ELT-package

Description

Collection of functions that can be used following a pre-established procedure to build and validate actuarial life tables.

Details

Package: ELT
Type: Package
Version: 1.6
Date: 2016-04-10
License: GNU
Depends: locfit,lattice,latticeExtra,xlsx

The package is meant to be used following a pre-established procedure.

See the reference for more info.

Please notice that the package includes the following internal functions:

These functions can be accessed with the prefix ELT::: using the following syntax: ELT:::[name of the function]. For example: ELT:::.GetHistory(). See technical note II1291-15 (http://www.ressources-actuarielles.net/gtmortalite) for the arguments and examples of the functions.
References

Tomas, J., Planchet, F., Prospective mortality tables and portfolio experience, Chapter 9 in Computational Actuarial Science, with R; Arthur Charpentier Editor, Chapman, 2014

Tomas, J., Planchet, F., Methodes de positionnement : Aspects Methodologiques, Institut des Actuaires, Rapport technique II1291-12, pp. 1-12, 2013

http://www.ressources-actuarielles.net/gtmortalite for data and exemple codes.

Examples

```r
## Not run:
data(MyPortfolio)
data(ReferenceMale)
data(ReferenceFemale)
## ------------------------------------------------------------------------ ##
## Initialize Age variables ##
## ------------------------------------------------------------------------ ##
AgeRange <- 30:90
AgeCrit <- 30:90
AgeRef <- 30:95

History <- ReadHistory(MyPortfolio = MyPortfolio, DateBegObs = "1996/01/01", DateEndObs = "2007/12/31", DateFormat = "

MyData <- AddReference(History = History, ReferenceMale = ReferenceMale, ReferenceFemale = ReferenceFemale)
## ######################################################################## ##
## METHOD 1 ############################################################### ##
## ######################################################################## ##
## ------------------------------------------------------------------------ ##
## Execute method 1 ##
## ------------------------------------------------------------------------ ##
OutputMethod1 <- Method1(MyData = MyData, AgeRange = AgeRange, Plot = T)
## ------------------------------------------------------------------------ ##
## Validate method 1 by the 1st level criteria ##
## ------------------------------------------------------------------------ ##
```

Execute 1st level criteria.

ValidationLevel1Method1 <- ValidationLevel1(OutputMethod = OutputMethod1, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

If the criterions corresponding to the 1st level are not satisfied, we can modify the age range used to compute the SMR and reexecute. If the criterions corresponding to the 1st level are still not satisfied, we turn to the method 2, and it is useless to pursue the completion of the table and the validation. If the criterions are satisfied, we continue the validation with the criterions corresponding to the 2nd level. We can also turn to method 3 or 4 to improve the fit at a cost of a somewhat greater complexity.

Validate method 1 by the 2nd level criteria

Execute 2nd level criterions

ValidationLevel2Method1 <- ValidationLevel2(OutputMethod = OutputMethod1, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

If the criterions corresponding to the 2nd level are not satisfied we turn to the method 2 and it is useless to pursue the completion of the table and the validation. If the criterions are satisfied, we continue the validation with the completion of the table and the criterions corresponding to the 3rd level.

Completion Method 1

Age range for the selection of the optimal starting age.

AgeRangeOptMale <- AgeRangeOptFemale <- c(80, 80)

In theory, we could select the optimal starting age, however the optimal starting age can vary a lot with the calendar years leading to a relatively irregular surface. In practice, we select then a fixed age for the whole years.

Starting age for which the fitted probabilities of the death are replaced by the values obtained from the completion model.

BegAgeCompMale <- BegAgeCompFemale <- 85
---------- We check if the completion is smoothed with graphical
---------- diagnostics.
CompletionMethod1 <- CompletionA(OutputMethod = OutputMethod1, MyData = MyData,
AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale,
BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

---------- If the completion is not satisfying, we modify the values
---------- AgeRangeOpt and BegAgeComp, and we repeat the previous script
---------- CompletionA()
---------- If the completion is satisfying, we execute
FinalMethod1 <- CompletionB(ModCompletion = CompletionMethod1, OutputMethod = OutputMethod1,
MyData = MyData, Plot = T, Excel = T)

-------- Validate method 1 by the 3rd level criteria

ValidationLevel3Method1 <- ValidationLevel3(FinalMethod = FinalMethod1, MyData = MyData,
Plot = T, Excel = T)

