Package ‘ESKNN’

September 13, 2015

Type Package
Title Ensemble of Subset of K-Nearest Neighbours Classifiers for Classification and Class Membership Probability Estimation
Version 1.0
Date 2015-09-13
Author Asma Gul, Aris Perperoglou, Zardad Khan, Osama Mahmoud, Werner Adler, Miftahuddin Miftahuddin, and Berthold Lausen
Maintainer Asma Gul <agul@essex.ac.uk>
Description Functions for classification and group membership probability estimation are given. The issue of non-informative features in the data is addressed by utilizing the ensemble method. A few optimal models are selected in the ensemble from an initially large set of base k-nearest neighbours (KNN) models, generated on subset of features from the training data. A two stage assessment is applied in selection of optimal models for the ensemble in the training function. The prediction functions for classification and class membership probability estimation return class outcomes and class membership probability estimates for the test data. The package includes measure of classification error and brier score, for classification and probability estimation tasks respectively.

Imports caret, stats
LazyLoad yes
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2015-09-13 09:22:47

R topics documented:

ESkNN-package .. 2
esknnClass ... 2
esknnProb ... 4
hepatitis ... 6
Predict.esknnClass ... 7
Description

Functions for building an ensemble of optimal k-nearest neighbours (kNN) models for classification and class membership probability estimation are provided. To address the issue of non-informative features in the data. A set of base kNN models is generated and a subset of models is selected for the ensemble based on the individual and combined performance of these models. Out-of-bag data and an independent training data set is used for the performance assessment of models individually and collectively. Class labels and class membership probability estimates are returned by the prediction functions. Other measures such as confusion matrix, classification error rate, and brier scores etc, are also returned by the functions.

Details

- **Package:** ESKNN
- **Type:** Package
- **Version:** 1.0
- **Date:** 2015-09-13
- **License:** GPL (>= 2)

Author(s)

Asma Gul, Aris Perperoglou, Zardad Khan, Osama Mahmoud, Miftahuddin, Werner Adler, and Berthold Lausen

Maintainer: Asma Gul <agul@essex.ac.uk>

References

esknnClass

Train ensemble of subset of k-nearest neighbours classifiers for classification
Description

Constructing m, models and search for the optimal models for classification.

Usage

esknnClass(xtrain, ytrain, k = NULL, q = NULL, m = NULL, ss = NULL)

Arguments

xtrain A matrix or data frame of size n x d dimension where n is the number of traing observation and d is the number of features.
ytrain A vector of class labels of the training data. Class labels should be factor of two levels (0,1) represented by variable Class in the data..
k Number of nearest neighbours to be considered, when NULL then the default is set to k=3.
q Percent of models to be selected from the initial set m.
m Number of models to be generated in the first stage, when NULL the default is m=501.
ss Feature subset size to be selected from d features for each bootstrap sample, when NULL the default is (number of features)/3.

Value

trainfinal List of the extracted optimal models.
fsfinal List of the features used in each selected models.

Author(s)

Asma Gul <agul@essex.ac.uk>

References

See Also

Predict.esknnClass

Examples

Load the data
data(hepatitis)
data <- hepatitis

Divide the data into testing and training parts
esknnProb

Train the ensemble of subset of k-nearest neighbours classifiers for estimation of class membership probability.

Description

This function selects a subset of optimal models from a set of m models, initially generated on bootstrap sample with a random feature subset from the training data, for class membership probability estimation. The values for the hyper parameters, for example subset size of the best models from the total initial m models, can be specified by the user otherwise the default values are considered.

Usage

esknnProb(xtrain, ytrain, k = NULL, q = NULL, m = NULL, ss = NULL)

Arguments

xtrain A matrix or data frame of size n x d dimension where n is the number of training observation and d is the number of features.
ytrain A vector of class labels for the training data. Class labels should be factor of two levels (0,1) represented by variable Class in the data.
k Number of nearest neighbours to be considered, when NULL then the default is set to k=3.
q Percent of models to be selected from the initial set m.

Class <- data[, names(data) == "Class"]
data$Class <- as.factor(as.numeric(Class) - 1)
train <- data[sample(1:nrow(data), 0.7*nrow(data)),]
test <- data[-(sample(1:nrow(data), 0.7*nrow(data)))),]
ytrain <- train[, names(train) == "Class"]
xtrain <- train[, names(train) != "Class"]
xtest <- test[, names(test) == "Class"]
ytest <- test[, names(test) == "Class"]

Train esknnClass
model <- esknnClass(xtrain, ytrain, k = NULL)

Predict on test data
resClass <- Predict.esknnClass(model, xtest, ytest, k = NULL)

Returning Objects are predicted class labels, confusion matrix and classification error
resClass$PredClass
resClass$ConfMatrix
resClass$ClassError
Number of models to be generated in the first stage, when NULL the default is m=501.

