Package ‘EGRETci’

October 12, 2022

Type Package

Title Exploration and Graphics for RivEr Trends Confidence Intervals

Version 2.0.4

License CC0

Depends R (>= 3.5.0)

Imports EGRET(>= 3.0.5), binom, stats, graphics, utils

Suggests knitr, testthat, doParallel, iterators, rmarkdown, pkgdown, covr

LazyLoad yes

LazyData yes

VignetteBuilder knitr

BuildVignettes true

URL https://github.com/USGS-R/EGRETci

BugReports https://github.com/USGS-R/EGRETci/issues

Copyright This software is in the public domain because it contains materials that originally came from the United States Geological Survey, an agency of the United States Department of Interior. For more information, see the official USGS copyright policy at http://www.usgs.gov/visual-id/credit_usgs.html#copyright

RoxygenNote 7.1.1
EGRETci-package

NeedsCompilation no

Author Laura DeCicco [aut, cre] (<https://orcid.org/0000-0002-3915-9487>),
Robert Hirsch [aut] (<https://orcid.org/0000-0002-4534-075X>),
Jennifer Murphy [ctb]

Maintainer Laura DeCicco <ldecicco@usgs.gov>

Repository CRAN

Date/Publication 2021-04-13 15:10:11 UTC

R topics documented:

EGRETci-package .. 2
blockSample ... 3
bootAnnual ... 4
Choptank_eBoot .. 5
ciBands ... 5
ciCalculations ... 6
genDailyBoot ... 7
makeAnnualPI .. 9
makeDailyPI ... 10
makeMonthPI ... 11
monthSeqToDec ... 12
plotConcHistBoot ... 12
plotFluxHistBoot ... 14
plotHistogramTrend ... 15
pVal ... 17
runGroupsBoot ... 18
runPairsBoot ... 19
saveEGRETci ... 21
setForBoot .. 22
trendSetUp .. 23
wBT ... 24

Index 26

EGRETci-package

"EGRETci package for bootstrap hypothesis tests and confidence interval analysis for WRTDS (Weighted Regressions on Time, Discharge, and Season) statistical models. This package is designed to be used in conjunction with the EGRET package, which estimates and describes WRTDS models."
Description

Package: EGRETci
Type: Package
License: Unlimited for this package, dependencies have more restrictive licensing.
Copyright: This software is in the public domain because it contains materials that originally came from the United States Government. For more information, see the official USGS copyright policy at http://www.usgs.gov/visual-id/credit_usgs.html#copyright
LazyLoad: yes

Collection of functions to evaluate uncertainty of results from water quality analysis using the Weighted Regressions on Time Discharge and Season (WRTDS) method. This package is an add-on to the EGRET package that performs the WRTDS analysis.

Author(s)

Robert M. Hirsch <rhirsch@usgs.gov>, Laura De Cicco <ldecicco@usgs.gov>

References

Usage

blockSample(localSample, blockLength, startSeed = NA)
Arguments

- `localSample` Sample data frame
- `blockLength` integer size of subset, expressed in days. 200 days has been found to be a good choice.
- `startSeed` setSeed value. This is used to make repeatable output. Default = NA.

Value

- `newSample` data frame in same format as Sample data frame. It has the same number of rows as the Sample data frame.

Examples

```r
library(EGRET)
eList <- Choptank_eList
Sample <- eList$Sample
bsReturn <- blockSample(Sample, 200)
```

bootAnnual
Single confidence interval bootstrap run

Description

One bootstrap run used in calculating confidence interval bands.

Usage

```r
bootAnnual(eList, blockLength = 200, startSeed = 494817, verbose = FALSE, jitterOn = FALSE, V = 0.2)
```

Arguments

- `eList` named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- `blockLength` integer default value is 200.
- `startSeed` setSeed value. Defaults to 494817. This is used to make repeatable output.
- `verbose` logical specifying whether or not to display progress message.
- `jitterOn` logical, if TRUE, adds "jitter" to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.
- `V` numeric a multiplier for addition of jitter to the data, default = 0.2.
Details

In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random "jitter" to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is V * standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.

Examples

library(EGRET)
eList <- Choptank_eList
Not run:
annualResults <- bootAnnual(eList)

End(Not run)

Choptank_eBoot Example eBoot

Description

Example data representing data from the Choptank River at Greensboro, MD, USGS data Data is a named list of the Daily, Sample, INFO dataframes, and xConc, and xFlux vectors.

ciBands Confidence Interval Band Calculations

Description

Computes confidence intervals for Flow-Normalized Concentration and Flow-Normalized Flux for a WRTDS model.

