Package ‘EMT’

November 2, 2021

Type Package

Title Exact Multinomial Test: Goodness-of-Fit Test for Discrete Multivariate Data

Version 1.2

Date 2021-10-31

Author Uwe Menzel

Maintainer Uwe Menzel <uwemenzel@gmail.com>

Description Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the package capable of solving high-dimensional problems.

License GPL

LazyLoad yes

Repository CRAN

Date/Publication 2021-11-02 19:10:04 UTC

NeedsCompilation no

R topics documented:

EMT-package .. 2
EMT-internal .. 2
multinomial.test .. 3
plotMultinom .. 6

Index 7
EMT-package

Exact Multinomial Test: Goodness-of-Fit Test for Discrete Multivariate Data

Description

The package provides functions to carry out a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. A p-value can be calculated using different distance measures between observed and expected frequencies. A Monte Carlo method is provided to make the package capable of solving high-dimensional problems. The main user functions are `multinomial.test` and `plotMultinom`.

Details

- **Package:** CCP
- **Type:** Package
- **Version:** 0.1
- **Date:** 2009-12-14
- **License:** GPL

Author(s)

Uwe Menzel

Maintainer: Uwe Menzel <uwemenzel@gmail.com>

EMT-internal

Internal functions for the EMT package

Description

Internal functions for the EMT package

Usage

- `ExactMultinomialTest(observed, prob, size, groups, numEvents)`
- `ExactMultinomialTestChisquare(observed, prob, size, groups, numEvents)`
- `MonteCarloMultinomialTest(observed, prob, size, groups, numEvents, ntrial)`
- `MonteCarloMultinomialTestChisquare(observed, prob, size, groups, numEvents, ntrial)`
- `chisqStat(observed, expected)`
- `findVectors(groups, size)`
Arguments

- **observed**: vector describing the observation: contains the *observed numbers* of items in each category.
- **prob**: vector describing the model: contains the *hypothetical probabilities* corresponding to each category.
- **expected**: vector containing the expected numbers of items in each category under the assumption that the model is valid.
- **size**: sample size, sum of the components of the vector `observed`.
- **groups**: number of categories in the experiment.
- **numEvents**: number of possible outcomes of the experiment.
- **ntrial**: number of simulated samples in the Monte Carlo approach.

Details

These functions are not intended to be called by the user.

multinomial.test *Exact Multinomial Test: Goodness-of-Fit Test for Discrete Multivariate Data*

Description

Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the function capable of solving high-dimensional problems.

Usage

```r
multinomial.test(observed, prob, useChisq = FALSE,
                 MonteCarlo = FALSE, ntrial = 1e6)
```

Arguments

- **observed**: vector describing the observation: contains the *observed numbers* of items in each category.
- **prob**: vector describing the model: contains the *hypothetical probabilities* corresponding to each category.
- **useChisq**: if TRUE, Pearson’s chisquare is used as a distance measure between observed and expected frequencies.
- **MonteCarlo**: if TRUE, a Monte Carlo approach is used.
- **ntrial**: number of simulated samples in the Monte Carlo approach.
Details

The Exact Multinomial Test is a Goodness-of-fit test for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. In the experimental setup belonging to the test, \(n \) items fall into \(k \) categories with certain probabilities (sample size \(n \) with \(k \) categories). The **observation**, described by the vector `observed`, indicates how many items have been observed in each category. The **model**, determined by the vector `prob`, assigns to each category the hypothetical probability that an item falls into it. Now, if the observation is unlikely to have occurred under the assumption of the model, it is advisable to regard the model as **not** valid. The p-value estimates how likely the observation is, given the model. In particular, low p-values suggest that the model is **not** valid. The **default approach** used by `multinomial.test` obtains the p-values by calculating the exact probabilities of all possible outcomes given \(n \) and \(k \), using the multinomial probability distribution function `dmultinom` provided by R. Then, by default, the p-value is obtained by summing the probabilities of all outcomes which are less likely than the observed outcome (or equally likely as the observed outcome), i.e. by summing all \(p(i) \leq p(\text{observed}) \) (distance measure based on probabilities). Alternatively, the p-value can be obtained by summing the probabilities of all outcomes connected with a chisquare no smaller than the chisquare connected with the actual observation (distance measure based on chisquare). The latter is triggered by setting `useChisq = TRUE`. Having a sample of size \(n \) in an experiment with \(k \) categories, the number of distinct possible outcomes is the binomial coefficient \(\binom{n+k-1}{k-1} \). This number grows rapidly with increasing parameters \(n \) and \(k \). If the parameters grow too big, numerical calculation might fail because of time or memory limitations. In this case, usage of a **Monte Carlo approach** provided by `multinomial.test` is suggested. A Monte Carlo approach, activated by setting `MonteCarlo = TRUE`, simulates withdrawal of \(n_{\text{trial}} \) samples of size \(n \) from the hypothetical distribution specified by the vector `prob`. The default value for \(n_{\text{trial}} \) is 100000 but might be incremented for big \(n \) and \(k \). The advantage of the Monte Carlo approach is that memory requirements and running time are essentially determined by \(n_{\text{trial}} \) but not by \(n \) or \(k \). By default, the p-value is then obtained by summing the relative frequencies of occurrence of unusual outcomes, i.e. of outcomes occurring less frequently than the observed one (or equally frequent as the observed one). Alternatively, as above, Pearson’s chisquare can be used as a distance measure by setting `useChisq = TRUE`.

