Package ‘EdSurvey’

June 27, 2024

Version 4.0.7

Date 2024-06-25

Title Analysis of NCES Education Survey and Assessment Data

Maintainer Paul Bailey <pbailey@air.org>

Depends R (>= 4.0.0), car (>= 3.1-2), lffactors (>= 1.0.3), Dire (>= 2.2.0)

Imports data.table (>= 1.11.4), Formula, glm2, haven (>= 2.2.0), LaF (>= 0.8.4), lifecycle, lme4, MASS, Matrix (>= 1.5-4.1), methods, NAEPprimer (>= 1.0.1), quantreg, readxl, tibble, wCorr (>= 1.9.8), NAEPirtparams (>= 1.0.0), WeMix (>= 4.0.2), xtable, xml2

URL https://www.air.org/project/nces-data-r-project-edsurvey

BugReports https://github.com/American-Institutes-for-Research/EdSurvey/issues

Description Read in and analyze functions for education survey and assessment data from the National Center for Education Statistics (NCES) <https://nces.ed.gov/>, including National Assessment of Educational Progress (NAEP) data <https://nces.ed.gov/nationsreportcard/> and data from the International Assessment Database: Organisation for Economic Co-operation and Development (OECD) <https://www.oecd.org/>, including Programme for International Student Assessment (PISA), Teaching and Learning International Survey (TALIS), Programme for the International Assessment of Adult Competencies (PIAAC), and International Association for the Evaluation of Educational Achievement (IEA) <https://www.iea.nl/>, including Trends in International Mathematics and Science Study (TIMSS), TIMSS Advanced, Progress in International Reading Literacy Study (PIRLS), International Civic and Citizenship Study (ICCS), International Computer and Information Literacy Study (ICILS), and Civic Education Study (CivEd).

License GPL-2

VignetteBuilder knitr

Suggests knitr, testthat, withr, rmarkdown, RColorBrewer, doParallel, parallel

RoxygenNote 7.3.1
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>downloadPISA</td>
<td>27</td>
</tr>
<tr>
<td>downloadPISA_YAFS</td>
<td>28</td>
</tr>
<tr>
<td>downloadSSOCS</td>
<td>29</td>
</tr>
<tr>
<td>downloadTALIS</td>
<td>30</td>
</tr>
<tr>
<td>downloadTIMSS</td>
<td>31</td>
</tr>
<tr>
<td>downloadTIMSSAdv</td>
<td>32</td>
</tr>
<tr>
<td>download_ePIRLS</td>
<td>33</td>
</tr>
<tr>
<td>drawPVs.sdf</td>
<td>34</td>
</tr>
<tr>
<td>edsurvey.data.frame</td>
<td>35</td>
</tr>
<tr>
<td>edsurvey.data.frame.list</td>
<td>40</td>
</tr>
<tr>
<td>edsurveyTable</td>
<td>43</td>
</tr>
<tr>
<td>edsurveyTable2pdf</td>
<td>46</td>
</tr>
<tr>
<td>es_round</td>
<td>48</td>
</tr>
<tr>
<td>gap</td>
<td>50</td>
</tr>
<tr>
<td>getAllItems</td>
<td>57</td>
</tr>
<tr>
<td>getData</td>
<td>58</td>
</tr>
<tr>
<td>getNHES_SurveyInfo</td>
<td>61</td>
</tr>
<tr>
<td>getPlausibleValue</td>
<td>62</td>
</tr>
<tr>
<td>getWeightJkReplicates</td>
<td>63</td>
</tr>
<tr>
<td>glm.sdf</td>
<td>64</td>
</tr>
<tr>
<td>hasPlausibleValue</td>
<td>68</td>
</tr>
<tr>
<td>isWeight</td>
<td>69</td>
</tr>
<tr>
<td>levelsSDF</td>
<td>70</td>
</tr>
<tr>
<td>lm.sdf</td>
<td>71</td>
</tr>
<tr>
<td>merge.edsurvey.data</td>
<td>75</td>
</tr>
<tr>
<td>mergev</td>
<td>77</td>
</tr>
<tr>
<td>mixed.sdf</td>
<td>79</td>
</tr>
<tr>
<td>mml.sdf</td>
<td>82</td>
</tr>
<tr>
<td>mvrlm.sdf</td>
<td>84</td>
</tr>
<tr>
<td>oddsRatio</td>
<td>88</td>
</tr>
<tr>
<td>parseNAEPdct</td>
<td>89</td>
</tr>
<tr>
<td>parseScript_SPSS</td>
<td>89</td>
</tr>
<tr>
<td>percentile</td>
<td>91</td>
</tr>
<tr>
<td>print.achievementLevels</td>
<td>94</td>
</tr>
<tr>
<td>print.edsurvey.data.frame</td>
<td>95</td>
</tr>
<tr>
<td>print.gap</td>
<td>96</td>
</tr>
<tr>
<td>readBTLS</td>
<td>97</td>
</tr>
<tr>
<td>readCivEDICCS</td>
<td>98</td>
</tr>
<tr>
<td>readECLS_B</td>
<td>99</td>
</tr>
<tr>
<td>readECLS_K1998</td>
<td>101</td>
</tr>
<tr>
<td>readECLS_K2011</td>
<td>102</td>
</tr>
<tr>
<td>readELS</td>
<td>104</td>
</tr>
<tr>
<td>readHSB_Senior</td>
<td>105</td>
</tr>
<tr>
<td>readHSB_Sophomore</td>
<td>107</td>
</tr>
<tr>
<td>readHSLS</td>
<td>108</td>
</tr>
<tr>
<td>readHSTS</td>
<td>110</td>
</tr>
<tr>
<td>readICILS</td>
<td>112</td>
</tr>
<tr>
<td>readNAEP</td>
<td>113</td>
</tr>
</tbody>
</table>
The EdSurvey package uses appropriate methods for analyzing NCES datasets with a small memory footprint. Existing system control files, included with the data, are used to read in and format the data for further processing.
Details

