Package ‘EMMIXcskew’

February 8, 2017

Type Package
Title Fitting Mixtures of CFUST Distributions
Version 0.9-4
Date 2017-02-07
Author S.X. Lee and G.J. McLachlan
Maintainer Sharon X. Lee <s.le11@uq.edu.au>
Description Functions to fit finite mixture of multivariate canonical fundamental skew t (FM-CFUST) distributions, random sample generation, 2D and 3D contour plots.
License GPL
LazyLoad yes
Imports rgl, mnormt, graphics, MASS, grDevices, stats
Suggests KernSmooth
NeedsCompilation no
Repository CRAN
Date/Publication 2017-02-08 12:46:13

R topics documented:

EMMIXcskew-package ... 2
dfmcfust ... 2
fmcfust ... 4
fmcfust.contour.2d ... 6
fmnst ... 8
init.cfust ... 10
rfmcfust ... 12

Index 14
EMMIXcskew-package

Finite mixture of multivariate canonical fundamental skew t-distributions

Description

This package implements an EM algorithm for fitting mixtures of multivariate canonical fundamental skew t (FM-CFUST) distributions. Functions for random sample generation, initial value generation, and visualisation (in 2D and 3D) are also provided.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>EMMIXcskew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.9-4</td>
</tr>
<tr>
<td>Date:</td>
<td>2017-02-07</td>
</tr>
<tr>
<td>Licence:</td>
<td>GPL</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

S.X. Lee, G.J. McLachlan

References

See Also

- fmcfust, dfmcfust, rfmcfust, fmcfust.contour.3d

Description

The probability density function for the multivariate canonical fundamental skew t (CFUST) distribution and finite mixture of CFUST distributions.
Usage

dfmcfust(dat, mu= NULL, sigma= NULL, delta= NULL, dof= NULL, pro= NULL, known= NULL)
dcfust(dat, mu= NULL, sigma= NULL, delta= NULL, dof= 1, known= NULL)

Arguments

dat the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length \(p \) or a matrix with \(p \) columns.

mu for dcfust, this is a numeric vector of length \(p \) representing the location parameter; for dfmcfust, this is list of \(g \) numeric matrices each having \(p \) rows and 1 column containing the location parameter for each component.

sigma for dcfust, this is a numeric positive definite matrix with dimension \((p,p) \) representing the scale parameter; for dfmcfust, this is list of \(g \) numeric matrices containing the scale parameter for each component.

delta for dcfust, this is a numeric matrix of size \(p \) by \(q \) representing the skewness matrix; for dfmcfust, this is list of \(g \) numeric matrices each having \(p \) rows and \(q \) column containing the skewness parameter for each component.

dof for dcfust, this is a positive integer specifying the degrees of freedom; for dfmcfust, this is numeric vector of length \(g \) representing the degrees of freedom for each component.

pro the mixing proportions; for dcfust, this is equal to 1; for dfmcfust, this is vector of length of \(g \) specifying the mixing proportions for each component.

known a list containing the parameters of the model. If specified, it overwrites the values of mu, sigma, delta, dof and pro.

Details

The function dcfust computes the density value of a specified multivariate canonical fundamental skew t (CFUST) distribution. If any model parameters are not specified, their default values are used: \(\mu \) and \(\delta \) are zero vectors, \(\sigma \) is the identity matrix, and \(\text{dof} = 1 \).

The function dfmcfust computes the density value for a specified mixture of MST distribution. Note that dfmcfust expects at least \(\text{dof} \) is specified. Other missing parameters will take the default value described above. When \(g = 1 \), dfmcfust passes the call to dcfust. Model parameters can be passed to dcfust and dfmcfust through the argument known or listed as individual arguments. If both methods of input were used, the parameters specified in known will be used.

Value

dcfust and dfmcfust returns a numeric vector of density values

References

See Also

rcfust, rfmcfust

Examples

dcfust(c(1, 2), mu=c(1, 5), sigma=diag(2), delta=matrix(c(-3, 1, 1, 2, 2), dof=4)

Description

Computes maximum likelihood estimators (MLE) for finite mixtures of canonical fundamental multivariate skew t (FM-CFUST) model via the EM algorithm.