Value

- **id**: textual description of the method used.
- **size**: sample size \(n \), equals the sum of the components of the vector `observed`.
- **groups**: number of categories \(k \) in the experiment, equals the number of components of the vector `observed`.
- **numEvents**: number of different events for the model considered.
- **stat**: textual description of the distance measure used.
- **allProb**: vector containing the probabilities (rel. frequencies for the Monte Carlo approach) of all possible outcomes (might be huge for big \(n \) and \(k \)).
- **criticalValue**: the critical value of the hypothesis test.
- **ntrial**: number of trials if the Monte Carlo approach was used, `NULL` otherwise.
- **p.value**: the calculated p-value rounded to four significant digits.
Note

For two categories ($k = 2$), the test is called Exact Binomial Test.

Author(s)

Uwe Menzel <uwemenzel@gmail.com>

References

See Also

The Multinomial Distribution: `dmultinom`

Examples

```r
## Load the EMT package:
library(EMT)

## Input data for a three-dimensional case:
observed <- c(5,2,1)
prob <- c(0.25, 0.5, 0.25)

## Calculate p-value using default options:
out <- multinomial.test(observed, prob)
# p.value = 0.0767

## Plot the probabilities for each event:
plotMultinom(out)

## Calculate p-value for the same input using Pearson's chisquare:
out <- multinomial.test(observed, prob, useChisq = TRUE)
# p.value = 0.0596 ; not the same!

## Test the hypothesis that all sides of a dice have the same probabilities:
prob <- rep(1/6, 6)
observed <- c(4, 5, 2, 7, 0, 1)
out <- multinomial.test(observed, prob)
# p.value = 0.0357 -> better get another dice!

# the same problem using a Monte Carlo approach:
## Not run:
out <- multinomial.test(observed, prob, MonteCarlo = TRUE, ntrial = 5e+6)

## End(Not run)
```
plotMultinom

Plot the Probability distribution for the Exact Multinomial Test

Description
This function takes the results of multinomial.test as input and plots the calculated probability distribution.

Usage
plotMultinom(listMultinom)

Arguments
listMultinom a list created by running the function multinomial.test.

Details
The function plotMultinom displays a barplot of the probabilities for the individual events. The probabilities are shown in descending order from the left to the right. Events contributing to the p-value are marked red. Plots are only made if the number of different events is lower than or equal to 100. Furthermore, plots are not made for both Monte-Carlo methods (no large arrays are stored within these functions in order to save memory).

Value
The first argument (listMultinom) is returned without modification.

Author(s)
Uwe Menzel <uwemenzel@gmail.com>

See Also
The Multinomial Distribution: multinomial.test

Examples

Load the EMT package:
library(EMT)

input and calculation of p-values:
observed <- c(5,2,1)
prob <- c(0.25, 0.5, 0.25)
out <- multinomial.test(observed, prob) # p.value = 0.0767

Plot the probability distribution:
plotMultinom(out)
Index

* htest
 EMT-package, 2
 multinominal.test, 3
 plotMultinom, 6
* multivariate
 EMT-package, 2
 multinominal.test, 3
 plotMultinom, 6

chisqStat (EMT-internal), 2

dmultinom, 4, 5

EMT (EMT-package), 2
EMT-internal, 2
EMT-package, 2
ExactMultinomialTest (EMT-internal), 2
ExactMultinomialTestChisquare (EMT-internal), 2

findVectors (EMT-internal), 2
MonteCarloMultinomialTest (EMT-internal), 2
MonteCarloMultinomialTestChisquare (EMT-internal), 2
multinomial.test, 3, 6

plotMultinom, 6