Usage

ciBands(eList, repAnnualResults, probs = c(0.05, 0.95))

Arguments

eList named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running modelEstimation.
repAnnualResults named list returned from bootstrapping process.
probs numeric vector low and high confidence interval frequencies, default = c(0.05, 0.95) (which results in a 90% confidence interval).
ciCalculations

Interactive function to calculate confidence bands for flow normalized concentration or flow normalized flux. It returns the data frame CIAnnualResults, which is used as input to the functions plotConcHistBoot(), and plotFluxHistBoot() which produce the graphical output.

Usage

```r
ciCalculations(eList, startSeed = 494817, verbose = TRUE, jitterOn = FALSE, V = 0.2, ...)
```

Arguments

- **eList**: named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- **startSeed**: setSeed value. Defaults to 494817. This is used to make repeatable output.
- **verbose**: logical specifying whether or not to display progress messages. Default = TRUE
- **jitterOn**: logical, if TRUE, adds "jitter" to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.
- **V**: numeric a multiplier for addition of jitter to the data, default = 0.2. See Details below.
- **...**: optionally include `nBoot`, `blockLength`, or `widthCI`
Details

In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random "jitter" to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is $V \times$ standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.

Argument values suggested. To test the code $\text{nBoot} = 10$ is sufficient, but for meaningful results $\text{nBoot} = 100$ or even $\text{nBoot} = 500$ are more appropriate. $\text{blockLength} = 200$ $\text{widthCI} = 90$ (90% confidence interval)

Value

CIAnnualResults a data frame with the following columns Year, mean decYear value for the year being reported FNConcLow, the lower confidence limit for flow normalized concentration, in mg/L FNConcHigh, the upper confidence limit for flow normalized concentration, in mg/L FNFluxLow, the lower confidence limit for flow normalized flux, in kg FNFluxLow, the lower confidence limit for flow normalized flux, in kg

Examples

```r
library(EGRET)
eList <- Choptank_eList
## Not run:
# If run interactively, using stationary flow normalization
# in this format it will prompt for nBoot, blockLength and widthCI.
# CIAnnualResults <- ciCalculations(eList)

# run in batch mode, using non-stationary flow normalization
# In this example nBoot is set very small, useful for an initial trial run.
# A meaningful application would use nBoot values such as 100 or even 500.
seriesOut_2 <- runSeries(eList, windowSide = 11)
CIAnnualResults <- ciCalculations(seriesOut_2,
   nBoot = 10,
   blockLength = 200,
   widthCI = 90)

plotConcHistBoot(seriesOut_2, CIAnnualResults)

## End(Not run)
```
Description

Function to get multiple bootstrap replicates at a daily time step using the WRTDS_K method. It is done by doing bootstrap resampling of the original Sample data frame. The number of these replicate samples that are created is called nBoot and in each case the WRTDS model is estimated. Then, for each of these models, there are nKalman time series of daily values computed, using all of the sample values in the original Sample data frame. The total number of replicates of the complete process is nBoot * nKalman. For example we might generate 500 replicates by setting nBoot = 20 and nKalman = 25.

Usage

genDailyBoot(eList, nBoot = 10, nKalman = 10, rho = 0.9, setSeed = NA, jitterOn = FALSE, V = 0.2)

Arguments

eList is the data with a fitted model already done. Note that the eList$Sample may have multiple values on a given day and it can also have censored values.
nBoot number of times the bootstrap resampling and model estimating is done.
nKalman number of different realizations of the daily time series for each re-estimated model.
rho numeric the lag one autocorrelation. Default is 0.9.
setSeed value. Defaults is NA, which will not specify a randomized seed. This can be used to make repeatable output.
jitterOn logical, if TRUE, adds "jitter" to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.
V numeric a multiplier for addition of jitter to the data, default = 0.2. See Details below.

Details

In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random "jitter" to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is V * standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.