Usage

fmcfust(g, dat, q, initial=NULL, known=NULL, clust=NULL, itmax=100, eps=1e-6,
 nkmeans=20, verbose=T, method=c("moments", "transformation", "EMMIXskew", "EMMIXuskew"),
 convergence=c("Aitken", "likelihood", "parameters"))

S3 method for class 'fmcfust'
summary(object, ...)
S3 method for class 'fmcfust'
print(x, ...)

Arguments

object, x an object class of class "fmcfust", i.e. a fitted model.
g a scalar specifying the number of components in the mixture model
dat the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length \(p \) or a matrix with \(p \) columns.
q a scalar specifying how many number of columns the skewness matrix \(\delta \) has.
initial (optional) a list containing the initial parameters of the mixture model. See the 'Details' section. The default is NULL.
known (optional) a list containing parameters of the mixture model that are known and not required to be estimated. See the 'Details' section. The default is NULL.
itmax (optional) a positive integer specifying the maximum number of EM iterations to perform. The default is 100.
eps (optional) a numeric value used to control the termination criteria for the EM loops. It is the maximum tolerance for the absolute difference between the log-likelihood value and the asymptotic log likelihood value. The default is \(1e-6 \).
Clustering by Fuzzy C-Means (fmcfust)

- **clust**: (optional) a numeric value of length nrow(dat) containing the initial labels for each data point in dat. The default is NULL, indicating no initial clustering is known.

- **nkmeans**: (optional) a numeric value indicating how many k-means trials to be used when searching for initial values. The default is 20.

- **verbose**: (optional) a logical value. If TRUE, output for each iteration will be printed out. If FALSE, no output is printed. The default is TRUE. See the 'Details' section.

- **method**: (optional) a string indicating which method to use to generate initial values. See init.cfust.

- **convergence**: (optional) a string indicating which convergence criterion to use to terminate the iterations. The default "aitken" uses Aitken acceleration, whereas "likelihood" uses the relative difference in log likelihood value, and "parameters" checks the changes in parameter estimates.

... not used.

Details

The arguments init and known, if specified, is a list structure containing at least one of mu, sigma, delta, dof, pro (See dfmcfust for the structure of each of these elements). If init=FALSE (default), the program uses an automatic approach based on moments estimate and k-means clustering to generate an initial value for the model parameters. Note that this may not provide the best results. As the EM algorithm is sensitive to the starting value, it is highly recommended to apply a wide range different initializations. Some strategies are implemented in init.cfust.

Value

- **mu**: a list of g numeric matrices containing the location parameter for each component.

- **sigma**: a list of g numeric matrices containing the scale parameter for each component.

- **delta**: a list of g numeric matrices containing the skewness parameter for each component.

- **dof**: a numeric vector of length g representing the degrees of freedom for each component.

- **pro**: a vector of length g specifying the mixing proportions for each component.

- **tau**: an g by n matrix of posterior probability of component membership.

- **clusters**: a vector of length n of final partition.

- **loglik**: the final log likelihood value.

- **lk**: a vector of log likelihood values at each EM iteration.

- **iter**: number of iterations performed.

- **eps**: the final absolute difference between the log likelihood value and the asymptotic log likelihood value.

- **aic, bic**: Akaike Information Criterion (AIC), Bayes Information Criterion (BIC)
References

See Also

init.cfust, rfmcfust, dfmcfust, fmcfust.contour.2d

Examples

```r
## Not run:
# a short demo using geyser data
library(MASS)
Fit <- fmcfust(3, geyser)
summary(Fit)
print(Fit)
## End(Not run)
```

fmcfust.contour.2d

2D and 3D Visualisation of Fitted Contours

Description

Create 2D or 3D contour plot.