##
METHOD 2
##
Execute method 2
OutputMethod2 <- Method2(MyData = MyData, AgeRange = AgeRange, Plot = T)

Validate method 2 by the 1st level criteria.
##
Execute 1st level criterias.
ValidationLevel1Method2 <- ValidationLevel1(OutputMethod = OutputMethod2, MyData = MyData,
AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)
---------- If the criterions corresponding to the 1st level are not satisfied, we turn to the method 3, and it is useless to pursue the completion of the table and the validation.
---------- If the criterions are satisfied, we continue the validation with the criterions corresponding to the 2nd level.
---------- We can also turn to method 4 to improve the fit at a cost of a somewhat greater complexity.

Validate method 2 by the 2nd level criteria

ValidationLevel2Method2 <- ValidationLevel2(OutputMethod = OutputMethod2, AgeCrit = AgeCrit, ValCrit = 0.05, MyData = MyData, Excel = T)

---------- Execute 2nd level criterions

CompletionMethod2 <- CompletionA(OutputMethod = OutputMethod2, MyData = MyData, AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale, BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

---------- If the completion is not satisfying, we modify the values AgeRangeOpt and BegAgeComp, and we repeat the previous script CompletionA()
---------- If the completion is satisfying, we execute

FinalMethod2 <- CompletionB(ModCompletion = CompletionMethod2, OutputMethod = OutputMethod2, MyData = MyData, Plot = T, Excel = T)

Validate method 2 by the 3rd level criteria

ValidationLevel3Method2 <- ValidationLevel3(FinalMethod = FinalMethod2, MyData = MyData, Plot = T, Excel = T)

Execute 3rd level criterions
Coef Varition, Conf int. and rel. disp. of fitted per. life exp.

Compute the coefficient of variation, confidence intervals and relative dispersion of the fitted periodic life expectancies

DispersIonMethod2 <- Dispersion(FinalMethod = FinalMethod2, MyData = MyData, Plot = T, NbSim = 10)

METHOD 3

Execute method 3

OutputMethod3 <- Method3(MyData = MyData, AgeRange = AgeRange, Plot = T)

Validate method 3 by the 1st level criteria

ValidationLevel1Method3 <- ValidationLevel1(OutputMethod = OutputMethod3, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

Validate method 3 by the 2nd level criteria

ValidationLevel2Method3 <- ValidationLevel2(OutputMethod = OutputMethod3, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

Completion Method 3

We check if the completion is smoothed with graphical
diagnostics.

CompletionMethod3 <- CompletionA(OutputMethod = OutputMethod3, MyData = MyData,
AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale,
BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

If the completion is not satisfying, we modify the values
AgeRangeOpt and BegAgeComp, and we repeat the previous script
CompletionA()

If the completion is satisfying, we execute

FinalMethod3 <- CompletionB(ModCompletion = CompletionMethod3, OutputMethod = OutputMethod3,
MyData = MyData, Plot = T, Excel = T)

Validate method 3 by the 3rd level criteria

ValidationLevel3Method3 <- ValidationLevel3(FinalMethod = FinalMethod3, MyData = MyData,
Plot = T, Excel = T)

Compute the coefficient of variation, confidence intervals and
relative dispersion of the fitted periodic life expectancies

DispersionMethod3 <- Dispersion(FinalMethod = FinalMethod3, MyData = MyData, Plot = T, NbSim = 10)

Execute method 4

OutputMethod4PartOne <- Method4A(MyData = MyData, AgeRange = AgeRange, AgeCrit = AgeCrit,
ShowPlot = T)

Select the optimal smoothing parameters.

Execute method 4 second part.

OutputMethod4 <- Method4B(PartOne, MyData = MyData, OptMale = c(1, 16),
OptFemale = c(1, 14), Plot = T)
ELT-package

Validate method 4 by the 1st level criteria

Execute 1st level criteria.

ValidationLevel1Method4 <- ValidationLevel1(OutputMethod = OutputMethod4, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Plot = T, Excel = T)

If the criterions corresponding to the 1st level are not satisfied, we turn to the method 4, and it is useless to pursue the completion of the table and the validation.
If the criterions are satisfied, we continue the validation with the criterions corresponding to the 2nd level.