Value
dailyBootOut a matrix of daily flux values (in kg/day). The number of columns of the matrix is the number of replicates produced which is nBoot * nKalman The number of rows is the number of days in the record. The set of days simulated is the same set of days that are in the eList$Daily data frame.
Examples

eList <- EGRET::Choptank_eList
Very long running function:
Not run:
dailyBootOut <- genDailyBoot(eList,
 nBoot = 20,
 nKalman = 25)

End(Not run)

makeAnnualPI

Make Annual Prediction Intervals

Description

This function takes the output from `genDailyBoot` and calculates the quantiles for an annual (based on `paStart/paLong`) aggregation. This means that the function can be used for seasons.

Usage

makeAnnualPI(dailyBootOut, eList, paLong = 12, paStart = 10, fluxUnit = 3)

Arguments

dailyBootOut: data frame returned from `genDailyBoot`
eList: named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.

paLong: numeric integer specifying the length of the period of analysis, in months, 1<=paLong<=12, default is 12

paStart: numeric integer specifying the starting month for the period of analysis, 1<=paStart<=12, default is 10

fluxUnit: number representing entry in pre-defined fluxUnit class array. `printFluxUnitCheatSheet`

Value

a list of 2 data frames, one for average concentration, in mg/L and one for flux (unit depends on fluxUnit argument) In each data frame the first column is DecYear. The remaining columns are quantiles of the flux or concentration (depending on the data frame).
Examples

eList <- EGRET::Choptank_eList
This example is only based on 4 iterations
Actual prediction intervals should be calculated on
a much larger number of iterations (several hundred).
dailyBoot <- Choptank_dailyBootOut
annualPcts <- makeAnnualPI(dailyBoot, eList)
head(annualPcts["flux"])
head(annualPcts["conc"])

dailyPcts <- makeDailyPI(dailyBoot, eList)
head(dailyPcts["flux"])
head(dailyPcts["conc"])

makeDailyPI

Make Daily Prediction Intervals

Description

This function takes the output from genDailyBoot and calculates the quantiles for a daily aggregation.

Usage

makeDailyPI(dailyBootOut, eList, fluxUnit = 3)

Arguments

dailyBootOut data frame returned from genDailyBoot
eList named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running modelEstimation.
fluxUnit number representing entry in pre-defined fluxUnit class array. printFluxUnitCheatSheet

Value

a list of 2 data frames, one for average concentration, in mg/L and one for flux (unit depends on fluxUnit argument) In each data frame the first column is Date. The remaining columns are quantiles of the flux or concentration (depending on the data frame).

Examples

eList <- EGRET::Choptank_eList
This example is only based on 4 iterations
Actual prediction intervals should be calculated on
a much larger number of iterations (several hundred).
dailyBoot <- Choptank_dailyBootOut
dailyPcts <- makeDailyPI(dailyBoot, eList)
head(dailyPcts["flux"])
head(dailyPcts["conc"]]
Description

Month statistics using WRTDSKalman bootstrapping approach. The input to this function is the `dailyBootOut` matrix which contains nReplicate sets of daily flux values for the period of interest. The results are in the form of quantiles of concentration and of flux for each of these months.

Usage

```r
makeMonthPI(dailyBootOut, eList, fluxUnit = 3)
```

Arguments

- `dailyBootOut`: data frame returned from `genDailyBoot`
- `eList`: named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- `fluxUnit`: number representing entry in pre-defined fluxUnit class array. `printFluxUnitCheatSheet`

Value

a list of 2 data frames, one for average concentration, in mg/L and one for flux (unit depends on fluxUnit argument) In each data frame the first column is monthSeq that corresponds to the months in the "MonthSeq" column in the eList$Daily data frame. The remaining columns are quantiles of the flux or concentration (depending on the data frame).

Examples

```r
eList <- EGRET::Choptank_eList
# This example is only based on 4 iterations
# Actual prediction intervals should be calculated on
# a much larger number of iterations (several hundred).
dailyBoot <- Choptank_dailyBootOut
monthPcts <- makeMonthPI(dailyBoot, eList)
head(monthPcts["flux"])
head(monthPcts["conc"])
```
monthSeqToDec

Description
Convert a sequence of month integers into their decimal years.

Usage

monthSeqToDec(monthSeq)

Arguments

monthSeq integer vector of months. Month 1 is considered Jan. 1850.

