Package ‘EMCluster’

October 19, 2015

Version 0.2-5
Date 2015-10-19
Title EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution
Depends R (>= 3.0.1), MASS, Matrix
Enhances PPtree, RColorBrewer
LazyLoad yes
LazyData yes
Description EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised learning.
License Mozilla Public License 2.0
URL http://maitra.public.iastate.edu/
NeedsCompilation yes
Author Wei-Chen Chen [aut, cre], Ranjan Maitra [aut], Volodymyr Melnykov [ctb]
Maintainer Wei-Chen Chen <wccsnow@gmail.com>
Repository CRAN
Date/Publication 2015-10-19 18:06:25

R topics documented:

EMCluster-package ... 2
Assign Class .. 3
Conversion .. 4
Dataset .. 6
EM Algorithm ... 7
EM Control ... 8
Information Criteria .. 10
EMCluster-package

Description

EMCluster provides EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised clustering.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>EMCluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>License:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

The install command is simply as

> R CMD INSTALL EMCluster_0.2-0.tar.gz

from a command mode or

R> install.packages("EMCluster")

inside an R session.
Assign Class

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM, emcluster.

Examples

```r
## Not run:
demo(allinit, 'EMCluster', ask = F, echo = F)
demo(allinit_ss, 'EMCluster', ask = F, echo = F)
## End(Not run)
```

<table>
<thead>
<tr>
<th>Assign Class</th>
<th>Assign Class Id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

This function assigns cluster id to each observation in x according to the desired model emobj or specified parameters pi, Mu, and LTSigma.

Usage

```r
assign.class(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL, lab = NULL, return.all = TRUE)
```

Arguments

- **x**: the data matrix, dimension $n \times p$.
- **emobj**: the desired model which is a list mainly contains pi, Mu, and LTSigma, usually a returned object from init.EM.
- **pi**: the mixing proportion, length K.
- **Mu**: the centers of clusters, dimension $K \times p$.
- **LTSigma**: the lower triangular matrices of dispersion, dimension $K \times p(p + 1)/2$.
- **lab**: labeled data for semi-supervised clustering, length n.
- **return.all**: if returning with a whole emobj object.
Details

This function are based either an input emobj or inputs pi, Mu, and LTSigma to assign class id to each observation of x.

If lab is submitted, then the observation with label id greater 0 will not be assigned new class.

Value

This function returns a list containing mainly two new variables: nc (length K numbers of observations in each class) and class (length n class id).

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM, emcluster.

Examples

Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)
x2 <- da$da

ret <- init.EM(x2, nclass = 2)
ret.new <- assign.class(x2, ret, return.all = FALSE)
str(ret.new)

End(Not run)

Conversion

Convert Matrices in Different Format

Description

These utility functions are to convert matrices in different formats.

Usage

LTSigma2variance(x)
variance2LTSigma(x)
LTSigma2var(x1, p = NULL)
var2LTSigma(x1)
class2Gamma(class)
Gamma2class(Gamma)
Conversion

Arguments

- **x**: a matrix/array to be converted, the dimension could be $K \times p(p + 1)/2$ or $p \times p \times K$.
- **x1**: a vector/matrix to be converted, the length and dimension could be $p(p + 1)/2$ and $p \times p$.
- **p**: dimension of matrix.
- **class**: id of clusters for each observation, length n.
- **Gamma**: containing posterior probabilities if normalized, otherwise containing component densities weighted by mixing proportion, dimension $n \times K$.

Details

- **LTSigma2variance** converts LTSigma format to 3D array, and variance2LTSigma is the inversion function.
- **LTSigma2var** converts LTSigma format to a matrix, and var2LTSigma is the inversion function. Note that LTSigma is one component of LTSigma.
- **class2Gamma** converts id to a Gamma matrix where with probability 1 for the cluster where the observation belongs to, and Gamma2class converts posterior to cluster id where largest posterior is picked for each observation.