Validate method 4 by the 2nd level criteria

Execute 2nd level criterions

ValidationLevel2Method4 <- ValidationLevel2(OutputMethod = OutputMethod4, MyData = MyData, AgeCrit = AgeCrit, ValCrit = 0.05, Excel = T)

If the criterions corresponding to the 2nd level are not satisfied we turn to the method 4 and it is useless to pursue the completion of the table and the validation.
If the criterions are satisfied, we continue the validation with the completion of the table and the criterions corresponding to the 3rd level.

Completion Method 4

We check if the completion is smoothed with graphical diagnostics.

CompletionMethod4 <- CompletionA(OutputMethod = OutputMethod4, MyData = MyData, AgeRangeOptMale = AgeRangeOptMale, AgeRangeOptFemale = AgeRangeOptFemale, BegAgeCompMale = BegAgeCompMale, BegAgeCompFemale = BegAgeCompFemale, ShowPlot = T)

If the completion is not satisfying, we modify the values AgeRangeOpt and BegAgeComp, and we repeat the previous script CompletionA()
If the completion is satisfying, we execute

FinalMethod4 <- CompletionB(ModCompletion = CompletionMethod4, OutputMethod = OutputMethod4, MyData = MyData, Plot = T, Excel = T)

Validate method 4 by the 3rd level criteria

Execute 3rd level criterions

ValidationLevel3Method4 <- ValidationLevel3(FinalMethod = FinalMethod4, MyData = MyData, Plot = T, Excel = T)

Coef Varition, Conf int. and rel. disp. of fitted per. life exp.

Set the number of simulations

DispersionMethod4 <- Dispersion(FinalMethod = FinalMethod4, MyData = MyData, Plot = T, NbSim = 10)

COMPARISON OF THE METHODS

Once we have fitted the data with a number of methods, we can compare them. In the following, we compare the fitted probabilities of death in original and log scale, the residuals, the fitted deaths as well as the coherence of the extrapolated mortality trends

You can change the color vector for comparison, color need to be in html format

Store the output into a list

ListOutputs <- list(OutputMethod1, OutputMethod2, OutputMethod3, OutputMethod4)
ListValidationLevel1 <- list(ValidationLevel1Method1, ValidationLevel1Method2, ValidationLevel1Method3, ValidationLevel1Method4)
ListValidationLevel2 <- list(ValidationLevel2Method1, ValidationLevel2Method2, ValidationLevel2Method3, ValidationLevel2Method4)
ListValidationLevel3 <- list(ValidationLevel3Method1, ValidationLevel3Method2, ValidationLevel3Method3, ValidationLevel3Method4)
ComparisonsMethodsLevels123 <- ComparisonMethods(ListOutputs, ListValidationLevel1, ListValidationLevel2, ListValidationLevel3, MyData = MyData, Plot = T, AgeCrit = AgeCrit)

End(Not run)

AddReference function.

Description

This function imports reference tables.
ComparisonMethods

Usage

AddReference(History, ReferenceMale = NULL, ReferenceFemale = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>History as returned by the ReadHistory function.</td>
</tr>
<tr>
<td>ReferenceMale</td>
<td>data.frame representing the reference table. See data(ReferenceMale) for the format.</td>
</tr>
<tr>
<td>ReferenceFemale</td>
<td>data.frame representing the reference table. See data(ReferenceFemale) for the format.</td>
</tr>
</tbody>
</table>

Description

This function compares two or several methods using the three groups of criteria from the validation process.

Usage

ComparisonMethods(ListOutputs, ListValidationLevel1, ListValidationLevel2, ListValidationLevel3, MyData = MyData, Plot = F, ColorComp = c("#FF6590", "#309BFF", "#AD79FC", "#3CAB5F"), LtyComp = rep(1, 4), AgeCrit)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListOutputs</td>
<td>For the comparisons of n methods, a list of n elements containing the returned value of the functions Methodn().</td>
</tr>
<tr>
<td>ListValidationLevel1</td>
<td>For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel1() for each of the n methods.</td>
</tr>
<tr>
<td>ListValidationLevel2</td>
<td>For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel2() for each of the n methods.</td>
</tr>
<tr>
<td>ListValidationLevel3</td>
<td>For the comparisons of n methods, a list of n elements containing the returned value of the function ValidationLevel3() for each of the n methods.</td>
</tr>
<tr>
<td>MyData</td>
<td>The list returned by the AddReference() function.</td>
</tr>
<tr>
<td>Plot</td>
<td>If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain png plots corresponding to the smoothed surface.</td>
</tr>
<tr>
<td>ColorComp</td>
<td>The color that will be used for the plots (HTML notation). For the comparisons of n methods, ColorComp is a vector of length n.</td>
</tr>
<tr>
<td>LtyComp</td>
<td>Vector of parameters (length n) for the lty plot parameter.</td>
</tr>
<tr>
<td>AgeCrit</td>
<td>Age range for the comparison of adjusted mortality and observed mortality.</td>
</tr>
</tbody>
</table>
CompletionA = CompletionA function