Usage

```r
fmcfust.contour.2d(dat, model, grid=50, drawpoints=TRUE, clusters=NULL, nlevels=10, map=c("scatter", "heat", "cluster"), component=NULL, xlim, ylim, xlab, ylab, main, pcol=NULL, ccol=NULL, ...)
fmcfust.contour.3d(dat, model, grid=20, drawpoints=TRUE, levels=0.9, clusters=NULL, xlim, ylim, zlim, xlab, ylab, zlab, main, component=NULL, pcol=NULL, ccol=NULL, ...)
```

Arguments

- **dat**: the data matrix giving the coordinates of the point(s) where the density is evaluated. This must be a matrix with at least 2 columns for fmcfust.contour.2d or 3 columns for fmcfust.contour.3d. If dat is not provided, then xlim, ylim and zlim must be provided, and drawpoints must be set to FALSE.
- **model**: a list containing the parameters of the model and also a vector of cluster labels for dat. This is typically an output from fmcfust, containing mu, sigma, delta, dof, pro and clusters; see fmcfust for structure of model.
grid

drawpoints

clusters

nlevels

levels

map

component

xlimit, ylim, zlimit

xlab, ylab, zlab

main

pcol

ccol

... additional arguments to plot.default

Details

fmcfust.contour.2d draw contour plots for bivariate densities. The argument dat must be provided and must contain at least 2 columns. Note that only the first two columns of dat will be used if dat have more than 2 columns. For bivariate datset, the data points can be drawn as a scatter plot by specifying map="scatter" (default), or as an intensity plot (map="heat"). Alternatively, a cluster map can be drawn instead (map="cluster"). Note that if an intensity plot is used, the data points will not be drawn, that is, drawpoints will be set to FALSE.

The argument component specifies which individual component is drawn. When component=FALSE, the mixture contour is drawn. If specified, component is a integer vector of the index of the components to be drawn. It can only take values between 1 and g inclusive. For example, component=c(1,3) will draw the first and third component contours.

If the argument model contains the cluster labels (model$clusters), the data point will be coloured according to their cluster.

See Also

fmcfust, contour

Examples

Not run:
2D plots
data(iris)
iris.versicolor <- iris[iris$Species=="versicolor",2:3]
Fit.versicolor <- fmcfust(1, iris.versicolor)
fmcfust.contour.2d(iris.versicolor, Fit.versicolor, drawpoints=FALSE, main="versicolor")

#3D plot
obj <- list()
obj$mu <- list(matrix(c(0,0,0),3), matrix(c(5,5,5),3))
obj$sigma <- list(matrix(c(2,1,2,5,1,1),3,3), 2*diag(3))
obj$delta <- list(matrix(c(1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,15),3,3))
obj$dof <- c(3,3)
obj$pro <- c(0.2, 0.8)
fmcfust.contour.3d(model=obj, level=0.98, drawpoints=TRUE, xlab="X", ylab="Y", zlab="Z")

End(Not run)

fmmst

Fitting Finite Mixtures of Unrestricted Multivariate Skew t Distributions

Description
Computes maximum likelihood estimators (MLE) for finite mixtures of unrestricted multivariate skew t (FM-MST) model via the EM algorithm.

Usage
fmmst(g = 1, dat, initial = NULL, known = NULL, itmax = 100,
 eps = 1e-03, clust=NULL, nkmeans=20, print = T)

S3 method for class 'fmmst'
summary(object, ...)
S3 method for class 'fmmst'
print(x, ...)

Arguments

object, x an object class of class "fmmst", i.e. a fitted model.
g a scalar specifying the number of components in the mixture model
dat the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length p or a matrix with p columns.
initial (optional) a list containing the initial parameters of the mixture model. See the 'Details' section. The default is NULL.
known (optional) a list containing parameters of the mixture model that are known and not required to be estimated. See the 'Details' section. The default is NULL.
itmax (optional) a positive integer specifying the maximum number of EM iterations to perform. The default is 100.
eps (optional) a numeric value used to control the termination criteria for the EM loops. It is the maximum tolerance for the absolute difference between the log-likelihood value and the asymptotic log likelihood value. The default is 1×10^{-6}.

clust (optional) a numeric value of length $nrow(dat)$ containing the initial labels for each data point in dat. The default is NULL, indicating no initial clustering is known.

nkmeans (optional) a numeric value indicating how many k-means trials to be used when searching for initial values. The default is 20.

print (optional) a logical value. If TRUE, output for each iteration will be printed out. If FALSE, no output is printed. The default is TRUE. See the 'Details' section.

... not used.

Details

The arguments init and known, if specified, is a list structure containing at least one of mu, sigma, delta, dof, pro. If init=FALSE (default), the program uses an automatic approach based on k-means clustering to generate an initial value for the model parameters. Note that this may not provide the best results.