Value

A vector/matrix/array is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra

References

http://maitra.public.iastate.edu/

See Also

init.EM, emcluster.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x <- da2$LTSigma
class <- da2$class

y <- LTSigma2variance(x)
str(y)
y <- variance2LTSigma(y)
str(y)
sum(x != y)
```
Gamma <- class2Gamma(class)
class.new <- Gamma2class(Gamma)
sum(class != class.new)

End(Not run)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dataset for demonstrations</th>
</tr>
</thead>
</table>

Description

There are four small datasets to test and demonstrate EMCluster.

Usage

```
da1
da2
da3
myiris
```

Format

`da1, da2, da3` are in list, and `myiris` is in matrix.

Details

da1 has 500 observations in two dimensions `da1dax` and `da1day`, and they are in 10 clusters given in `da1$class`.
da2 has 2,500 observations in two dimensions, too. The true parameters are given in `da1$pi`, `da1$Mu`, and `da1$LTsigma`. There are 40 clusters given in `da1$class` for this dataset.
da3 is similar to `da2`, but with lower overlaps between clusters.
`myiris` is selected from the original Iris dataset given by R.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/
EM Algorithm

EM Algorithm for model-based clustering

Description

These are core functions of EMCluster performing EM algorithm for model-based clustering of finite mixture multivariate Gaussian distribution with unstructured dispersion.

Usage

```r
emcluster(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL,
          lab = NULL, EMC = .EMC, assign.class = FALSE)
shortemcluster(x, emobj = NULL, pi = NULL, Mu = NULL,
               LTSigma = NULL, maxiter = 100, eps = 1e-2)
simple.init(x, nclass = 1)
```

Arguments

- `x` the data matrix, dimension $n \times p$.
- `emobj` the desired model which is a list mainly contains `pi`, `Mu`, and `LTSigma`, usually a returned object from `init.EM`.
- `pi` the mixing proportion, length K.
- `Mu` the centers of clusters, dimension $K \times p$.
- `LTSigma` the lower triangular matrices of dispersion, $K \times (p+1)/2$.
- `lab` labeled data for semi-supervised clustering, length n.
- `EMC` the control for the EM iterations.
- `assign.class` if assigning class id.
- `maxiter` maximum number of iterations.
- `eps` convergent tolerance.
- `nclass` the desired number of clusters, K.

Details

The `emcluster` mainly performs EM iterations starting from the given parameters `emobj` without other initializations.

The `shortemcluster` performs short-EM iterations as described in `init.EM`.

Value

The `emcluster` returns an object `emobj` with class `emret` which can be used in post-process or other functions such as `e.step`, `m.step`, `assign.class`, `em.ic`, and `dmixmvn`.

The `shortemcluster` also returns an object `emobj` with class `emret` which is the best of several random initializations.

The `simple.init` utilizes `rand.EM` to obtain a simple initial.
EM Control

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM, e.step, m.step, .EMControl.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)
x1 <- da$da

emobj <- simple.init(x1, nclass = 10)
emobj <- shortemcluster(x1, emobj)
summary(emobj)

ret <- emcluster(x1, emobj, assign.class = TRUE)
summary(ret)

## End(Not run)
```

EM Control Generator and Controller

Description

The .EMControl generates an EM control (.EMC) controlling the options and conditions of EM algorithms, i.e. this function generate a default template. One can either modify .EMC or employ this function to control EM algorithms. By default, .EMC, .EMC.Rnd, and .EMC.Rndp are three native controllers as the EMCluster is loaded.

Usage

```r
.EMControl(alpha = 0.99, short.iter = 200, short.eps = 1e-2,
            fixed.iter = 1, n.candidate = 3,
            EM.iter = 1000, EM.eps = 1e-6, exhaust.iter = 5)
```

.EMC
.EMC.Rnd
.EMC.Rndp
EM Control

Arguments

alpha only used in emgroup for "SVD" initialization.
short.iter number of short-EM steps, default = 200.
short.eps tolerance of short-EM steps, default = 1e-2.
fixed.iter fixed iterations of EM for "RndEM" initialization, default = 1.
n.candidate reserved for other initialization methods (unimplemented).
EM.iter maximum number of long-EM steps, default = 1000.
EM.eps tolerance of long-EM steps, default = 1e-6.
exhaust.iter number of iterations for "exhaustEM" initialization, default = 5.

Details

exhaust.iter and fixed.iter are used to control the iterations of initialization procedures.
short.iter and short.eps are used to control the short-EM iterations.
EM.iter and EM.eps are used to control the long-EM iterations.
Moreover, short.eps and EM.eps are for checking convergence of the iterations.

Value

This function returns a list as .EMC by default.
The .EMC.Rnd is equal to .EMControl(short.eps = Inf) and usually used by the rand.EM method.
The .EMC.Rndp is equal to .EMControl(fixed.iter = 5) where each random initials run 5 EM iterations in the rand.EM method.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM, emcluster.