Examples

months <- 1558:1600
monthSeqToDec(months)

plotConcHistBoot

Graph of annual concentration, flow normalized concentration, and confidence bands for flow-normalized concentrations

Description
Uses the output of modelEstimation in the EGRET package (results in the named list eList), and the data frame CIAnnualResults (produced by the function ciCalculations in the EGRETci package using scripts described in the EGRETci vignette) to produce a graph of annual concentration, flow normalized concentration, and confidence bands for flow-normalized concentrations. In addition to the arguments listed below, it will accept any additional arguments that are listed for the EGRET function plotConchHist.

Usage

plotConcHistBoot(eList, CIAnnualResults, yearStart = NA, yearEnd = NA, plotFlowNorm = TRUE, col.pred = "green", concMax = NA, plotAnnual = TRUE, plotGenConc = FALSE, cex = 0.8, cex.axis = 1.1, lwd = 2, col = "black", col.gen = "red", customPar = FALSE, printTitle = TRUE, cex.main = 1.1, ...)
Arguments

eList named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.

CIAnnualResults data frame generated from ciBands (includes nBoot, probs, and blockLength attributes).

yearStart numeric is the calendar year containing the first estimated annual value to be plotted, default is NA (which allows it to be set automatically by the data).

yearEnd numeric is the calendar year just after the last estimated annual value to be plotted, default is NA (which allows it to be set automatically by the data).

plotFlowNorm logical variable if TRUE flow normalized concentration line is plotted, if FALSE not plotted, default is TRUE.

col.pred character color of line for flow-normalized concentration and for the confidence limits, default is "green".

concMax numeric specifying the maximum value to be used on the vertical axis, default is NA (which allows it to be set automatically by the data).

plotAnnual logical variable if TRUE, annual mean concentration points from WRTDS output are plotted, if FALSE not plotted.

plotGenConc logical variable. If TRUE, annual mean concentration points from WRTDS_K output are plotted, if FALSE not plotted.

cex numeric value giving the amount by which plotting symbols should be magnified, default = 0.8.

cex.axis numeric value of magnification to be used for axis annotation relative to the current setting of cex, default = 1.1.

lwd numeric magnification of line width, default = 2.

col color of annual mean points on plot, see ?par 'Color Specification', default = "black".

col.gen color of annual mean points for WRTDS_K output on plot, see ?par 'Color Specification', default = "red".

customPar logical defaults to FALSE. If TRUE, par() should be set by user before calling this function (for example, adjusting margins with par(mar=c(5,5,5,5))). If customPar FALSE, EGRETci chooses the best margins.

printTitle logical print title of the plot, default = TRUE.

cex.main numeric value of magnification to be used for plot title, default = 1.1.

Examples

```r
library(EGRET)
eList <- Choptank_eList
CIAnnualResults <- Choptank_CIAnnualResults
plotConcHistBoot(eList, CIAnnualResults)
plotConcHistBoot(eList, CIAnnualResults, yearStart=1990, yearEnd=2002)
```
plotFluxHistBoot

Graph of annual flux, flow normalized flux, and confidence bands for flow normalized flux

Description

Uses the output of modelEstimation in the EGRET package (results in the named list eList), and the data frame CIAnnualResults (produced by EGRETci package using scripts described in the vignette) to produce a graph of annual flux, flow normalized flux, and confidence bands for flow-normalized flux. In addition to the arguments listed below, it will accept any additional arguments that are listed for the EGRET function plotFluxHist.

Usage

plotFluxHistBoot(eList, CIAnnualResults, yearStart = NA, yearEnd = NA, fluxUnit = 9, fluxMax = NA, plotFlowNorm = TRUE, col.pred = "green", plotAnnual = TRUE, plotGenFlux = FALSE, cex = 0.8, cex.axis = 1.1, lwd = 2, col = "black", col.gen = "red", cex.main = 1.1, printTitle = TRUE, customPar = FALSE, ...)

Arguments

eList
 named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running modelEstimation.

CIAnnualResults
 data frame from ciBands (needs nBoot, probs, and blockLength attributes).

yearStart
 numeric is the calendar year containing the first estimated annual value to be plotted, default is NA (which allows it to be set automatically by the data).

yearEnd
 numeric is the calendar year just after the last estimated annual value to be plotted, default is NA (which allows it to be set automatically by the data).

fluxUnit
 integer representing entry in pre-defined fluxUnit class array. printFluxUnitCheatSheet

fluxMax
 numeric specifying the maximum value to be used on the vertical axis, default is NA (which allows it to be set automatically by the data), uses units specified by fluxUnit.