Description
This function executes the first part of table closure using Denuit and Goderniaux (2005)

Usage
CompletionA(OutputMethod, MyData, AgeRangeOptMale, AgeRangeOptFemale, BegAgeCompMale, BegAgeCompFemale, Color = MyData$Param$Color, ShowPlot = T)

Arguments
- **OutputMethod**: The list returned by one of these functions: Method1(), Method2(), Method3() or Method4B().
- **MyData**: The list returned by the AddReference() function.
- **AgeRangeOptMale**: Age range from which the optimal starting age is selected for males.
- **AgeRangeOptFemale**: Age range from which the optimal starting age is selected for females.
- **BegAgeCompMale**: For ages after BegAgeCompMale, observed death probability is replaced by the model output.
- **BegAgeCompFemale**: For ages after BegAgeCompFemale, observed death probability is replaced by the model output.
- **Color**: The color that will be used for the plots (HTML notation).
- **ShowPlot**: If true, create graphics comparing Before/After the completion.

CompletionB = CompletionB function

Description
This function executes the second part of table closure.

Usage
CompletionB(ModCompletion, OutputMethod, MyData, Color = MyData$Param$Color, Plot = F, Excel = F)
Dispersion

Arguments

ModCompletion Output of the function CompletionA().
OutputMethod The list returned by one of these functions: Method1(), Method2(), Method3() or Method4B().
MyData The list returned by the AddReference() function.
Color The color that will be used for the plots (HTML notation).
Plot If true, create graphics.
Excel If true, create Excel files.

Dispersion (Dispersion function)

Description

This function allows to calculate confidence intervals for period life expectancies.

Usage

Dispersion(FinalMethod, MyData, NbSim, CompletionTable = T, Plot = F, Color = MyData$Param$Color)

Arguments

FinalMethod The list returned by the CompletionB() function.
MyData The list returned by the AddReference() function.
NbSim The number of simulations for the Dispersion.
CompletionTable If TRUE, apply completion
Plot If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots describing the validation analysis.
Color The color that will be used for the plots (HTML notation).
FctMethod1

FctMethod1 function

Description

FctMethod1() is an alternative to Method1(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod1(d, e, qref, x1, x2, t1, t2)

Arguments

- **d**
 Number of deaths.
- **e**
 Exposure to risk.
- **qref**
 Mortality rates in Reference Table.
- **x1**
 Age range used for calculation.
- **x2**
 Age range of reference table.
- **t1**
 Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.
- **t2**
 Calendar years of the reference.

FctMethod2

FctMethod2 function

Description

FctMethod2() is an alternative to Method2(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod2(d, e, qref, x1, x2, t1, t2)

Arguments

- **d**
 Number of deaths.
- **e**
 Exposure to risk.
- **qref**
 Mortality rates in Reference Table.
- **x1**
 Age range used for calculation.
- **x2**
 Age range of reference table.
- **t1**
 Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.
- **t2**
 Calendar years of the reference.
FctMethod3 function

Description

FctMethod3() is an alternative to Method3(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod3(d, e, qref, x1, x2, t1, t2)

Arguments

d Number of deaths.
e Exposure to risk.
qref Mortality rates in Reference Table.
x1 Age range used for calculation.
x2 Age range of reference table.
t1 Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.
t2 Calendar years of the reference.

FctMethod4_1stPart function

Description

FctMethod4_1stPart() is an alternative to Method4A(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod4_1stPart(d, e, qref, x1, x2, t1)

Arguments

d Number of deaths.
e Exposure to risk.
qref Mortality rates in Reference Table.
x1 Age range used for calculation.
x2 Age range of reference table.
t1 Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.
FctMethod4_2ndPart

Description

FctMethod4_2ndPart() is an alternative to Method4B(). It allows to process the smoothing without using a "Data" object and by defining all the needed parameters independently.