Examples

Not run:
library(emCluster, quietly = TRUE)

.EMC <- .EMControl()
.EMC.Rnd <- .EMControl(short.eps = Inf)
.EMC.Rndp <- .EMControl(fixed.iter = 5)

End(Not run)
Description

These functions are tools for compute information criteria for the fitted models.

Usage

\[
\text{em.ic}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL}, \\
\quad \text{llhdval} = \text{NULL})
\]

\[
\text{em.aic}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL})
\]

\[
\text{em.bic}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL})
\]

\[
\text{em.clc}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL})
\]

\[
\text{em.icl}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL})
\]

\[
\text{em.icl.bic}(x, \text{emobj} = \text{NULL}, \pi = \text{NULL}, \mu = \text{NULL}, \text{LTSigma} = \text{NULL})
\]

Arguments

\text{x} \quad \text{the data matrix, dimension } n \times p.

\text{emobj} \quad \text{the desired model which is a list mainly contains } \pi, \mu, \text{ and LTSigma, usually a returned object from init.EM}.

\text{pi} \quad \text{the mixing proportion, length } K.

\text{Mu} \quad \text{the centers of clusters, dimension } K \times p.

\text{LTSigma} \quad \text{the lower triangular matrices of dispersion, } K \times p(p + 1)/2.

\text{llhdval} \quad \text{the total log likelihood value of } x \text{ given } \text{emobj}.

Details

The \text{em.ic} calls all other functions to compute AIC (\text{em.aic}), BIC (\text{em.bic}), CLC (\text{em.clc}), ICL (\text{em.icl}), and ICL.BIC (\text{em.icl.bic}). All are useful information criteria for model selections, mainly choosing number of cluster.

Value

\text{em.ic} \quad \text{return a list containing all other information criteria for given the data } x \text{ and the desired model } \text{emobj}.

Author(s)

Wei-Chen Chen \(<\text{wccsnow@gmail.com}>\) and Ranjan Maitra

References

\quad http://maitra.public.iastate.edu/
Initialization and EM

See Also

init.Nem.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x2 <- da2$da

emobj <- list(pi = da2$pi, Mu = da2$Mu, LTsigma = da2$LTsigma)
em.ic(x2, emobj = emobj)

## End(Not run)
```

Initialization and EM Initialization and EM Algorithm

Description

These functions perform initializations (including em.EM and RndEM) followed by the EM iterations for model-based clustering of finite mixture multivariate Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised clusterings.

Usage

```r
init.EM(x, nclass = 1, lab = NULL, EMC = .EMC,
stable.solution = TRUE, min.n = NULL, min.n.iter = 10,
method = c("em.EM", "Rnd.EM"))
em.EM(x, nclass = 1, lab = NULL, EMC = .EMC,
stable.solution = TRUE, min.n = NULL, min.n.iter = 10)
rand.EM(x, nclass = 1, lab = NULL, EMC = .EMC.Rnd,
stable.solution = TRUE, min.n = NULL, min.n.iter = 10)
exhaust.EM(x, nclass = 1, lab = NULL,
EMC = .EMControl(short.iter = 1, short.eps = Inf),
method = c("em.EM", "Rnd.EM"),
stable.solution = TRUE, min.n = NULL, min.n.iter = 10);
```

Arguments

- `x`
 the data matrix, dimension $n \times p$.
- `nclass`
 the desired number of clusters, K.
- `lab`
 labeled data for semi-supervised clustering, length n.
- `EMC`
 the control for the EM iterations.
- `stable.solution`
 if returning a stable solution.
- `min.n`
 restriction for a stable solution, the minimum number of observations for every final clusters.
Initialization and EM

min.n.iter restriction for a stable solution, the minimum number of iterations for trying a stable solution.

method an initialization method.

Details

The init.EM calls either em.EM if method="em.EM" or rand.EM if method="Rnd.EM".

The em.EM has two steps: short-EM has loose convergent tolerance controlled by .EMC$short.eps and try several random initializations controlled by .EMC$short.iter, while long-EM starts from the best short-EM result (in terms of log likelihood) and run to convergence with a tight tolerance controlled by .EMC$EM.eps.

The rand.EM also has two steps: first randomly pick several random initializations controlled by .EMC$short.iter, and second starts from the best of the random result (in terms of log likelihood) and run to convergence.

The lab is only for the semi-supervised clustering, and it contains pre-labeled indices between 1 and K for labeled observations. Observations with index 0 is non-labeled and has to be clustered by the EM algorithm. Indices will be assigned by the results of the EM algorithm. See demo(allinit_ss, 'EMCluster') for details.

The exhaust.EM also calls the init.EM with different EM and perform exhaust.iter times of EM algorithm with different initials. The best result is returned.

Value

These functions return an object emobj with class emret which can be used in post-process or other functions such as e.step, m.step, assign.class, em.ic, and dmixmvn.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

emcluster, EMControl.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)
x <- da1$d
ret.em <- init.EM(x, nclass = 10, method = "em.EM")
ret.Rnd <- init.EM(x, nclass = 10, method = "Rnd.EM", EMC = .EMC.Rnd)
emobj <- simple.init(x, nclass = 10)
```
Jaccard Index