Feature subset size to be selected from d features for each bootstrap sample, when NULL the default is (number of features)/3.

Value

trainfinal List of the extracted optimal models.
fsfinal List of the features used in each selected models.

Author(s)

Asma Gul <agul@essex.ac.uk>

References

See Also

Predict.esknnProb

Examples

```r
# Load the data

data(sonar)
data <- sonar

# Divide the data into testing and training

Class <- data[, names(data) == "Class"]
data$Class <- as.factor(as.numeric(Class) - 1)
train <- data[sample(1:nrow(data), 0.7*nrow(data))]

test <- data[-(sample(1:nrow(data), 0.7*nrow(data)))]
ytrain <- train[, names(train) == "Class"]
xtrain <- train[, names(train) != "Class"]
ytest <- test[, names(test) == "Class"]
xtest <- test[, names(test) != "Class"]

# Train esknnProb on training data

model <- esknnProb(xtrain, ytrain, k = NULL)

# Predict on test data

resProb <- Predict.esknnProb(model, xtest, ytest, k = NULL)

## Returning Objects
```
Description

This data set is about hepatitis disease. The data set is obtained from UCI machine learning repository. There are 155 observations in total, however this data set consists of 80 observations after removing the observations with missing values. There are 19 features/attributes where 13 attributes are binary while 6 attributes are discrete valued. The observations are categorized in two classes classes die and live. There are 13 observations in class "die" and "67" in class live.

Usage

data(hepatitis)

Format

A data frame with 80 observations on the following 20 variables.

Age age of the patients in years, from 20 to 80 years.
Sex Gender of patient, a factor at two levels coded by 1 (male) and 2 (female).
Steroid Steroid treatment, a factor at two levels coded by 1 (yes) and 2 (no).
Antivirals Antivirals medication, a factor at two levels 1 (yes) and 2 (no).
Fatigue Fatigue is a frequent and disabling symptom reported by patients with chronic hepatitis, a factor at two levels 1 (yes) and 2 (no).
Malaise Malaise one of the symptoms of hepatitis, a factor at two levels 1 (yes) and 2 (no).
Anorexia Anorexia, loss of appetite, a factor at two levels 1 (yes) and 2 (no).
LiverBig The size of liver increased or fatty, a factor at two levels 1 (yes) and 2 (no).
LiverFirm A factor at two levels 1 (yes) and 2 (no).
SpleenPalpable Splenomegaly is an enlargement of the spleen, a factor at two levels 1 (yes) and 2 (no).
Spiders Enlarged blood vessels that resemble little spiders, a factor at two levels 1 (yes) and 2 (no).
Ascites Ascites is the presence of excess fluid in the peritoneal cavity, a factor at two levels 1 (yes) and 2 (no).
Varices a factor at two levels 1 (yes) and 2 (no)).
Bilirubin Bilirubin is a substance made when the body breaks down old red blood cells, continuous feature
AlkPhosphate Alkaline phosphatase is an enzyme made in liver cells and bile ducts, a discrete valued feature reveals level Alkaline phosphatase.
Predict.esknnClass

Sgot A discrete valued feature.

AlbuMin A continuous feature.

ProTime A discrete valued feature.

Histology a factor at two levels 1 (yes) and 2 (no).

Class a factor at two levels 1(Die) or 2(Live).

Source

This data set is available on: https://archive.ics.uci.edu/ml/datasets/Hepatitis

Examples

data(hepatitis)

str(hepatitis)

Description

Classification prediction for test data on the trained esknnClass object for.

Usage

`Predict.esknnClass(optModels, xtest, ytest=NULL, k = NULL)`

Arguments

- `optModels`: An object of esknnClass
- `xtest`: A matrix or data frame test set features/attributes.
- `ytest`: Optional: A vector of length m consisting of class labels for the test data. Should be binary (0,1), representing by a variable Class in the data. If provided then confusion matrix and classification error rate is returned.
- `k`: Number of nearest neighbors considered. The same value is considered as for training in esknnClass.