plotFlowNorm
 logical variable if TRUE flow normalized flux line is plotted, if FALSE not plotted, default is TRUE.

col.pred
 character color of line for flow-normalized flux and for the confidence limits, default is "green".
plotHistogramTrend

plotAnnual logical variable if TRUE, annual mean flux points from WRTDS output are plotted, if FALSE not plotted.

plotGenFlux logical variable. If TRUE, annual mean flux points from WRTDS_K output are plotted, if FALSE not plotted.

cex numeric value giving the amount by which plotting symbols should be magnified, default = 0.8.

cex.axis numeric magnification to be used for axis annotation relative to the current setting of cex, default = 1.1.

lwd numeric magnification of line width, default = 2.

col color of annual mean points on plot, see ?par 'Color Specification', default = "black".

col.gen color of annual mean points for WRTDS_K output on plot, see ?par 'Color Specification', default = "red".

cex.main numeric title scale

printTitle logical print title of the plot, default = TRUE.

customPar logical defaults to FALSE. If TRUE, par() should be set by user before calling this function (for example, adjusting margins with par(mar=c(5,5,5,5))). If customPar FALSE, EGRET chooses the best margins.

... graphical parameters

Examples

library(EGRET)
eList <- Choptank_eList
CIAnnualResults <- Choptank_CIAnnualResults
plotFluxHistBoot(eList, CIAnnualResults, fluxUnit=5)

Not run:
CIAnnualResults <- ciCalculations(eList, nBoot = 100, blockLength = 200)
plotFluxHistBoot(eList, CIAnnualResults, fluxUnit=5)

End(Not run)

Description

Produces a histogram of trend results from bootstrap process. The histogram shows the trend results expressed as percentage change between the first year (or first period) and the second year (or second period). It shows the zero line (no trend) and also shows the WRTDS estimate of the trend in percent. It is based on the output of either wBT or runPairsBoot.
plotHistogramTrend

Usage

plotHistogramTrend(eList, eBoot, caseSetUp, flux = TRUE, xMin = NA,
 xMax = NA, xStep = NA, printTitle = TRUE, cex.main = 1.1,
 cex.axis = 1.1, cex.lab = 1.1, col.fill = "grey", ...)

Arguments

eList named list with at least the Daily, Sample, and INFO dataframes. Created from
the EGRET package, after running modelEstimation.
eBoot named list. Returned from wBT or from runPairsBoot.
caseSetUp data frame. Returned from trendSetUp, or if runPairsBoot was used, need to
specify caseSetUp = NA.
flux logical if TRUE, plots flux results, if FALSE plots concentration results.
xMin minimum bin value for histogram, it is good to have the xMin and xMax argu-
ments straddle zero, default is NA (value set from the data).
xMax maximum bin value for histogram, default is NA (value set from the data).
xStep step size, typically multiples of 10 or 20, default is NA (value set from the data).
printTitle logical if TRUE, plot includes title.
cex.main numeric magnification of font size for title, default is 1.1.
cex.axis numeric magnification of font size for axis, default is 1.1.
cex.lab numeric magnification of font size for axis labels, default is 1.1.
col.fill character fill color for histogram, default is "grey".
... base R graphical parameters that can be passed to the hist function

Details

For any given set of results (from eBoot) it is best to run it first with the arguments xMin = NA,
xMax = NA, and xStep = NA. Then, observing the range the histogram covers it can be run again
with values of these three arguments selected by the user to provide for a more readable version of
the histogram.

Examples

library(EGRET)
eList <- Choptank_eList
eBoot <- Choptank_eBoot
caseSetUp <- Choptank_caseSetUp
plotHistogramTrend(eList, eBoot, caseSetUp, flux = FALSE)

Not run:
Using wBT:
caseSetUp <- trendSetUp(eList)
eBoot <- wBT(eList,caseSetUp)
plotHistogramTrend(eList, eBoot, caseSetUp, flux = FALSE, xMin = -20, xMax = 60, xStep = 5)
plotHistogramTrend(eList, eBoot, caseSetUp,

...
`pVal` function provides the two-sided p value for the null hypothesis, where the null hypothesis is that the slope is zero. It is based on the binomial distribution. Note that the result does not depend on the magnitude of the individual slope values only depends on the number of positive slopes and number of negative slopes.

Description

Computes the two-sided p value for the null hypothesis, where the null hypothesis is that the slope is zero. It is based on the binomial distribution. Note that the result does not depend on the magnitude of the individual slope values only depends on the number of positive slopes and number of negative slopes.

