Package ‘EMMREML’

July 22, 2015

Type Package

Version 3.1

Date 2015-07-20

Title Fitting Mixed Models with Known Covariance Structures

Author Deniz Akdemir, Okeke Uche Godfrey

Maintainer Deniz Akdemir <deniz.akdemir.work@gmail.com>

Depends Matrix, stats

Description The main functions are 'emmreml', and 'emmremlMultiKernel'. 'emmreml' solves a mixed model with known covariance structure using the 'EMMA' algorithm. 'emmremlMultiKernel' is a wrapper for 'emmreml' to handle multiple random components with known covariance structures. The function 'emmremlMultivariate' solves a multivariate gaussian mixed model with known covariance structure using the 'ECM' algorithm.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-22 05:52:07

R topics documented:

EMMREML ... 2
emmreml ... 2
emmremlMultiKernel .. 4
emmremlMultivariate .. 6

Index 9
Description

The main functions are emmreml, and emmremlMultiKernel. emmreml solves a mixed model with known covariance structure using the EMMA algorithm in Kang et al. (2008). emmremlMultiKernel is a wrapper for emmreml to handle multiple random components with known covariance structures. The function emmremlMultivariate solves a multivariate gaussian mixed model with known covariance structure using the ECM algorithm in Zhou and Stephens (2012).

Details

Package: EMMREML
Type: Package
Version: 3.1
Date: 2015-07-20
License: GPL-2

Author(s)

Deniz Akdemir, Okeke Uche Godfrey
Maintainer: Deniz Akdemir <deniz.akdemir.work@gmail.com>

References

emmreml

Solver for Gaussian mixed model with known covariance structure.

Description

This function estimates the parameters of the model

$$y = X\beta + Zu + e$$
where \(y \) is the \(n \) vector of response variable, \(X \) is a \(n \times q \) known design matrix of fixed effects, \(Z \) is a \(n \times l \) known design matrix of random effects, \(\beta \) is \(q \times 1 \) vector of fixed effects coefficients and \(u \) and \(e \) are independent variables with \(N_l(0, \sigma_u^2 K) \) and \(N_n(0, \sigma_e^2 I_n) \) correspondingly. It also produces the BLUPs and some other useful statistics like large sample estimates of variances and PEV.

Usage

```
emnreml(y, X, Z, K, varbetahat=FALSE, varuhat=FALSE, PEVhat=FALSE, test=FALSE)
```

Arguments

- \(y \) \(n \times 1 \) numeric vector
- \(X \) \(n \times q \) matrix
- \(Z \) \(n \times l \) matrix
- \(K \) \(l \times l \) matrix of known relationships
- varbetahat TRUE or FALSE
- varuhat TRUE or FALSE
- PEVhat TRUE or FALSE
- test TRUE or FALSE

Value

- \(Vu \) Estimate of \(\sigma_u^2 \)
- \(Ve \) Estimate of \(\sigma_e^2 \)
- betahat BLUEs for \(\beta \)
- uhat BLUPs for \(u \)
- \(\chi^2 \) test statistics for testing whether the fixed effect coefficients are equal to zero.
- pvalbeta pvalues obtained from large sample theory for the fixed effects. We report the pvalues adjusted by the "padjust" function for all fixed effect coefficients.
- \(\chi^2 \) test statistic values for testing whether the BLUPs are equal to zero.
- pvalu pvalues obtained from large sample theory for the BLUPs. We report the pvalues adjusted by the "padjust" function.
- varuhat Large sample variance for the BLUPs.
- varbetahat Large sample variance for the \(\beta \)'s.
- PEVhat Prediction error variance estimates for the BLUPs.
- loglik loglikelihood for the model.

Examples

```
n=200
M1<-matrix(rnorm(n*300), nrow=n)
K1<-cov(t(M1))
K1=K1/mean(diag(K1))
```
emmmremlMultiKernel

Function to fit Gaussian mixed model with multiple mixed effects with known covariances.

Description

This function is a wrapper for the emmreml to fit Gaussian mixed model with multiple mixed effects with known covariances. The model fitted is $y = X\beta + Z_1u_1 + Z_2u_2 + ...Z_ku_k + e$ where y is the n vector of response variable, X is a nxq known design matrix of fixed effects, Z_j is a nxl_j known design matrix of random effects for $j = 1, 2, ..., k$, β is $nx1$ vector of fixed effects coefficients and $U = (u_1^t, u_2^t, ..., u_k^t)^t$ and e are independent variables with $N_L(0, \text{blockdiag}(\sigma^2_{u_1}K_1, \sigma^2_{u_2}K_2, ..., \sigma^2_{u_k}K_k))$ and $N_n(0, \sigma^2_eI_n)$ correspondingly. The function produces the BLUPs for the $L = l_1 + l_2 + ... + l_k$ dimensional random effect U. The variance parameters for random effects are estimated as $(\hat{\omega}_1, \hat{\omega}_2, ..., \hat{\omega}_k) \ast \hat{\sigma}^2_e$ where $w = (w_1, w_2, ..., w_k)$ are the kernel weights. The function also provides some useful statistics like large sample estimates of variances and PEV.