Usage

FctMethod4_2ndPart(d, e, qref, x1, x2, t1, t2, P.Opt, h.Opt)

Arguments

d
Number of deaths.

e
Exposure to risk.

qref
Mortality rates in Reference Table.

x1
Age range used for calculation.

x2
Age range of reference table.

t1
Calendar years used for the calculation. It corresponds to the common years among observations and the reference table.

t2
Calendar years of the reference table.

P.Opt
Degree of approximation.

h.Opt
Window width.

Method1

Method1 function

Description

This function fits the Qxt using method 1 (SMR method, see reference).

Usage

Method1(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)

Arguments

MyData
The list returned by the AddReference() function.

AgeRange
Age range used for the calculation of the SMR.

Plot
If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.

Color
The color that will be used for the plots (HTML notation).
Method2

Method2 function

Description

This function fits the Qxt using method 2 (two parameters relational method, see reference).

Usage

```r
Method2(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)
```

Arguments

- **MyData**
 The list returned by the AddReference() function.
- **AgeRange**
 Age range used for the calculation of the parameters.
- **Plot**
 If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain png plots corresponding to the smoothed surface.
- **Color**
 The color that will be used for the plots (HTML notation).

Method3

Method3 function

Description

This function fits the Qxt using method 3 (Poisson GLM, see reference).

Usage

```r
Method3(MyData, AgeRange, Plot = F, Color = MyData$Param$Color)
```

Arguments

- **MyData**
 The list returned by the AddReference() function.
- **AgeRange**
 Age range used for the calculation of the parameters of the Poisson model.
- **Plot**
 If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain png plots corresponding to the smoothed surface.
- **Color**
 The color that will be used for the plots (HTML notation).
Method4A

Method4A function

Description

This function fits the Qxt using method 4 (first step) (non-parametric smoothing, see reference).

Usage

Method4A(MyData, AgeRange, AgeCrit, ShowPlot = F)

Arguments

- **MyData** The list returned by the AddReference() function.
- **AgeRange** Age range used for the construction of the life table.
- **AgeCrit** Age range for the comparison of adjusted mortality and observed mortality.
- **ShowPlot** AIC plots and plots allowing to judge about the fit.

Method4B

Method4B function

Description

This function fits the Qxt using method 4 (second step) (non-parametric smoothing, see reference).

Usage

Method4B(PartOne, MyData, OptMale, OptFemale, Plot = F, ShowPlot = F,
Color = MyData$Param$Color)

Arguments

- **PartOne** The list returned by the Method4A() function.
- **MyData** The list returned by the AddReference() function.
- **OptMale** Optimal smoothing parameters, obtained from the graphics generated by Method4A() for the male population.
- **OptFemale** Optimal smoothing parameters, obtained from the graphics generated by Method4A() for the female population.
- **Plot** If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.
- **ShowPlot** If true, show plots.
- **Color** The color that will be used for the plots (HTML notation).
MyPortfolio

MyPortfolio used for the exemple.

Description

Artificial Portfolio data exemple.

Usage

data(MyPortfolio)

Examples

data(MyPortfolio)

NoCompletion

NoCompletion function

Description

This function allows to keep the adjustment used by the locating method for high ages (for methods 1, 2 or 3).

Usage

NoCompletion(OutputMethod, MyData, Color = MyData$Param$Color, Plot = F, Excel = F)

Arguments

- **OutputMethod**: The list returned by one of these functions : Method1(), Method2(), Method3() or Method4B().
- **MyData**: The list returned by the AddReference() function.
- **Color**: The color that will be used for the plots (HTML notation).
- **Plot**: If TRUE, final mortality surfaces will be saved in Results/Graphics/FinalTables.
- **Excel**: If TRUE, final tables will be saved in Results/Excel/FinalTables.xlsx
ReadHistory readHistory function

Description
This function reads a data.frame and calculates exposure and number of deaths. This is the first function the user must call to build a mortality table.

