Package ‘EXRQ’

July 6, 2016

Type Package
Title Extreme Regression of Quantiles
Version 1.0
Date 2016-07-06
Author Huixia Judy Wang
Maintainer Huixia Judy Wang <judywang@gwu.edu>
Description Estimation for high conditional quantiles based on quantile regression.
Depends quantreg, mnormt
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-06 23:48:41

R topics documented:
est.gamma.func ... 2
Estc.func ... 2
EVI.CFG.func .. 3
PowT.1tau.func ... 4
qpareto ... 5
rpareto ... 5
select.k.func .. 6
testC.EVI ... 7
ThreeStage .. 8
TwoStage ... 10

Index 12
est.gamma.func

Estimation of the Extreme Value Index on the Original Scale

Description

This function estimates the extreme value index on the original scale based on the estimated intermediate conditional quantiles on the transformed scale.

Usage

```r
est.gamma.func(taus, Lam.Q, lam, a = 0, tol)
```

Arguments

- `taus`: a grid of intermediate high quantile levels
- `Lam.Q`: a vector of the same length as `taus`, representing the estimated intermediate conditional quantiles of Y (at `taus`) on the transformed scale
- `lam`: the power-transformation parameter
- `a`: location shift parameter in the power transformation (introduced to avoid negative y values)
- `tol`: the tolerance level for checking quantile crossing issue

Value

A list is returned with the following components.

- `gamma.x`: the estimated EVI. If quantile crossing is too severe, which suggests that the estimated intermediate conditional quantiles are unstable, then NA is returned.
- `Q`: the estimated conditional quantile of Y on the original scale

estc.func

Estimation of the C vector

Description

This function estimates the C vector involved in the function test.EVI for testing the constancy of EVI.

Usage

```r
estc.func(y, x, tau = 0.99, M = 2)
```
Arguments

- **y**: a vector of n untransformed responses
- **x**: an n x p matrix of n observations and p predictors
- **tau**: an upper quantile level close to one
- **M**: a constant larger than one that is used for estimating the c vector and thus K(x) function. The default is two

Value

A p-dimensional vector is returned.

Description

Hill Estimator of the Extreme Value Index

Usage

```r
EVI.CFG.func(x, tol = 1e-04, min.prop = 0.3, taus)
```

Arguments

- **x**: the estimated quantiles at intermediate quantile levels
- **tol**: the tolerance level used for checking quantile crossing
- **min.prop**: the minimum proportion of quantiles that are estimated higher than the adjacent lower quantiles
- **taus**: the corresponding quantile levels

Details

The function estimates the extreme value index using Hill estimator based on the estimated intermediate quantiles.

Value

The estimated extreme value index is returned. If the proportion of cases with quantile crossing is too high, an NA is returned.

References

Description

This function estimates the power transformation parameter at a single given quantile level.

Usage

PowT.1tau.func(y, x, tau, lams = seq(-2, 2, 0.1), a)

Arguments

y a vector of length n representing the response
x a n x p matrix of n observations and p predictors
tau the quantile level of interest
lams a set of transformation parameters for grid search
a the location shift

Details

This function estimates the transformation parameter lam following the estimation method in Mu and He (2007) such that the conditional quantile of the transformed response is linear in covariates. The transformed response is defined as

\[\Lambda(y) = (y + a)^\lambda - 1\lambda, \text{if } \lambda \neq 0; = \log(y + a)\text{if } \lambda = 0. \]

Value

A list is returned with the following components

lam: the estimated transformation parameter
coef: the estimated quantile coefficient from the power-transformed linear quantile regression

References

qpareto
Quantile of the Pareto Distribution

Description
Quantile of the Pareto Distribution

Usage
`qpareto(p, gamma)`

Arguments
- `p`
 the quantile level
- `gamma`
 the shape parameter

Value
the pth quantile

rpareto
Random Generation for the Pareto Distribution

Description
Random Generation for the Pareto Distribution

Usage
`rpareto(n, gamma)`

Arguments
- `n`
 number of observations
- `gamma`
 the shape parameter

Value
a vector of n i.i.d. random variables from the Pareto distribution
select.k.func

Selection of the Tuning Parameter k

Description
This function selects the tuning parameter k, the number of upper order statistics involved in Hill estimator of EVI among a grid of points following the method described in Section 3.3 of Wang and Li (2013). The method selects k as the value that minimizes the discrepancy between the estimated x-dependent EVI on the transformed scale and lam times the estimated x-dependent EVI on the original scale.

