(data)
```

Arguments
- `data` Matrix or data frame. Should consist only of variables to be used in the analysis

Value
Returns a list containing:

- `Ind.Entropies` Individual entropies for each variable
- `Joint.Entropy` The joint entropy of the dataset
- `Total.Cor` The total correlation of the dataset

Author(s)
Hudson F. Golino <hfg9s at virginia.edu>

References

**Formalization of total correlation**

**Applied implementation**

Examples
```
Compute total correlation
totalCor(wmt2[,7:24])
```
**totalCorMat**

**Total Correlation Matrix**

**Description**

Computes the pairwise total correlation (totalCor) for a dataset.

**Usage**

```r
totalCorMat(data)
```

**Arguments**

- `data` Matrix or data frame. Should consist only of variables to be used in the analysis.

**Value**

Returns a symmetric matrix with pairwise total correlations.

**Author(s)**

Hudson F. Golino &lt;hfg9s at virginia.edu&gt;

**References**

1. **Formalization of total correlation**

2. **Applied implementation**

**Examples**

```r
Compute total correlation matrix
totalCorMat(wmt2[,7:24])
```
Unique Variable Analysis

Description

Identifies locally dependent (redundant) variables in a multivariate dataset using the EBICglasso.qgraph network estimation method and weighted topological overlap (see Christensen, Garrido, & Golino, 2023 for more details)

Usage

UVA(
  data = NULL,
  network = NULL,
  n = NULL,
  key = NULL,
  uva.method = c("MBR", "EJP"),
  cut.off = 0.25,
  reduce = TRUE,
  reduce.method = c("latent", "mean", "remove", "sum"),
  auto = TRUE,
  verbose = FALSE,
  ...
)

Arguments

data Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix. Defaults to NULL

network Symmetric matrix or data frame. A symmetric network. Defaults to NULL

If both data and network are provided, then UVA will use the network with the data (rather than estimating a network from the data)

n Numeric (length = 1). Sample size if data provided is a correlation matrix. Defaults to NULL

key Character vector (length = ncol(data)). Item key for labeling variables in the results

uva.method Character (length = 1). Whether the method described in Christensen, Garrido, and Golino (2023) publication in Multivariate Behavioral Research ("MBR") or Christensen, Golino, and Silvia (2020) publication in European Journal of Personality ("EJP") should be used. Defaults to "MBR"

Based on simulation and accumulating empirical evidence, the methods described in Christensen, Golino, and Silvia (2020) such as adaptive alpha are outdated. Evidence supports using a single cut-off value (regardless of continuous, polytomous, or dichotomous data; Christensen, Garrido, & Golino, 2023)
**cut.off** Numeric (length = 1). Cut-off used to determine when pairwise \textit{wto} values are considered locally dependent (or redundant). Must be values between 0 and 1. Defaults to 0.25.

This cut-off value is **recommended** and based on extensive simulation (Christensen, Garrido, & Golino, 2023). Printing the result will provide a gradient of pairwise redundancies in increments of 0.20, 0.25, and 0.30. Use print or summary on the output rather than adjusting this cut-off value.

**reduce** Logical (length = 1). Whether redundancies should be reduced in data. Defaults to TRUE.

**reduce.method** Character (length = 1). Method to reduce redundancies. Available options:

- "latent" — Computes latent variables using \textit{cfa} when there are three or more redundant variables. If variables are not all coded in the same direction, then they will be recoded as necessary. A warning will be produced for all variables that are flipped.
- "mean" — Computes mean of redundant variables. If variables are not all coded in the same direction, then they will be recoded as necessary. A warning will be produced for all variables that are flipped.
- "remove" — Removes all but one variable from a set of redundant variables.
- "sum" — Computes sum of redundant variables. If variables are not all coded in the same direction, then they will be recoded as necessary. A warning will be produced for all variables that are flipped.

**auto** Logical (length = 1). Whether \textit{reduce} should occur automatically. For \textit{reduce.method} = "remove", the automated decision process is as follows:

- Two variables — The variable with the lowest maximum \textit{wto} to all other variables (other than the one it is redundant with) is retained and the other is removed.
- Three or more variables — The variable with the highest mean \textit{wto} to all other variables that are redundant with one another is retained and all others are removed.

**verbose** Boolean (length = 1). Whether messages and (insignificant) warnings should be output. Defaults to FALSE (silent calls). Set to TRUE to see all messages and warnings for every function call.

... Additional arguments that should be passed on to old versions of \textit{UVA} or to \textit{EGA} and \textit{cfa}.

**References**

**Most recent simulation and implementation**

**Conceptual foundation and outdated methods**

**Weighted topological overlap**

**Selection of CFA Estimator**

**Examples**