Usage

emmmremlMultiKernel(y, X, Zlist, Klist, varbetahat=FALSE, varuhat=FALSE, PEVhat=FALSE, test=FALSE)

Arguments

<table>
<thead>
<tr>
<th>y</th>
<th>$nx1$ numeric vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>nxq matrix</td>
</tr>
<tr>
<td>Zlist</td>
<td>list of random effects design matrices of dimensions $nxl_1, ..., nxl_k$</td>
</tr>
<tr>
<td>Klist</td>
<td>list of known relationship matrices of dimensions $l_1xl_1, ..., l_kxl_k$</td>
</tr>
<tr>
<td>varbetahat</td>
<td>TRUE or FALSE</td>
</tr>
<tr>
<td>varuhat</td>
<td>TRUE or FALSE</td>
</tr>
<tr>
<td>PEVhat</td>
<td>TRUE or FALSE</td>
</tr>
<tr>
<td>test</td>
<td>TRUE or FALSE</td>
</tr>
</tbody>
</table>
Value

- Vu: Estimate of σ_u^2
- Ve: Estimate of σ_e^2
- betahat: BLUEs for β
- uhat: BLUPs for u
- weights: Estimates of kernel weights
- $Xsq\text{testbeta}$: A χ^2 test statistic based for testing whether the fixed effect coefficients are equal to zero.
- $pval\text{beta}$: p-values obtained from large sample theory for the fixed effects. We report the p-values adjusted by the "padjust" function for all fixed effect coefficients.
- $Xsq\text{testu}$: A χ^2 test statistic based for testing whether the BLUPs are equal to zero.
- $pvalu$: p-values obtained from large sample theory for the BLUPs. We report the p-values adjusted by the "padjust" function.
- varuhat: Large sample variance for the BLUPs.
- varbetahat: Large sample variance for the β's.
- PEVuhat: Prediction error variance estimates for the BLUPs.
- loglik: Loglikelihood for the model.

Examples

```r
### example
# Data from Gaussian process with three
# (total four, including residuals) independent
# sources of variation

n=80
M1<-matrix(rnorm(n*10), nrow=n)
M2<-matrix(rnorm(n*20), nrow=n)
M3<-matrix(rnorm(n*5), nrow=n)

# Relationship matrices
K1<-cov(t(M1))
K2<-cov(t(M2))
K3<-cov(t(M3))
K1=K1/mean(diag(K1))
K2=K2/mean(diag(K2))
K3=K3/mean(diag(K3))

# Generate data
covY<-2*(.2*K1+.7*K2+.1*K3)+diag(n)
Y<-10+crossprod(chol(covY), rnorm(n))
```
#training set
Trainsamp<-sample(1:80, 60)

funout<-emmremlMultiKernel(y=Y[Trainsamp], X=matrix(rep(1, n)[Trainsamp], ncol=1),
Zlist=list(diag(n)[Trainsamp,], diag(n)[Trainsamp,], diag(n)[Trainsamp,]),
Klist=list(K1, K2, K3),
varbetahat=FALSE, varuhat=FALSE, PEVwhat=FALSE, test=FALSE)
weights

#Correlation of predictions with true values in test set
uhatmat<-matrix(funout$uhat, ncol=3)
uhatvec<-rowSums(uhatmat)
cor(Y[-Trainsamp], uhatvec[-Trainsamp])

emmremlMultivariate

Function to fit multivariate Gaussian mixed model with known covariance structure.

Description

This function estimates the parameters of the model

\[Y = BX + GZ + E \]

where \(Y \) is the \(dxn \) matrix of response variable, \(X \) is a \(qxn \) known design matrix of fixed effects, \(Z \) is a \(lxn \) known design matrix of random effects, \(B \) is \(dxq \) matrix of fixed effects coefficients and \(G \) and \(E \) are independent matrix variate variables with \(N_{dxl}(0, V_G, K) \) and \(N_{dxn}(0, V_E, I_n) \) correspondingly. It also produces the BLUPs for the random effects \(G \) and some other statistics.