Usage

select.k.func(y, x, Lam.y, lam, a, max.tau, grid.k, n)

Arguments

- y: a vector of n untransformed responses
- x: a n x p matrix of n observations and p predictors
- Lam.y: a vector of n power-transformed responses
- lam: the power-transformation parameter
- a: location shift parameter in the power transformation (introduced to avoid negative y values)
- max.tau: the upper bound of the intermediate quantile levels
- grid.k: the grid for the number of upper order statistics involved in Hill estimator
- n: the number of observations

Value

the selected k is returned

References

Testing the Constancy of EVI Over Covariates

Description

This function tests whether the extreme value index of Y, gamma(x), is constant or varying across the covariate x by using the test procedure described in Section 3.4 of Wang and Li (2013).

Usage

testC.EVI(y, x, grid.lam = seq(-2, 2, 0.1), grid.k, tau.lam = 0.9, u.x = 0, a = 0, M = 2, tol = 1e-04)

Arguments

y a vector of n untransformed responses
x a n x p matrix of n observations and p predictors
grid.lam a grid of points for power-transformation parameter
grid.k a grid of points for k, the number of upper order statistics involved in Hill estimator
tau.lam the quantile level used for estimating the transformation parameter
u.x the proportion to be trimmed in the x direction
a location shift parameter in the power transformation (introduced to avoid negative y values)
M a constant larger than one that is used for estimating the c vector and thus K(x) function. The default is two
tol the tolerance level for checking quantile crossing issue

Value

A list is returned with the following components
lam: the estimated power-transformation parameter
k: the selected tuning parameter k, the number of upper order statistics involved in Hill estimator
Tm: the proposed test statistic
scaledTm: the standardized test statistic
pval.iid: the p-value based on iid assumption, that is, assuming that K(x)=1
pval.nid: the p-value based on estimated K(x)=(X'c)^(1/EVI)
gamma.bar: the pooled EVI estimator
hat.gamma: a N-dimensional vector consisting of the estimated x-dependent EVI at x=xstar
xstar: a N x p matrix of N observations and p predictors
ThreeStage

References

Examples

library(EXRQ)

n = 500
tau.e = c(0.99, 0.993, 0.995)
set.seed(12368819)
x1 = runif(n, -1, 1)
x2 = runif(n, -1, 1)
sqrt.y = 2 + x1 + x2 + (1+0.8*x1)*rpareto(n, 0.5)
x = as.matrix(cbind(x1, x2))
y = sqrt.y^2
out = test.C.EVI(y, x, grid.lam = seq(-0.5, 1.5, 0.1), grid.k = 50, tau.lam = 0.9)
(Tval = out$scaled.Tm)
(pval.iid = out$pval.iid)
(pval.nid = out$pval.nid)

ThreeStage

Three-Stage Extreme Conditional Quantile Estimator

Description

Provides the estimation of extreme conditional quantile using the three-stage estimation method in Wang and Li (2013). Specifically the function estimates the tau.e-th conditional quantile of Y given x=xstar based on the power-transformed quantile regression model and extreme value theory. The method is based on Hill estimator for the extreme value index and works for heavy-tailed distributions (on the original scale).