```r
Perform UVA
uva.wmt <- UVA(wmt[,7:24])

Show summary
summary(uva.wmt)
```

---

**vn.entropy**

**Entropy Fit Index using Von Neumann’s entropy (Quantum Information Theory) for correlation matrices**

**Description**

Computes the fit of a dimensionality structure using Von Neumann’s entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.

**Usage**

```r
vn.entropy(data, structure)
```

**Arguments**

- **data** Matrix or data frame. Contains variables to be used in the analysis.
- **structure** Numeric or character vector (length = ncol(data)). A vector representing the structure (numbers or labels for each item). Can be theoretical factors or the structure detected by EGA.

**Value**

Returns a list containing:

- **VN.Entropy.Fit** The Entropy Fit Index using Von Neumann’s entropy
- **Total.Correlation** The total correlation of the dataset
- **Average.Entropy** The average entropy of the dataset
**Author(s)**

Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>

**References**

**Initial formalization and simulation**


**Examples**

```r
Get EGA result
ega.wmt <- EGA(
data = wmt2[,7:24], model = "glasso",
 plot.EGA = FALSE) # no plot for CRAN checks

Compute Von Neumann entropy
vn.entropy(eega.wmt$correlation, ega.wmt$wc)
```

---

**wmt2**  

**WMT-2 Data**

**Description**

A response matrix (n = 1185) of the Wiener Matrizen-Test 2 (WMT-2).

**Usage**

```r
data(wmt2)
```

**Format**

A 1185x24 response matrix

**Examples**

```r
data("wmt2")
```
Description

Computes weighted topological overlap following the Novick et al. (2009) definition

Usage

\[
\text{wto}(\text{network}, \text{signed} = \text{TRUE}, \text{diagonal.zero} = \text{TRUE})
\]

Arguments

- **network**: Symmetric matrix or data frame. A symmetric network
- **signed**: Boolean (length = 1). Whether the signed version should be used. Defaults to TRUE. Use FALSE for absolute values
- **diagonal.zero**: Boolean (length = 1). Whether diagonal of overlap matrix should be set to zero. Defaults to TRUE. Use FALSE to allow overlap of a node with itself

Value

A symmetric matrix of weighted topological overlap values between each pair of variables

References

- **Original formalization**

Examples

```r
Obtain network
network <- network.estimation(wmt2[,7:24], model = "lasso")