Description

This function returns the Jaccard index for binary ids.

Usage

Jaccard.Index(x, y)

Arguments

x true binary ids, 0 or 1.
y predicted binary ids, 0 or 1.

Details

All ids, x and y, should be either 0 (not active) or 1 (active). Any value other than 1 will be converted to 0.

Value

Return the value of Jaccard index.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/
Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)

x.id <- c(1, 1, 1, 0, 0, 3, 3)
y.id <- c(0, 1, 1, 1, 0, 1, 1)

Jaccard.Index(x.id, y.id)

## End(Not run)
```

Description

This function tests two mixture Gaussian models with unstructured covariance matrix and different numbers of clusters.

Usage

```r
lmt(emobj.0, emobj.a, x, tau = 0.5, n.mc.E.delta = 1000,
    n.mc.E.chi2, verbose = FALSE)
```

Arguments

- `emobj.0`: a `emret` object for the null hypothesis.
- `emobj.a`: a `emret` object for the alternative hypothesis.
- `x`: the data matrix, dimension $n \times p$.
- `tau`: proportion of null and alternative hypotheses.
- `n.mc.E.delta`: number of Monte Carlo simulations for expectation of delta (difference of logL).
- `n.mc.E.chi2`: number of Monte Carlo simulations for expectation of chisquare statistics.
- `verbose`: if verbose.

Details

This function calls several subroutines to compute information, likelihood ratio statistics, degrees of freedom, non-centrality of chi-squared distributions ... etc. Based on Monte Carlo methods to estimate parameters of likelihood mixture tests, this function return a p-value for testing H_0: `emobj.0` v.s. H_1: `emobj.a`.

Value

A list of class `lmt` are returned.
LMT Functions

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)

x <- as.matrix(iris[, 1:4])
p <- ncol(x)
min.n <- p * (p + 1) / 2
.EMC$short.iter <- 200

ret.2 <- init.EM(x, nclass = 2, min.n = min.n, method = "Rnd.EM")
ret.3 <- init.EM(x, nclass = 3, min.n = min.n, method = "Rnd.EM")
ret.4 <- init.EM(x, nclass = 4, min.n = min.n, method = "Rnd.EM")

(lmt.23 <- lmt(ret.2, ret.3, x))
(lmt.34 <- lmt(ret.3, ret.4, x))
(lmt.24 <- lmt(ret.2, ret.4, x))

## End(Not run)
```

<table>
<thead>
<tr>
<th>LMT Functions</th>
<th>Likelihood Mixture Test (LMT) Functions of EMCluster</th>
</tr>
</thead>
</table>

Description

All likelihood mixture test (LMT) functions are for testing and can be utilized by advanced developers with caution.
Currently, these are only for workflows.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/
Description

These functions are tools for compute density of (mixture) multivariate Gaussian distribution with unstructured dispersion.

Usage

dmvn(x, mu, LTsigma, log = FALSE)
dlmvn(x, mu, LTsigma, log = TRUE)
dmixmvn(x, emobj = NULL, pi = NULL, Mu = NULL, LTsigma = NULL, log = FALSE)
logL(x, emobj = NULL, pi = NULL, Mu = NULL, LTsigma = NULL)

Arguments

x the data matrix, dimension $n \times p$.
mu the centers of clusters, length p.
LTsigma the lower triangular matrices of dispersion, length $p(p+1)/2$.
log if logarithm returned.
emobj the desired model which is a list mainly contains pi, Mu, and LTsigma, usually a returned object from init.EM.
pi the mixing proportion, length K.
Mu the centers of clusters, dimension $K \times p$.
LTsigma the lower triangular matrices of dispersion, $K \times p(p+1)/2$.