Usage

```r
pVal(s)
```

Arguments

- `s` numeric vector of slope values from the bootstrap

Value

pVal numeric value

Examples

```r
s <- c(-1.0, 0, 0.5, 0.55, 3.0)
pValue <- pVal(s)
```
The bootstrap uncertainty analysis for runGroups results

Description
This function that does the uncertainty analysis for determining the change between two groups of years. The process is virtually identical to what is used for runPairsBoot which looks at a change between a pair of years.

Usage
runGroupsBoot(eList, groupResults, nBoot = 100, startSeed = 494817, blockLength = 200, jitterOn = FALSE, V = 0.2)

Arguments
eList named list with at least the Daily, Sample, and INFO dataframes
groupResults data frame returned from runGroups
nBoot the maximum number of bootstrap replicates to be used, typically 100
startSeed setSeed value. Defaults to 494817. This is used to make repeatable output.
blockLength days, typically 200 is a good choice
jitterOn logical, if TRUE, adds "jitter" to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.
V numeric a multiplier for addition of jitter to the data, default = 0.2.

Details
In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random "jitter" to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is $V \times$ standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.

Value
eBoot, a named list with bootOut, wordsOut, xConc, xFlux, pConc, pFlux values.
- bootOut is a data frame with the results of the bootstrap test.
- wordsOut is a character vector describing the results.
- xConc and xFlux are vectors of length iBoot, of the change in flow normalized concentration and flow normalized flux computed from each of the bootstrap replicates.
- pConc and pFlux are vectors of length iBoot, of the change in flow normalized concentration or flow normalized flux computed from each of the bootstrap replicates expressed as % change.
runPairsBoot

The bootstrap uncertainty analysis for runPairs results

Description

The function that does the uncertainty analysis for determining the change between any pair of years. It is very similar to the `wBT` function that runs the WRTDS bootstrap test. It differs from `wBT` in that it runs a specific number of bootstrap replicates, unlike the `wBT` approach that will stop running replicates based on the status of the test statistics along the way. Also, this code can be used with generalized flow normalization, which handles non-stationary discharge, whereas `wBT` does not.

Usage

```r
runPairsBoot(eList, pairResults, nBoot = 100, startSeed = 494817, 
blockLength = 200, jitterOn = FALSE, V = 0.2)
```

Arguments

- `eList` named list with at least the Daily, Sample, and INFO dataframes
- `pairResults` data frame returned from `runPairs`
- `nBoot` the maximum number of bootstrap replicates to be used, typically 100
- `startSeed` setSeed value. Defaults to 494817. This is used to make repeatable output.

See Also

`runPairsBoot`, `runGroups`

Examples

```r
library(EGRET)
eList <- Choptank_eList

## Not run:
groupResults <- runGroups(eList, 
group1firstYear = 1995, 
group1lastYear = 2004, 
group2firstYear = 2005, 
group2lastYear = 2014, 
windowSide = 7, wall = TRUE, 
sample1EndDate = "2004-10-30", 
paStart = 4, paLong = 2, 
verbose = FALSE)

boot_group_out <- runGroupsBoot(eList, groupResults)
plotHistogramTrend(eList, boot_group_out, caseSetUp=NA)

## End(Not run)
```

runPairsBoot

blockLength

days, typically 200 is a good choice

jitterOn

logical, if TRUE, adds “jitter” to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.

V

numeric a multiplier for addition of jitter to the data, default = 0.2.

Details

In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random “jitter” to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is V * standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.

Value

eBoot, a named list with bootOut, wordsOut, xConc, xFlux, pConc, pFlux values.

- bootOut is a data frame with the results of the bootstrap test.
- wordsOut is a character vector describing the results.
- xConc and xFlux are vectors of length iBoot, of the change in flow normalized concentration and flow normalized flux computed from each of the bootstrap replicates.
- pConc and pFlux are vectors of length iBoot, of the change in flow normalized concentration or flow normalized flux computed from each of the bootstrap replicates expressed as % change.