Value

mu a list of g numeric matrices containing the location parameter for each component.

sigma a list of g numeric matrices containing the scale parameter for each component.

delta a list of g numeric matrices containing the skewness parameter for each component.

dof a numeric vector of length g representing the degrees of freedom for each component.

pro a vector of length of g specifying the mixing proportions for each component.

tau an g by n matrix of posterior probability of component membership.

clusters a vector of length n of final partition.

loglik the final log likelihood value.

lk a vector of log likelihood values at each EM iteration.

iter number of iterations performed.

eps the final absolute difference between the log likelihood value and the asymptotic log likelihood value.

aic, bic Akaike Information Criterion (AIC), Bayes Information Criterion (BIC)

References

See Also

fmcfust

Examples

Not run:
a short demo using geyser data
library(MASS)
Fit <- fmmst(3, geyser)
summary(Fit)
print(Fit)

End(Not run)

init.cfust Initialization for Fitting Finite Mixtures of Canonical Fundamental Skew t-Distributions

Description

Computes different sets of initial values for finite mixtures of canonical fundamental skew t (FM-CFUST) model based on an initial clustering, transformation approach, moment-based approach, or nested-model approach.

Usage

init.caust(g, dat, q=p, initial=NULL, known=NULL, clust=NULL, nkmeans=20,
method=c("moments","transformation","EMMIXskew","EMMIXuskew"))
init.fmcfust(g, dat, q=p, initial=NULL, known=NULL, clust=NULL, nkmeans=20,
method=c("moments","transformation","EMMIXskew","EMMIXuskew"))

Arguments

g a scalar specifying the number of components in the mixture model

dat the data matrix giving the coordinates of the point(s) where the density is evaluated. This is either a vector of length \(p\) or a matrix with \(p\) columns.

q a scalar specifying how many number of columns the skewness matrix \(\delta\) has.

initial (optional) a list containing the initial parameters of the mixture model. See the 'Details' section. The default is NULL.

known (optional) a list containing parameters of the mixture model that are known and not required to be estimated. See the 'Details' section. The default is NULL.
init.cfust

clust (optional) a numeric value of length nrow(dat) containing the initial labels for each data point in dat. The default is NULL, indicating no initial clustering is known.

nkmeans (optional) a numeric value indicating how many k-means trials to be used when searching for initial values. The default is 20.

method (optional) a string indicating which method to use to generate initial values. See Details.

Details

As the EM algorithm is sensitive to the starting value, it is highly recommended to apply a wide range different initializations. To obtain different sets of starting values using the strategy described in Section 5.1.3 of Lee and McLachlan (2014), init.cfust() can be used, which will return a list of objects with the same structure as initial. An example is given in the examples section below.

The argument known, if specified, is a list structure containing at least one of mu, sigma, delta, dof, pro (See dfmcfust for the structure of each of these elements). Note that although not all parameters need to be provided in known, the parameters that are provided must be fully specified. They cannot be partially specified, e.g. only some elements or some components are specified.

Value

a list object containing the following parameters:

- **mu** a list of g numeric matrices containing the location parameter for each component.
- **sigma** a list of g numeric matrices containing the scale parameter for each component.
- **delta** a list of g numeric matrices containing the skewness matrix for each component.
- **dof** a numeric vector of length g representing the degrees of freedom for each component.
- **pro** a vector of length g specifying the mixing proportions for each component.
- **tau** an g by n matrix of initial probability of component membership.
- **clusters** a vector of length n of initial partition.
- **loglik** the initial log likelihood value.