Value

- `predClass`: A vector of predicted classes of test set observations.
- `ConfMatrix`: Confusion matrix return a matrix of cross classification counts based on the estimated class labels and the true class labels of test observations. This matrix is returned if ytest is given.
- `ClassError`: Classification error rate of the classifier for test set observations. This is returned if ytest is provided.
Author(s)
Asma Gul <agul@essex.ac.uk>

References

See Also
esknnClass

Examples
Load the data

data(hepatitis)
data <- hepatitis

Splitting the data into testing and training parts.
Class <- data[,names(data)=="Class"]
data$Class<-as.factor(as.numeric(Class)-1)
train <- data[sample(1:nrow(data),0.7*nrow(data)),]
test <- data[-(sample(1:nrow(data),0.7*nrow(data))),]
ytrain<-train[,names(train)="Class"]
xtrain<-train[,names(train)!="Class"]
xtest<-test[,names(test)="Class"]
ytest <- test[,names(test)="Class"]

Train esknnClass using training data
model<-esknnClass(xtrain, ytrain,k=0)

Predict on test data
resClass<-Predict.esknnClass(model,xtest,ytest,k=0)

Returning Objects are predicted class labels, confusion matrix and classification error
resClass$predClass
resClass$ConfMatrix
resClass$ClassError

Predict.esknnProb
Prediction function returning class membership probability estimates
Description
This function provides class membership probability estimates for the test set observations.

Usage
Predict.esknnProb(optModels, xtest, ytest, k = NULL)

Arguments
optModels An object of class esknnProb.
xtest A matrix or data frame test set features/attributes.
ytest Optional: A vector of class labels for the test data. Class labels should be factor of two levels (0,1) represented by variable Class in the data. The Brier score is returned if this vector is given.
k Number of nearest neighbors considered. The same value should be considered as for training in esknnProb

Value
predprob A vector of estimated class membership probabilities of test set observations.
brierscore A vector of Brier Score based on the estimated probabilities and true class label of test set observations. This vector is returned if ytest is given.

Author(s)
Asma Gul <agul@essex.ac.uk>

References

See Also
esknnProb

Examples
Load the data
data(sonar)
data <- sonar

Divide the data into testing and training parts
Class <- data[,names(data)="Class"]

Class Variable must be a factor in (0,1)
```r
data$Class<-as.factor(as.numeric(Class)-1)
train <- data[sample(1:nrow(data),0.7*nrow(data)),]
test <- data[-(sample(1:nrow(data),0.7*nrow(data))),]
ytrain<-train[,names(train)=="Class"]
xtrain<-train[,names(train)!="Class"]
xtest<-test[,names(test)!="Class"]
ytest <- test[,names(test)=="Class"]

# Train esknnProb
model<-esknnProb(xtrain, ytrain,k=NULL)

# Predict on test data
resProb<-Predict.esknnProb(model,xtest,ytest,k=NULL)

## Returning Objects
resProb$PredProb
resProb$BrierScore
```

Description

This data set is a collection of sonar signals, coded as 60 continuous attributes on 208 observations. The sonar signals are obtained from a variety of different aspect angles, spanning 90 degrees for mines and 180 degrees for rocks. The task is classification of sonar signals in two categories, signals bounced off a "rock" or a "metal cylinder". Each pattern in the data is a set of 60 numbers (continuous) in the range 0.0 to 1.0, where each number represents the energy within a particular frequency band, integrated over a certain period of time. From total 208 observations, 111 obtained by bouncing sonar signals off a metal cylinder at various angles and under various conditions, is labeled with "M" and 97 patterns obtained from rocks under similar conditions is labeled with "R".

Usage

```r
data(sonar)
```

Format

A data frame with 208 observations on 60 features/attributes in two classes. All the features are numerical and the class is nominal.

Source

This data set is available on:

Sonar

Sonar, Mines vs. Rocks.
References

Examples

```r
data(sonar)
str(sonar)
```
Index

*Topic Predict.esknnProb
 Predict.esknnProb, 8
*Topic datasets
 hepatitis, 6
 sonar, 10
*Topic esknnClass
 esknnClass, 2
 esknnProb, 4
*Topic esknn
 esknnClass, 2
 esknnProb, 4
 Predict.esknnProb, 8
*Topic packages
 Predict.esknnClass, 7
*Topic package
 ESkNN-package, 2
ESkNN (ESkNN-package), 2
ESkNN-package, 2
esknnClass, 2, 8
esknnProb, 4, 9

hepatitis, 6

Predict.esknnClass, 3, 7
Predict.esknnProb, 5, 8

sonar, 10