Compute wTO
wto(network)
```
Index

* datasets
  - boot.wmt, 10
  - depression, 33
  - dnn.weights, 35
  - ega.wmt, 56
  - intelligenceBattery, 71
  - optimism, 95
  - prime.num, 98
  - sim.dynEGA, 101
  - wmt2, 113
  - auto.correlate, 5, 13, 29, 38, 43, 48, 51, 54, 67, 74, 81, 88, 91, 100, 106
  - boot.ergoInfo, 4, 7, 58
  - boot.wmt, 10
  - bootEGA, 4, 10, 10, 33, 34, 58, 71, 72, 74–76
  - CFA, 4, 15
  - cfa, 16, 100, 111
  - cluster_edge_betweenness, 24
  - cluster_fast_greedy, 24
  - cluster_fluid_communities, 24
  - cluster_infomap, 24
  - cluster_label_prop, 24
  - cluster_leading_eigen, 12, 24, 27, 28, 38, 42, 48, 67, 73, 81, 91, 100
  - cluster_leiden, 12, 24, 37, 42, 47, 51, 54, 67, 73, 81, 91, 99
  - cluster_louvain, 12, 24, 27, 29, 38, 42, 48, 65, 67, 73, 81, 91, 100
  - cluster_optimal, 24
  - cluster_spinglass, 24
  - cluster_walktrap, 12, 24, 37, 42, 47, 51, 53, 54, 67, 73, 81, 91, 99
  - color_palette_EGA, 17, 57, 58
  - community.compare, 18
  - community.consensus, 12, 13, 20, 29, 37, 38, 42, 43, 47, 48, 51, 54, 67, 73, 74, 81, 91, 99, 100
  - community_detection, 12, 13, 23, 29, 37, 38, 42, 43, 47, 48, 51, 54, 67, 73, 74, 80, 81, 91, 99, 100
  - community_homogenize, 26
  - community_unidimensional, 4, 27, 48, 91
  - compare, 19
  - compare.EGA, 30
  - convert2igraph, 31
  - convert2tidygraph, 32
  - cor, 6
  - cor_auto, 5, 11, 28, 37, 41, 44, 47, 51, 53, 66, 72, 80, 88, 90, 99, 106
  - depression, 33
  - dimensionStability, 4, 14, 26, 33
  - dnn.weights, 35
  - dynEGA, 4, 7, 35, 40, 57, 58, 70
  - dynEGA.ind.pop, 7, 40, 61, 70
  - EBIClasso, 43
  - EBIClasso.qgraph, 12, 28, 37, 42, 43, 47, 51, 54, 67, 73, 80, 88, 91, 99, 110
  - EGA, 4, 5, 13, 15–17, 27, 33, 34, 37, 38, 43, 46, 50, 52–54, 56, 58, 60, 65–68, 71, 72, 74–76, 81, 84, 86, 98, 100, 104, 111, 112
  - EGA.estimate, 50, 54, 58
  - EGA.fit, 5, 13, 52, 58
  - ega.wmt, 56
  - EGAnet, 5, 9, 13, 18, 19, 23, 30–32, 39, 43, 49, 52, 55–58, 68, 70, 74, 75, 77, 81, 87, 91, 101, 106
  - EGAnet (EGAnet-package), 3
  - EGAnet-package, 3
  - EGAnet.plot, 56
  - Embed, 36, 41, 59, 64
  - entropyFit, 4, 60
  - ergoInfo, 4, 7, 61
  - fa, 65
factor.scores, 86
fitMeasures, 16

genTEFI, 62, 104
GGally, 56
ggnet2, 17, 30, 56, 57
ggplot, 56
ggplot2, 17, 30, 56, 57
GGally, 56
gglasso, 43, 45
glassopath, 45
glla, 38, 63
gplot.layout, 30, 57
hclust, 70
hierEGA, 13, 15, 16, 57, 58, 62, 63, 65, 104

igraph, 12, 21, 23, 24, 31, 32, 37, 42, 47, 49, 51, 52, 54, 67, 69, 73, 80, 91, 99
igraph2matrix, 69
infoCluster, 4, 58, 70
intelligenceBattery, 71
invariance, 5, 57, 58, 71
itemStability, 4, 14, 26, 33, 34, 58, 72, 74, 76, 76

jsd, 4, 78

lavOptions, 16
LCT, 4, 79

modularity, 82
mvrnorm, 12

net.loads, 4, 74, 75, 83, 85, 86
net.scores, 65, 85
network.estimation, 13, 29, 38, 43, 48, 51, 54, 67, 74, 81, 87, 91, 100
network.generalizability, 89
network.predictability, 89, 92, 93

optimism, 95

plot.EGAnet, 9, 18, 31, 39, 43, 49, 52, 55, 68, 70, 75, 77, 101
plot.EGAnet(EGAnet-plot), 56
polychoric.matrix, 6, 11, 28, 37, 41, 44, 47, 50, 53, 66, 72, 80, 88, 90, 96, 99, 106
prime.num, 98

qgraph, 17, 30, 43, 45

RCColorBrewer, 17, 58
riEGA, 13, 58, 98
rotations, 65, 67, 84, 86

semPaths, 16
sim.dynEGA, 101
simDFM, 4, 102, 102
tefi, 4, 5, 13, 14, 21, 52–54, 68, 92, 104
TMFG, 12, 28, 37, 42, 47, 51, 54, 67, 73, 80, 88, 91, 99, 105
totalCor, 108, 109
totalCorMat, 109

UVA, 4, 110

vn.entropy, 4, 112

wi2net, 45
wmt2, 10, 56, 113
wto, 111, 114