Usage

ThreeStage(y, x, xstar, tau.e, grid.lam = seq(-2, 2, 0.1), grid.k, tau.lam, a = 0, tol = 1e-04)

Arguments

- **y**: a vector of n responses
- **x**: a n x p matrix of n observations and p predictors
- **xstar**: a m x p matrix of m observations and p predictors
- **tau.e**: the extreme quantile level of interest
- **grid.lam**: the set of lambda (transformation parameter) values for grid search
- **grid.k**: the grid for the number of upper order statistics involved in Hill estimator; used for searching for the data-adaptive k. If the length of grid.k is 1, then k is fixed at grid.k and no selection is performed.
tau.lam the quantile level used for estimating the transformation parameter
a location shift parameter in the power transformation (introduced to avoid negative y values)
tol the tolerance level for checking quantile crossing issue

Value

A list is returned with the following components

- lam: the estimated power-transformation parameter
- k: the selected k, the number of upper order statistics involved in Hill estimator
- gamma.x: the estimated x-dependent extreme value index (EVI)
- cgmma: the pooled EVI estimation
- Q3Stage: the three-stage estimator of the tau.e-th conditional quantile of Y given xstar based on the x-dependent EVI estimation
- Q3StageP: the three-stage estimator of the tau.e-th conditional quantile of Y given xstar based on the pooled EVI estimation

References

See Also

TwoStage

Examples

```r
#A simulation example (sqrt transformation, heteroscedastic error)
library(ExRQ)
n=500
tau.e = c(0.99, 0.993, 0.995)
set.seed(12368819)
x1 = runif(n, -1, 1)
x2 = runif(n, -1, 1)
sqrt(y = 2 + x1 + x2 + (1+0.8*x1)*rpareto(n, 0.5)
x = as.matrix(cbind(x1, x2))
y = sqrt(y^2)
xstar = rbind(c(-0.5,0),c(0,-0.5),c(0,0),c(0.5,0),c(0,0.5))
## 3Stage estimator
out.3stage <- ThreeStage(y, x, xstar, tau.e, grid.lam=seq(-0.5, 1.5, 0.1), grid.k=50, tau.lam=0.9)
```
TwoStage

Two-Stage Extreme Conditional Quantile Estimator

Description

This function provides the Two-Stage estimator in Wang, Li and He (2012) for conditional extreme quantiles based on covariate-dependent extreme value index estimation. The intermediate conditional quantile is estimated by quantile regression of the response on the original scale without any transformation. The method is based on Hill estimator for the extreme value index and works for heavy-tailed distributions.

Usage

TwoStage(y, x, xstar, tau.e, k, tol = 1e-04)

Arguments

- y: a vector of length n representing the response
- x: a n x p matrix of n observations and p predictors
- xstar: a m x p matrix of m observations and p predictors representing the covariate of interest
- tau.e: the extreme quantile level of interest
- k: the number of upper order statistics used in Hill estimator
- tol: the tolerance level used for checking quantile crossing

Value

A list of the following components is returned

- Q2Stage: the estimated (extrapolated) conditional extreme quantile of the response given x=xstar at the quantile level tau.e
- gamma.x: the estimated covariate-dependent extreme value index (Hill estimator associated with x=xstar)

References

See Also

ThreeStage
Examples

#A simulation example (sqrt transformation, heteroscedastic error)
library(EXRO)
n=500
tau.e = c(0.99, 0.993, 0.995)
set.seed(12368819)
x1 = runif(n, -1, 1)
x2 = runif(n, -1, 1)
sqrty = R + x1 + x2 + (1+0.8*x1)*rpareto(n, 0.5)
x = as.matrix(cbind(x1, x2))
y = sqrt(y^2)
xstar = rbind(c(-0.5,0),c(0,-0.5),c(0,0),c(0.5,0),c(0,0.5))
2Stage method in Wang, Li and He (2012), no transformation
out.2stage <- TwoStage(y, x, xstar, tau.e, k=50)
Index

est.gamma.func, 2
Estc.func, 2
EVICFG.func, 3
PowT.1tau.func, 4
qpareto, 5
rpareto, 5
select.k.func, 6
testC.EVI, 7
ThreeStage, 8, 10
TwoStage, 9, 10