See Also

runGroupsBoot, runPairs

Examples

```r
library(EGRET)
eList <- Choptank_eList
year1 <- 1985
year2 <- 2009

## Not run:
pairOut_2 <- runPairs(eList, year1, year2, windowSide = 7)

boot_pair_out <- runPairsBoot(eList, pairOut_2)

plotHistogramTrend(eList, boot_pair_out, caseSetUp = NA)

## End(Not run)
```
saveEGRETci

Save EGRETci workspace after running wBT (the WRTDS bootstrap test)

Description

Saves critical information in a EGRETci workflow when analyzing trends between a starting and ending year.

Usage

```r
saveEGRETci(eList, eBoot, caseSetUp, fileName = "")
```

Arguments

- `eList`: named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- `eBoot`: named list. Returned from `wBT`.
- `fileName`: character. If left blank (empty quotes), the function will interactively ask for a name to save.

Value

A .RData file containing three objects: eList, eBoot, and caseSetUp

See Also

`wBT`, `trendSetUp`, `modelEstimation`

Examples

```r
eList <- EGRET::Choptank_eList
## Not run:
caseSetUp <- trendSetUp(eList)
eBoot <- wBT(eList, caseSetUp)
saveEGRETci(eList, eBoot, caseSetUp)
## End(Not run)
```
setForBoot

Allows user to set window parameters for the WRTDS model prior to running the bootstrap procedure

Description

Adds window parameters to INFO file in eList.

Usage

setForBoot(eList, caseSetUp, windowY = 7, windowQ = 2, windowS = 0.5, edgeAdjust = TRUE)

Arguments

eList named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
caseSetUp data frame returned from `trendSetUp`.
windowY numeric specifying the half-window width in the time dimension, in units of years, default is 7.
windowQ numeric specifying the half-window width in the discharge dimension, units are natural log units, default is 2.
windowS numeric specifying the half-window with in the seasonal dimension, in units of years, default is 0.5.
edgeAdjust logical specifying whether to use the modified method for calculating the windows at the edge of the record, default is TRUE.

Value

eList list with Daily, Sample, INFO data frames and surface matrix.

Examples

eList <- EGRET::Choptank_eList
caseSetUp <- trendSetUp(eList,
 year1=1985,
 year2=2005,
 nBoot = 50,
 bootBreak = 39,
 blockLength = 200)

bootSetUp <- setForBoot(eList, caseSetUp)
trendSetUp

Interactive setup for running wBT, the WRTDS Bootstrap Test

Description

Walks user through the set-up for the WRTDS Bootstrap Test. Establishes start and end year for the test period. Sets the minimum number of bootstrap replicates to be run, the maximum number of bootstrap replicates to be run, and the block length (in days) for the block bootstrapping. The test is designed to evaluate the uncertainty about the trend between any pair of years.

Usage

```r
trendSetUp(eList, ...)```

**Arguments**

- `eList` named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- `...` additional arguments to bring in to reduce interactive options (year1, year2, nBoot, bootBreak, blockLength)

**Value**

caseSetUp data frame with columns year1, yearData1, year2, yearData2, numSamples, nBoot, bootBreak, blockLength, confStop. These correspond to:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Manuscript Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>year1</td>
<td>$y_s$</td>
</tr>
<tr>
<td>year2</td>
<td>$y_e$</td>
</tr>
<tr>
<td>nBoot</td>
<td>$M_{max}$</td>
</tr>
<tr>
<td>bootBreak</td>
<td>$M_{min}$</td>
</tr>
<tr>
<td>blockLength</td>
<td>$B$</td>
</tr>
</tbody>
</table>

**See Also**

`setForBoot`, `wBT`

**Examples**

```r
eList <- EGRET::Choptank_eList

eList <- EGRET::Choptank_eList

Completely interactive:
caseSetUp <- trendSetUp(eList)

Semi-interactive:
caseSetUp <- trendSetUp(eList, nBoot = 100, blockLength = 200)

fully scripted:
```
```r
caseSetUp <- trendSetUp(eList,
 year1=1985,
 year2=2005,
 nBoot = 50,
 bootBreak = 39,
 blockLength = 200)
```

## Run the WBT (WRTDS Bootstrap Test)

### Description

Runs the WBT for a given data set to evaluate the significance level and confidence intervals for the trends between two specified years. The trends evaluated are trends in flow normalized concentration and flow normalized flux. Function produces text outputs and a named list (eBoot) that contains all of the relevant outputs. Check out `runPairsBoot` and `runGroupsBoot` for more bootstrapping options. The WBT only runs stationary flow normalization (i.e. making the assumption that discharge is stationary). The `runPairsBoot` and `runGroupsBoot` allow for generalized flow normalization (i.e. non-stationary discharge).

### Usage

