The introduction employed a simplistic expemple of food web to familiarize the user with the basic commands and options of the EcoDiet package. Here we will use a more realistic example (although still artificial!) to run the different EcoDiet configurations, compare their results and hence higlight the complementarity in the different data used.

The data corresponds to 10 trophic groups with stomach content data, and very distinct isotopic measures.

realistic_stomach_data_path <- system.file("extdata", "realistic_stomach_data.csv",
                                           package = "EcoDiet")
realistic_stomach_data <- read.csv(realistic_stomach_data_path)
knitr::kable(realistic_stomach_data)
X Cod Pout Sardine Shrimps Crabs Bivalves Worms Zooplankton Phytoplankton Detritus
Cod 0 0 0 0 0 0 0 0 0 0
Pout 1 0 0 0 0 0 0 0 0 0
Sardine 9 0 0 0 0 0 0 0 0 0
Shrimps 4 4 29 0 24 0 0 0 0 0
Crabs 1 24 0 0 0 0 0 0 0 0
Bivalves 0 3 0 0 11 0 0 0 0 0
Worms 16 30 0 1 24 0 0 0 0 0
Zooplankton 0 27 6 3 0 0 0 0 0 0
Phytoplankton 0 0 14 10 0 16 0 20 0 0
Detritus 0 0 0 12 19 18 18 0 0 0
full 21 30 29 19 29 27 18 20 0 0
realistic_biotracer_data_path <- system.file("extdata", "realistic_biotracer_data.csv",
                                           package = "EcoDiet")
realistic_biotracer_data <- read.csv(realistic_biotracer_data_path)
knitr::kable(realistic_biotracer_data[c(1:3, 31:33, 61:63), ])
group d13C d15N
1 Cod -12.94144 19.18913
2 Cod -14.96070 20.23939
3 Cod -13.77822 19.48809
31 Pout -13.47127 18.57353
32 Pout -13.16888 17.58714
33 Pout -14.23085 17.38938
61 Sardine -14.56111 16.95231
62 Sardine -15.04729 17.15197
63 Sardine -14.63688 16.90906
library(EcoDiet)

plot_data(biotracer_data = realistic_biotracer_data,
          stomach_data = realistic_stomach_data)

plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4

Yes, we are aware that isotopic data is usually messier, but isn't it a beautiful plot?

The configuration without literature data

We define the configuration we are in, and preprocess the data:

literature_configuration <- FALSE

data <- preprocess_data(biotracer_data = realistic_biotracer_data,
                        trophic_discrimination_factor = c(0.8, 3.4),
                        literature_configuration = literature_configuration,
                        stomach_data = realistic_stomach_data)
#> The model will investigate the following trophic links:
#>               Bivalves Cod Crabs Detritus Phytoplankton Pout Sardine Shrimps
#> Bivalves             0   0     1        0             0    1       0       0
#> Cod                  0   0     0        0             0    0       0       0
#> Crabs                0   1     0        0             0    1       0       0
#> Detritus             1   0     1        0             0    0       0       1
#> Phytoplankton        1   0     0        0             0    0       1       1
#> Pout                 0   1     0        0             0    0       0       0
#> Sardine              0   1     0        0             0    0       0       0
#> Shrimps              0   1     1        0             0    1       1       0
#> Worms                0   1     1        0             0    1       0       1
#> Zooplankton          0   0     0        0             0    1       1       1
#>               Worms Zooplankton
#> Bivalves          0           0
#> Cod               0           0
#> Crabs             0           0
#> Detritus          1           0
#> Phytoplankton     0           1
#> Pout              0           0
#> Sardine           0           0
#> Shrimps           0           0
#> Worms             0           0
#> Zooplankton       0           0

In this configuration, priors are set for each trophic link identified as plausible by the user but the priors are not informed by literature data, and are thus uninformative:

plot_prior(data, literature_configuration)

plot of chunk unnamed-chunk-6plot of chunk unnamed-chunk-6

The marginal prior distributions have different shape depending on the variables:

plot_prior(data, literature_configuration, pred = "Pout")

plot of chunk unnamed-chunk-7plot of chunk unnamed-chunk-7

We define the model, and test if it compiles well with a few iterations and adaptation steps:

model_string <- write_model(literature_configuration = literature_configuration)

mcmc_output <- run_model(textConnection(model_string), data, nb_adapt = 1e1, nb_iter = 1e2)
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 316
#>    Unobserved stochastic nodes: 125
#>    Total graph size: 1104
#> 
#> Initializing model
#> Warning in rjags::jags.model(file = model_file, data = data, inits = inits, :
#> Adaptation incomplete
#> The model took 0.41 secs to be initialized.
#> NOTE: Stopping adaptation
#> The model took 3.13 secs to run.
#> 
#>   /!\ CONVERGENCE PROBLEM /!\
#> Out of the 50 variables, 26 variables have a Gelman-Rubin statistic > 1.1.
#> You should increase the number of iterations of your model with the `nb_iter` argument.