Details

The dmvn and dlmvn compute density and log density of multivariate distribution.
The dmixmvn computes density of mixture multivariate distribution and is based either an input emobj or inputs pi, Mu, and LTsigma to assign class id to each observation of x.
The logL returns the value of the observed log likelihood function of the parameters at the current values of the parameters pi, Mu, and LTsigma, with the supplied data matrix x.

Value

A density value is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/
Other Initializations

See Also

`init.EM`, `emcluster`.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x2 <- da2$da
x3 <- da3$da

emobj2 <- list(pi = da2$pi, Mu = da2$Mu, LTSigma = da2$LTSigma)
emobj3 <- list(pi = da3$pi, Mu = da3$Mu, LTSigma = da3$LTSigma)

logL(x2, emobj = emobj2)
logL(x3, emobj = emobj3)

dmixmvn2 <- dmixmvn(x2, emobj2)
dmixmvn3 <- dmixmvn(x3, emobj3)

dlmvn(da2$da[1,], da2$Mu[1,], da2$LTSigma[1,])
log(dlmvn(da2$da[1,], da2$Mu[1,], da2$LTSigma[1,]))

## End(Not run)
```

Description

Two more functions with different initialization method.

Usage

```r
starts.via.svd(x, nclass = 1, method = c("em", "kmeans"),
EMC = .EMC)
emgroup(x, nclass = 1, EMC = .EMC)
```

Arguments

- `x` the data matrix, dimension \(n \times p \).
- `nclass` the desired number of clusters, \(K \).
- `method` method with the svd initializations.
- `EMC` the control for the EM iterations.

Details

The `starts.via.svd` utilizes SVD to initial parameters, and the `emgroup` runs the EM algorithm starting from the initial.
Value

The \texttt{starts.via.svd} returns an object with class \texttt{svd}, and the \texttt{emgroup} returns an object \texttt{emobj} with class \texttt{emret}.

Author(s)

Wei-Chen Chen (<wccsnow@gmail.com>) and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

\texttt{init.EM}, \texttt{EMControl}.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)
x1 <- da$da

emobj <- emgroup(x1, nclass = 10)
summary(emobj)

ret.0 <- starts.via.svd(x1, nclass = 10, method = "kmeans")
summary(ret.0)

## End(Not run)
```

Plot EM Results

Plot Two Dimensional Data with clusters

Description

The functions plot two dimensional data for clusters.

Usage

```
plotem(emobj, x, main = NULL, xlab = NULL, ylab = NULL, 
...)
plot2d(x, emobj = NULL, k = NULL, color.pch = 1,
append.BN = TRUE, ...)
```
Plot EM Results

Arguments

- **emobj**: the desired model which is a list mainly contains \(\pi \), \(\mu \), and \(\Sigma \), usually a returned object from `init.EM`.
- **x**: the data matrix, dimension \(n \times p \).
- **main**: title of plot.
- **xlab**: label of x-axis.
- **ylab**: label of y-axis.
- **...**: other parameters to the plot.
- **k**: index for symbols.
- **color.pch**: color and style for symbols.
- **append.BN**: if appending bivariate normal ellipsoid.

Details

This a simple x-y lot.

Value

A plot is returned.

Author(s)

Wei-Chen Chen \(<wccsnow@gmail.com>\) and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

`init.EM`, `emcluster`.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x1 <- da1$data

ret.1 <- starts.svd(x1, nclass = 10, method = "em")
summary(ret.1)

plotem(ret.1, x1)
## End(Not run)
```
Description

The function plots multivariate data for clusters as the parallel coordinates plot.

Usage

plotmd(x, class = NULL, xlab = "Variables", ylab = "Data", ...)

Arguments

x the data matrix, dimension $n \times p$.
class class id for all observations.
xlab label of x-axis.
ylab label of y-axis.
... other parameters to the plot.

Details

This a simplified parallel coordinate plot.

Value

A plot is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

init.EM, emcluster.
Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)

x <- myiris
ret <- em.EM(x, nclass = 5)
plotmd(x, ret$class)

## End(Not run)
```

Description

The function plots multivariate data on 2D plane with contour. Typically, the contour is built via projection pursuit or SVD algorithms, such as `project.on.2d()`.