Usage

```r
emmremlMultivariate(Y, X, Z, K, varBhat=FALSE, varGhat=FALSE, PEVWhat=FALSE, test=FALSE, tolpar=1e-06, tolparinv=1e-06)
```

Arguments

- **Y** \(dxn \) matrix of response variable
- **X** \(qxn \) known design matrix of fixed effects
- **Z** \(lxn \) known design matrix of random effects
- **K** \(lx1 \) matrix of known relationships
- **varBhat** TRUE or FALSE
- **varGhat** TRUE or FALSE
- **PEVWhat** TRUE or FALSE
- **test** TRUE or FALSE
- **tolpar** tolerance parameter for convergence
- **tolparinv** tolerance parameter for matrix inverse
Value

- \(V_g \): Estimate of \(V_G \)
- \(V_e \): Estimate of \(V_E \)
- \(\hat{b} \): BLUEs for \(B \)
- \(\hat{g} \): BLUPs for \(G \)
- \(\chi^2 \): Test statistics for testing whether the fixed effect coefficients are equal to zero.
- \(p values \): Pvalues obtained from large sample theory for the fixed effects. We report the pvalues adjusted by the "padjust" function for all fixed effect coefficients.
- \(\chi^2 \): Test statistic values for testing whether the BLUPs are equal to zero.
- \(\hat{V}_g \): Large sample variance for BLUPs.
- \(\hat{V}_b \): Large sample variance for the elements of \(B \).
- \(PEV_{\hat{g}} \): Prediction error variance estimates for the BLUPs.

Examples

```r
l <- 20
m <- 15
m <- 40

M <- matrix(rbinom(m * l, 1, 2), nrow = l)
rownames(M) <- paste("l", 1:nrow(M))
beta1 <- rnorm(m) * exp(rbinom(m, 5, 0.2))
beta2 <- rnorm(m) * exp(rbinom(m, 5, 1))
beta3 <- rnorm(m) * exp(rbinom(m, 5, 1)) + beta2

g1 <- M * beta1
g2 <- M * beta2
g3 <- M * beta3
e1 <- sd(g1) * rnorm(l)
e2 <- (-e1 * 2 * sd(g2) / sd(g1) + .25 * sd(g2) / sd(g1)) * rnorm(l)
e3 <- (e1 + .25 * sd(g2) / sd(g1) + .25 * sd(g2) / sd(g1)) * rnorm(l)

y1 <- -10 + g1 + e1
y2 <- -50 + g2 + e2
y3 <- -5 + g3 + e3

Y <- rbind(t(y1), t(y2), t(y3))
rownames(Y) <- rownames(M)
cov(t(Y))
Y[1:3, 1:5]

K <- cov(t(M))
K <- K / mean(diag(K))
rownames(K) <- colnames(K) <- rownames(M)
X <- matrix(1, nrow = 1, ncol = 1)
```
colnames(X) <- rownames(M)
Z <- diag(1)
rownames(Z) <- colnames(Z) <- rownames(M)
SampleTrain <- sample(rownames(Z), n)
Ztrain <- Z[rownames(Z) %in% SampleTrain,]
Ztest <- Z[!(rownames(Z) %in% SampleTrain),]

For a quick answer, tolpar is set to 1e-4. Correct this in practice.
outfunc <- emmremlMultivariate(Y = Y %*% t(Ztrain),
X = X %*% t(Ztrain), Z = t(Ztrain),
K = K, tolpar = 1e-4, varBhat = FALSE,
varGhat = FALSE, PEVGhat = FALSE, test = FALSE)
Yhatest <- outfunc$Gpred %*% t(Ztest)

cor(cbind(Ztest %*% Y[1,], Ztest %*% outfunc$Gpred[1,],

outfuncRidgeReg <- emmremlMultivariate(Y = Y %*% t(Ztrain), X = X %*% t(Ztrain), Z = t(Ztrain %*% M),
K = diag(m), tolpar = 1e-5, varBhat = FALSE, varGhat = FALSE,
PEVGhat = FALSE, test = FALSE)
Gpred2 <- outfuncRidgeReg$Gpred %*% t(M)
cor(Ztest %*% Y[1,], Ztest %*% Gpred2[1,])
cor(Ztest %*% Y[2,], Ztest %*% Gpred2[2,])
cor(Ztest %*% Y[3,], Ztest %*% Gpred2[3,])
Index

EMMREML, 2
emmreml, 2
emmremlMultiKernel, 4
emmremlMultivariate, 6