You should now try to run the model until it converges (it should take around half an hour to run, so we won't do it in this vignette):

mcmc_output <- run_model(textConnection(model_string), data, nb_adapt = 1e3, nb_iter = 1e5)

Here are the figures corresponding to the results that have converged:

plot_results(mcmc_output, data)

{width=700px}

{width=700px}

plot_results(mcmc_output, data, pred = "Pout")

{width=550px}

{width=550px}

You can also plot the results for specific prey if you want a clearer figure:

plot_results(mcmc_output, data, pred = "Pout", 
             variable = "PI", prey = c("Bivalves", "Worms"))

{width=550px}

The configuration with literature data

We now change the configuration to add literature data to the model:

literature_configuration <- TRUE
realistic_literature_diets_path <- system.file("extdata", "realistic_literature_diets.csv",
                                               package = "EcoDiet")
realistic_literature_diets <- read.csv(realistic_literature_diets_path)
knitr::kable(realistic_literature_diets)
X Cod Pout Sardine Shrimps Crabs Bivalves Worms Zooplankton Phytoplankton Detritus
Cod 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0 0.0 0 0
Pout 0.4275065 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0 0.0 0 0
Sardine 0.3603675 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0 0.0 0 0
Shrimps 0.0300737 0.5295859 0.0002143 0.0000000 0.0082107 0.0000000 0.0 0.0 0 0
Crabs 0.1410430 0.3332779 0.0000000 0.0000000 0.0000000 0.0000000 0.0 0.0 0 0
Bivalves 0.0000000 0.0006130 0.0000000 0.0000000 0.3441081 0.0000000 0.0 0.0 0 0
Worms 0.0410093 0.1023676 0.0000000 0.0171336 0.4435377 0.0000000 0.0 0.0 0 0
Zooplankton 0.0000000 0.0341557 0.7381375 0.9121505 0.0000000 0.0000000 0.0 0.0 0 0
Phytoplankton 0.0000000 0.0000000 0.2616482 0.0000610 0.0000000 0.9966847 0.0 1.0 0 0
Detritus 0.0000000 0.0000000 0.0000000 0.0706550 0.2041434 0.0033153 1.0 0.0 0 0
pedigree 0.8000000 0.1000000 0.5000000 0.3000000 0.7000000 0.1000000 0.2 0.2 1 1
data <- preprocess_data(biotracer_data = realistic_biotracer_data,
                        trophic_discrimination_factor = c(0.8, 3.4),
                        literature_configuration = literature_configuration,
                        stomach_data = realistic_stomach_data,
                        literature_diets = realistic_literature_diets,
                        nb_literature = 12,
                        literature_slope = 0.5)
#> The model will investigate the following trophic links:
#>               Bivalves Cod Crabs Detritus Phytoplankton Pout Sardine Shrimps
#> Bivalves             0   0     1        0             0    1       0       0
#> Cod                  0   0     0        0             0    0       0       0
#> Crabs                0   1     0        0             0    1       0       0
#> Detritus             1   0     1        0             0    0       0       1
#> Phytoplankton        1   0     0        0             0    0       1       1
#> Pout                 0   1     0        0             0    0       0       0
#> Sardine              0   1     0        0             0    0       0       0
#> Shrimps              0   1     1        0             0    1       1       0
#> Worms                0   1     1        0             0    1       0       1
#> Zooplankton          0   0     0        0             0    1       1       1
#>               Worms Zooplankton
#> Bivalves          0           0
#> Cod               0           0
#> Crabs             0           0
#> Detritus          1           0
#> Phytoplankton     0           1
#> Pout              0           0
#> Sardine           0           0
#> Shrimps           0           0
#> Worms             0           0
#> Zooplankton       0           0

Now we see that the prior distributions are informed by the literature data:

plot_prior(data, literature_configuration)

plot of chunk unnamed-chunk-16plot of chunk unnamed-chunk-16

plot_prior(data, literature_configuration, pred = "Pout")

plot of chunk unnamed-chunk-17plot of chunk unnamed-chunk-17

Again, we verify that the model compiles well:

model_string <- write_model(literature_configuration = literature_configuration)

mcmc_output <- run_model(textConnection(model_string), data, nb_adapt = 1e1, nb_iter = 1e2)
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 316
#>    Unobserved stochastic nodes: 125
#>    Total graph size: 1594
#> 
#> Initializing model
#> Warning in rjags::jags.model(file = model_file, data = data, inits = inits, :
#> Adaptation incomplete
#> The model took 0.46 secs to be initialized.
#> NOTE: Stopping adaptation
#> The model took 3.09 secs to run.
#> 
#>   /!\ CONVERGENCE PROBLEM /!\
#> Out of the 50 variables, 23 variables have a Gelman-Rubin statistic > 1.1.
#> You should increase the number of iterations of your model with the `nb_iter` argument.

You should now try to run the model until it converges (it should take around half an hour to run, so we won't do it in this vignette):

mcmc_output <- run_model(textConnection(model_string), data, nb_adapt = 1e3, nb_iter = 1e5)

Here are the figures corresponding to the results that have converged:

plot_results(mcmc_output, data)