Usage

```r
plotppcontour(da, Pi, Mu, S, class, class.true = NULL, n.grid = 128,
angle = 0, xlab = "", ylab = "", main = "")
```

Arguments

- `da`: a projected data matrix, dimension $n \times 2$.
- `Pi`: proportion, length K.
- `Mu`: the projected centers of cluster, dimension $K \times 2$.
- `S`: projected matrices of dispersion, dimension $p \times p \times K$.
- `class`: id of classifications, length n.
- `class.true`: true id of classifications if available, length n.
- `n.grid`: number of grid points.
- `angle`: a rotation angle (0 to 2π).
- `xlab`: an option for `plot()` function.
- `ylab`: an option for `plot()` function.
- `main`: an option for `plot()` function.

Details

This function plots projection output of `project.on.2d()`.

`da`, `Mu`, and `S` are projected by some projection matrices obtained via SVD or projection pursuit algorithms. The projection is made on a 2D plane in the direction in which clusters of data x are most distinguishable to visualize.
Post I Information Functions

Value

A 2D projection plot is returned.

Note

Only distinguishable for up to 7 clusters due to the limited color schemes.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

project.on.2d().

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
library(MASS, quietly = TRUE)
set.seed(1234)

### Crabs.
x <- as.matrix(crabs[, 4:8])
ret <- init.EM(x, nclass = 4, min.n = 20)
ret.proj <- project.on.2d(x, ret)

### Plot.
pdf("crabs_ppcontour.pdf", height = 5, width = 5)
plotppcontour(ret.proj$da, ret.proj$Pi, ret.proj$Mu, ret.proj$S,
              ret.proj$class, angle = pi/6, main = "Crabs K = 4")
dev.off()

## End(Not run)
```

Post I Information Functions

Post I Information Functions of EMCluster

Description

All post I information functions are for computing relative quantities and can be utilized by advanced developers with caution.

Currently, these are only for workflows.
Print and Summary

Author(s)
Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References
http://maitra.public.iastate.edu/

Functions for Printing or Summarizing Objects According to Classes

Description
Several classes are declared in EMCluster, and these are functions to print and summary objects.

Usage
```r
## S3 method for class 'emret'
print(x, digits = max(4, getOption("digits") - 3), ...)
## S3 method for class 'emret'
summary(object, ...)
## S3 method for class 'svd'
summary(object, ...)
```

Arguments
- `x`: an object with the class attributes.
- `digits`: for printing out numbers.
- `object`: an object with the class attributes.
- `...`: other possible options.

Details
These are useful functions for summarizing and debugging.

Value
The results will cat or print on the STDOUT by default.

Author(s)
Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References
http://maitra.public.iastate.edu/
See Also

init.EM, emcluster, starts.via.svd.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x2 <- da$da

emobj <- list(pi = da$pi, Mu = da$Mu, LTSigma = da$LTSigma)
eobj <- e.step(x2, emobj = emobj)
emobj <- m.step(x2, emobj = eobj)
summary(emobj)

ret <- starts.via.svd(x2, nclass = 10, method = "kmeans")
summary(ret)
```

Projection On 2D

Produce Projection on 2D

Description

The function projects multivariate data on 2D plane which can be displayed by `plotppcontour()` later.

Usage

```r
project.on.2d(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL, class = NULL, method = c("PP", "SVD"))
```

Arguments

- `x` the data matrix, dimension $n \times p$.
- `emobj` the desired model which is a list mainly contains `pi`, `Mu`, and `LTSigma`, usually a returned object from `init.EM`.
- `pi` the mixing proportion, length K.
- `Mu` the centers of clusters, dimension $K \times p$.
- `LTSigma` the lower triangular matrices of dispersion, $K \times (p(p + 1)/2)$.
- `class` id of classifications, length n.
- `method` either projection pursuit or singular value decomposition.

Details

This function produces projection outputs of `x` and `emobj`.
Value

A projection is returned which is a list contains

- \(da \) is a \(n \times 2 \) projected matrix of \(x \).
- \(pi \) is the original proportion of length \(K \).
- \(Mu \) is a \(K \times 2 \) projected matrix of \(Mu \).
- \(S \) is a \(2 \times 2 \times K \) projected array of \(LTSigma \).
- \(class \) is the original class id.
- \(proj.mat \) is the projection matrix of dimension \(p \).

Author(s)

Wei-Chen Chen \(<wccsnow@gmail.com>\) and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

See Also

project.on.2d().