```r
wBT(eList, caseSetUp, saveOutput = TRUE, fileName = "temp.txt",
 startSeed = 494817, jitterOn = FALSE, V = 0.2)
```

### Arguments

- **eList**: named list with at least the Daily, Sample, and INFO dataframes. Created from the EGRET package, after running `modelEstimation`.
- **caseSetUp**: data frame. Returned from `trendSetUp`.
- **saveOutput**: logical. If TRUE, a text file will be saved in the working directory.
- **fileName**: character. Name to save the output file if `saveOutput=TRUE`.
- **startSeed**: setSeed value. Defaults to 494817. This is used to make repeatable output.
- **jitterOn**: logical, if TRUE, adds "jitter" to the data in an attempt to avoid some numerical problems. Default = FALSE. See Details below.
- **V**: numeric a multiplier for addition of jitter to the data, default = 0.2. See Details below.

### Details

In some situations numerical problems are encountered in the bootstrap process, resulting in highly unreasonable spikes in the confidence intervals. The use of "jitter" can often prevent these problems, but should only be used when it is clearly needed. It adds a small amount of random "jitter" to the explanatory variables of the WRTDS model. The V parameter sets the scale of variation in the log discharge values. The standard deviation of the added jitter is V * standard deviation of Log Q. The default for V is 0.2. Larger values should generally be avoided, and smaller values may be sufficient.
Value

eBoot, a named list with bootOut, wordsOut, xConc, xFlux, pConc, pFlux values.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootOut</td>
<td>a data frame with the results of the bootstrap test.</td>
</tr>
<tr>
<td>wordsOut</td>
<td>a character vector describing the results.</td>
</tr>
<tr>
<td>xConc and xFlux</td>
<td>vectors of length iBoot, of the change in flow normalized concentration and flow normalized flux computed from each of the bootstrap replicates.</td>
</tr>
<tr>
<td>pConc and pFlux</td>
<td>vectors of length iBoot, of the change in flow normalized concentration or flow normalized flux computed from each of the bootstrap replicates.</td>
</tr>
</tbody>
</table>

See Also
trendSetUp, setForBoot, runGroupsBoot, runPairsBoot

Examples

eList <- EGRET::Choptank_eList
caseSetUp <- trendSetUp(eList,  
  year1 = 1985,  
  year2 = 2005,  
  nBoot = 50,  
  bootBreak = 39,  
  blockLength = 200)

  # Very long-running function:
  ## Not run:
eBoot <- wBT(eList, caseSetUp)

  ## End(Not run)
Index

* WRTDS
  blockSample, 3
  setForBoot, 22
  trendSetUp, 23
* data
  Choptank_eBoot, 5
* flow
  setForBoot, 22
* graphics
  EGRETci-package, 2
* quality
  blockSample, 3
  Choptank_eBoot, 5
* statistics
  EGRETci-package, 2
* streamflow
  EGRETci-package, 2
* water-quality
  EGRETci-package, 2
  trendSetUp, 23
* water
  blockSample, 3
  Choptank_eBoot, 5

blockSample, 3
bootAnnual, 4

Choptank_caseSetUp (Choptank_eBoot), 5
Choptank_CIAnnualResults (Choptank_eBoot), 5
Choptank_dailyBootOut (Choptank_eBoot), 5
Choptank_eBoot, 5
Choptank_repAnnual (Choptank_eBoot), 5
ci Bands, 5
ciCalculations, 6

EGRETci-package, 2
genDailyBoot, 7, 9–11

makeAnnualPI, 9
makeDailyPI, 10
makeMonthPI, 11
modelEstimation, 4–6, 9–14, 16, 21–24
monthSeqToDec, 12
plotConcHist, 12
plotConcHistBoot, 12
plotFluxHist, 14
plotFluxHistBoot, 14
plotHistogramTrend, 15
printFluxUnitCheatSheet, 9–11, 14
pVal, 17
runGroups, 18, 19
runGroupsBoot, 18, 20, 24, 25
runPairs, 19, 20
runPairsBoot, 16, 18, 19, 19, 24, 25

saveEGRETci, 21
setForBoot, 22, 23, 25

trendSetUp, 16, 21, 22, 23, 24, 25

wBT, 16, 19, 21, 23, 24