References

See Also

rfmcfust, dfmcfust, fmcfust.contour.2d
Examples

```r
## Not run:
# a short demo using geyser data
library(MASS)
data(geyser)
initial.transformation <- init.cfust(3, geyser, method="transformation")
initial.transformation$loglik

## End(Not run)
```

rfmcfust Simulation of Mixture Data

Description

Generate random sample from a specified mixture of multivariate canonical fundamental skew t distribution

Usage

```r
rfmcfust(g, n, mu, sigma, delta, dof, rep(10,g), pro=rep(1/g,g), known=NULL)
rcfust(n=1, mu = NULL, sigma=NULL, delta=NULL, dof=1, known=NULL)
```

Arguments

- **g**: a scalar specifying the number of components in the mixture model
- **n**: either a positive integer specifying the total number of points to be generated or a vector (of length g) of positive integers specifying the number of points to be generated in each component.
- **mu**: for rcfust, this is a numeric vector of length p representing the location parameter; for rfmcfust, this is list of g numeric matrices each having p rows and 1 column containing the location parameter for each component.
- **sigma**: for rcfust, this is a numeric positive definite matrix with dimension (p,p) representing the scale parameter; for rfmcfust, this is list of g numeric matrices containing the scale parameter for each component.
- **delta**: for rcfust, this is a numeric matrix of size p by q representing the skewness matrix; for rfmcfust, this is list of g numeric matrices each having p rows and q column containing the skewness parameter for each component.
- **dof**: for rcfust, this is a positive integer specifying the degrees of freedom; for rfmcfust, this is numeric vector of length g representing the degrees of freedom for each component.
- **pro**: the mixing proportions; for rcfust, this is equal to 1; for rfmcfust, this is vector of length of g specifying the mixing proportions for each component.
- **known**: a list containing the parameters of the model. If specified, it overwrites the values of mu, sigma, delta, dof and pro.
Details

rcfust generates a sample n multivariate CFUST observations. rfmcfust generates a mixture of CFUST observation. Note that model parameters can be passed to rcfust and rfmcfust through the argument known or listed as individual arguments. If both methods of input were used, the parameters specified in known will be used.

Value

rcfust returns an n by p numeric matrix of generated data. rfmcfust returns an n by p+1 numeric matrix of generated data. The first p gives the coordinates of the generated data. The last column specifies which component each data point is generated from.

References

See Also
dcfust, dfmcfust

Examples

```r
#-- Should be DIRECTLY executable !! ----
##-- Define data, use random,
##--or do help(data=index) for the standard data sets.
rcfust(10,c(1,2),diag(2),matrix(c(2,1,1,2),2,2),4)

obj <- list()
obj$mu <- list(c(17,19), c(5,22), c(6,10))
obj$sigma <- list(diag(2), matrix(c(2,0,0,1),2), matrix(c(3,7,7,24),2))
obj$delta <- list(matrix(c(3,0,2,1.5),2,2), matrix(c(5,0,0,10),2,2), matrix(c(2,0,5,0),2,2))
obj$ dof <- c(1, 2, 3)
obj$pro <- c(0.25, 0.25, 0.5)
rfmcfust(3, 100, known=obj)
```
Index

*Topic 3d
 fmcfust.contour.2d, 6
*Topic EM algorithm
 fmcfust, 4
 fmmst, 8
 init.cfust, 10
*Topic contour
 fmcfust.contour.2d, 6
*Topic maximum likelihood estimation
 fmcfust, 4
 fmmst, 8
 init.cfust, 10
*Topic mixture density
 dfmcfust, 2
*Topic multivariate distribution
 dfmcfust, 2
 rfmcfust, 12
*Topic multivariate skew t distribution
 dfmcfust, 2
 fmcfust, 4
 init.cfust, 10
 rfmcfust, 12
*Topic multivariate skew t
 fmmst, 8
*Topic package
 EMMIXcskew-package, 2
*Topic random number
 rfmcfust, 12

contour, 7
dcfust, 13
dcfust (dfmcfust), 2
dfmcfust, 2, 2, 5, 6, 11, 13
EMMIXcskew (EMMIXcskew-package), 2
EMMIXcskew-package, 2
fmcfust, 2, 4, 6, 7, 10

fmcfust.contour.2d, 6, 6, 11
fmcfust.contour.3d, 2
fmcfust.contour.3d (fmcfust.contour.2d), 6
fmmst, 8
init.cfust, 5, 6, 10
init.fmcust (init.cfust), 10
plot.default, 7
print.fmcfust (fmcfust), 4
print.fmmst (fmmst), 8
rcfust, 4
rcfust (rfmcfust), 12
rfmcfust, 2, 4, 6, 11, 12
summary.fmcfust (fmcfust), 4
summary.fmmst (fmmst), 8