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
set.seed(1234)

### Iris.
x <- as.matrix(iris[, 1:4])
ret <- init.EM(x, nclass = 3, min.n = 30)
ret.proj <- project.on.2d(x, ret)

### Plot.
pdf("iris_ppcontour.pdf", height = 5, width = 5)
plotppcontour(ret.proj$da, ret.proj$Pi, ret.proj$Mu, ret.proj$S,
             ret.proj$class, main = "Iris K = 3")
dev.off()

## End(Not run)
```
Rand Index

Rand Index and Adjusted Rand Index

Description

This function returns the Rand index and the adjusted Rand index for given true class ids and predicted class ids.

Usage

```r
RRand(trcl, prcl, lab = NULL)
```

Arguments

- `trcl`: true class ids.
- `prcl`: predicted class ids.
- `lab`: known ids for semi-supervised clustering.

Details

All ids, `trcl` and `prcl`, should be positive integers and started from 1 to K, and the maximums are allowed to be different.

`lab` used in semi-supervised clustering contains the labels which are known before clustering. It should be positive integer and started from 1 for labeled data and 0 for unlabeled data.

Value

Return a class `RRand` contains Rand index and adjusted Rand index.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)

true.id <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
pred.id <- c(2, 1, 2, 1, 1, 1, 2, 1, 1)
label <- c(0, 0, 0, 0, 1, 0, 2, 0, 0)

RRand(true.id, pred.id)
RRand(true.id, pred.id, lab = label)
```
Recolor Classification IDs

Description
This function returns new classification IDs.

Usage
recolor(id.class, id.target)

Arguments
id.class original class ids.
id.target target class ids.

Details
This function colors id.target in accordance with the most likely candidate in id.class.
All ids should be positive integers and started from 1 to K, and the maximums are allowed to be different.

Value
Return a list contains two factors, id.trcl and id.prcl, which are factor versions of id.class and id.target.

Author(s)
Ranjan Maitra.

References
http://maitra.public.iastate.edu/

Examples
Not run:
library(EMCluster, quietly = TRUE)

true.id <- c(1, 1, 1, 2, 2, 2, 3, 3)
pred.id <- c(2, 1, 2, 1, 1, 1, 2, 1)

recolor(pred.id, true.id)
End(Not run)

Description

These functions are single E- and M-step of EM algorithm for model-based clustering of finite mixture multivariate Gaussian distribution with unstructured dispersion.

Usage

e.step(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL,
 norm = TRUE)
m.step(x, emobj = NULL, Gamma = NULL, assign.class = FALSE)

Arguments

- **x**: the data matrix, dimension $n \times p$.
- **emobj**: the desired model which is a list mainly contains pi, Mu, and LTSigma, usually a returned object from init.EM.
- **pi**: the mixing proportion, length K.
- **Mu**: the centers of clusters, dimension $K \times p$.
- **LTSigma**: the lower triangular matrices of dispersion, $K \times p(p + 1)/2$.
- **norm**: if returning normalized Gamma.
- **Gamma**: containing posterior probabilities if normalized, otherwise containing component densities weighted by mixing proportion, dimension $n \times K$.
- **assign.class**: if assigning class id.

Details

These two functions are mainly used in debugging for development and post process after model fitting.

Value

The e.step returns a list contains Gamma, the posterior probabilities if norm=TRUE, otherwise it contains component densities. This is one E-step and Gamma is used to update emobj in the M-step next.

The m.step returns a new emobj according to the Gamma from the E-step above.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Ranjan Maitra.

References

http://maitra.public.iastate.edu/
Single Step

See Also

\texttt{init EM}.

Examples

```r
## Not run:
library(EMCluster, quietly = TRUE)
x2 <- da2$da
	emobj <- list(pi = da2$pi, Mu = da2$Mu, LTSigma = da2$LTSigma)
eobj <- e.step(x2, emobj = emobj)
emobj <- m.step(x2, emobj = eobj)
emobj

## End(Not run)
```
Index