Usage
ReadHistory(MyPortfolio, DateBegObs, DateEndObs, DateFormat, Plot = F, Color = "#A4072E", Excel = F)

Arguments
MyPortfolio MyPortfolio is a data.frame of 6 columns as follows : -Id : Id for the line ; -Gender : Male or Female ; -DateOfBirth : aaaa/mm/jj ; -DateIn : aaaa/mm/jj ; -DateOut : aaaa/mm/jj ; -Status : "other" or "deceased".
DateBegObs Date for the beginning of the observations.
DateEndObs Date for the end of the observations.
DateFormat Date format as expected by the as.Date R function.
Plot If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains png plots corresponding to the smoothed surface.
Color The color that will be used for the plots (HTML notation).
Excel If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contains excel files corresponding to the smoothed surface.

ReferenceFemale ReferenceFemale used for the exemple.

Description
This data corresponds to an adjusted version of the French national demographic projections INSEE 2060 for the female population.

Usage
data(ReferenceFemale)

Examples
data(ReferenceFemale)
ReferenceMale

ReferenceMale used for the exemple.

Description

This data corresponds to an adjusted version of the French national demographic projections INSEE 2060 for the male population.

Usage

```r
data(ReferenceMale)
```

Examples

```r
data(ReferenceMale)
```

SurfacePlot

SurfacePlot function

Description

Allows to plot a surface.

Usage

```r
SurfacePlot(xx, zexpr, mainexpr, axis, cc)
```

Arguments

- **xx**: data as matrix.
- **zexpr**: Title of z axis.
- **mainexpr**: Name for the graphic.
- **axis**: `c(min(abscissa), max(abscissa), min(ordinate), max(ordinate))`.
- **cc**: Color.
ValidationLevel1 $ValidationLevel1 function$

Description

This function performs the first level of validation on the returned value of one of these functions: Method1(), Method2(), Method3() or Method4B().

Usage

ValidationLevel1(OutputMethod, MyData, ValCrit, AgeCrit, Plot = F, Color = MyData$Param$Color, Excel = F)

Arguments

- **OutputMethod**: The list returned by one of these functions: Method1(), Method2(), Method3() or Method4B().
- **MyData**: The list returned by the AddReference() function.
- **ValCrit**: Critical value for the comparison of adjusted mortality and observed mortality.
- **AgeCrit**: Age range for the comparison of adjusted mortality and observed mortality.
- **Plot**: If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain png plots describing the validation analysis.
- **Color**: The color that will be used for the plots (HTML notation).
- **Excel**: If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain excel files describing the validation analysis.

ValidationLevel2 $ValidationLevel2 function$

Description

This function performs the second level of validation on the returned value of one of these functions: Method1(), Method2(), Method3() or Method4B() (see reference).

Usage

ValidationLevel2(OutputMethod, MyData, ValCrit, AgeCrit, Excel = F)
ValidationLevel3

Arguments

OutputMethod The list returned by one of these functions: Method1(), Method2(), Method3() or Method4B().

MyData The list returned by the AddReference() function.

ValCrit Critical value for the comparison of adjusted mortality and observed mortality.

AgeCrit Age range for the comparison of adjusted mortality and observed mortality.

Excel If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain Excel files describing the validation analysis.

ValidationLevel3 ValidationLevel3 function

Description

This function performs the third level of validation on the returned value of one of these functions: Method1(), Method2(), Method3() or Method4B().

Usage

ValidationLevel3(FinalMethod, MyData, Plot = F, Color = MyData$Param$Color, Excel = F)

Arguments

FinalMethod The list returned by the CompletionB() function.

MyData The list returned by the AddReference() function.

Plot If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain PNG plots describing the validation analysis.

Color The color that will be used for the plots (HTML notation).

Excel If set to TRUE, a sub-directory will be created in the working directory. This sub-directory will contain Excel files describing the validation analysis.
Index

* datasets
 MyPortfolio, 19
 ReferenceFemale, 20
 ReferenceMale, 21

* package
 ELT-package, 2

AddReference, 10

ComparisonMethods, 11
CompletionA, 12
CompletionB, 12

Dispersion, 13

ELT (ELT-package), 2
ELT-package, 2

FctMethod1, 14
FctMethod2, 14
FctMethod3, 15
FctMethod4_1stPart, 15
FctMethod4_2ndPart, 16

Method1, 16
Method2, 17
Method3, 17
Method4A, 18
Method4B, 18
MyPortfolio, 19

NoCompletion, 19

ReadHistory, 20
ReferenceFemale, 20
ReferenceMale, 21

SurfacePlot, 21

ValidationLevel1, 22
ValidationLevel2, 22
ValidationLevel3, 23