+ Topic **LMT**
 - LMT Functions, 15
+ Topic **datasets**
 - Dataset, 6
+ Topic **package**
 - EMCluster-package, 2
+ Topic **post_I_information**
 - Post I Information Functions, 22
+ Topic **programming**
 - EM Algorithm, 7
 - EM Control, 8
 - Initialization and EM, 11
 - Likelihood Mixture Tests, 14
 - Other Initializations, 17
+ Topic **summary**
 - Jaccard Index, 13
 - Rand Index, 26
 - Recolor Classification IDs, 27
+ Topic **tool**
 - Assign Class, 3
 - Information Criteria, 10
 - Single Step, 28
+ Topic **utility**
 - Conversion, 4
 - MVN, 16
 - Plot EM Results, 18
 - Plot Multivariate Data, 20
 - Plot Projection and Contour, 21
 - Projection On 2D, 24
 - .EMC (EM Control), 8
 - .EMControl, 8, 12, 18
 - .EMControl (EM Control), 8
 - Assign Class, 3
 - assign.class (Assign Class), 3
 - bh.fdr (LMT Functions), 15
 - class2Gamma (Conversion), 4
 - col.ppcontour (LMT Functions), 15
 - Conversion, 4
 - da1 (Dataset), 6
 - da2 (Dataset), 6
 - da3 (Dataset), 6
 - Dataset, 6
 - dlmvn (MVN), 16
 - dmixmvn (MVN), 16
 - dmvn (MVN), 16
 - .e.step, 8
 - .e.step (Single Step), 28
 - EM Algorithm, 7
 - EM Control, 8
 - em.aic (Information Criteria), 10
 - em.bic (Information Criteria), 10
 - em.clc (Information Criteria), 10
 - em.EM (Initialization and EM), 11
 - em.ic (Information Criteria), 10
 - em.icl (Information Criteria), 10
 - EMCluster (EMCluster-package), 2
 - emcluster, 3–5, 9, 12, 17, 19, 20, 24
 - emcluster (EM Algorithm), 7
 - EMCluster-package, 2
 - emgroup (Other Initializations), 17
 - emobj object (EM Algorithm), 7
 - exhaust.EM (Initialization and EM), 11
 - fill.ppcontour (LMT Functions), 15
 - fill.ppmu (LMT Functions), 15
 - fill.pppoints (LMT Functions), 15
 - Gamma2class (Conversion), 4
 - GenDataSet (LMT Functions), 15
 - GenMixDataSet (LMT Functions), 15
 - get.cov.logit.PI (Post I Information Functions), 22
 - get.cov.logit.z (Post I Information Functions), 22
get.cov.param (Post I Information Functions), 22
get.cov.post.z (Post I Information Functions), 22
g.E.chi2 (LMT Functions), 15
g.E.delta (LMT Functions), 15
get.logor.stat (Post I Information Functions), 22
Gmat (LMT Functions), 15
gridOne (LMT Functions), 15
Information Criteria, 10
init.EM, 3–5, 8, 9, 11, 15, 17–20, 24, 29
init.EM (Initialization and EM), 11
Initialization and EM, 11
Iy (LMT Functions), 15
Iy2 (LMT Functions), 15
Jaccard Index, 13
Jaccard.Index (Jaccard Index), 13
Likelihood Mixture Tests, 14
lmt (Likelihood Mixture Tests), 14
LMT Functions, 15
logl (MVN), 16
LTsigma2var (Conversion), 4
LTsigma2variance (Conversion), 4
m.step, 8
m.step (Single Step), 28
MVN, 16
myiris (Dataset), 6
Other Initializations, 17
partial.f.mu.s (Post I Information Functions), 22
partial.logit.p (Post I Information Functions), 22
partial.logl (LMT Functions), 15
partial.post.z (Post I Information Functions), 22
partial.q (LMT Functions), 15
pchisq.my (LMT Functions), 15
Plot EM Results, 18
Plot Multivariate Data, 20
Plot Projection and Contour, 21
plot2d (Plot EM Results), 18
plotem (Plot EM Results), 18
plotmd (Plot Multivariate Data), 20
plotp (LMT Functions), 15
plotppcontour, 24
plotppcontour (Plot Projection and Contour), 21
plotq (LMT Functions), 15
Post I Information Functions, 22
postPI (LMT Functions), 15
Print and Summary, 23
print.emret (Print and Summary), 23
print.lmt (LMT Functions), 15
project.on.2d, 21, 22, 25
project.on.2d (Projection On 2D), 24
Projection On 2D, 24
q.map.new (LMT Functions), 15
Rand Index, 26
rand.EM (Initialization and EM), 11
recolr (Recolor Classification IDs), 27
recolr classification IDs, 27
RRand (Rand Index), 26
shortemcluster (EM Algorithm), 7
simple.init (EM Algorithm), 7
Single Step, 28
starts via svd, 24
starts via svd (Other Initializations), 17
summary.emret (Print and Summary), 23
summary.svd (Print and Summary), 23
var2LTsigma (Conversion), 4
variance2LTsigma (Conversion), 4
w.2 (LMT Functions), 15