To get started using EdSurvey, see the vignettes for tutorials and the statistical methodologies. Use `vignette("introduction", package="EdSurvey")` to see the vignettes.

The package provides functions called `readNAEP`, `readCivEDICCS`, `readICILS`, `readPIAAC`, `readPIRLS`, `read_ePIRLS`, `readPISA`, `readTALIS`, `readTIMSS`, `readTIMSSAdv`, and `readECLS_K2011` to read in NCES datasets. The functions `achievementLevels`, `cor.sdf`, `edsurveyTable`, `summary2`, `lm.sdf`, `logit.sdf`, `mixed.sdf`, `rq.sdf`, `percentile`, and `gap` can then be used to analyze data. For advanced users, `getData` extracts the data of interest as a data frame for further processing.

Author(s)

Maintainer: Paul Bailey <pbailey@air.org> (ORCID)

Authors:

- Ahmad Emad
- Huade Huo (ORCID)
- Michael Lee (ORCID)
- Yuqi Liao (ORCID)
- Alex Lishinski (ORCID)
- Trang Nguyen (ORCID)
- Qingshu Xie
- Jiao Yu
- Ting Zhang (ORCID)
- Eric Buehler (ORCID)
- Sun-joo Lee
- Blue Webb (ORCID)

Other contributors:

- Emmanuel Sikali <Emmanuel.Sikali@ed.gov> [project director]
- Claire Kelley [contributor]
- Jeppe Bundsgaard [contributor]
- Ren C‘deBaca [contributor]
- Anders Astrup Christensen [contributor]

See Also

Useful links:

- https://www.air.org/project/nces-data-r-project-edsurvey
achievementLevels | Achievement Levels

Description

Returns achievement levels using weights and variance estimates appropriate for the edsurvey.data.frame.

Usage

```r
achievementLevels(
  achievementVars = NULL,
  aggregateBy = NULL,
  data,
  cutpoints = NULL,
  returnDiscrete = TRUE,
  returnCumulative = FALSE,
  weightVar = NULL,
  jrrIMax = 1,
  dropOmittedLevels = TRUE,
  defaultConditions = TRUE,
  recode = NULL,
  returnNumberOfPSU = FALSE,
  returnVarEstInputs = FALSE,
  omittedLevels = deprecated()
)
```

Arguments

- **achievementVars**: character vector indicating variables to be included in the achievement levels table, potentially with a subject scale or subscale. When the subject scale or subscale is omitted, the default subject scale or subscale is used. You can find the default composite scale and all subscales using the function `showPlausibleValues`.

- **aggregateBy**: character vector specifying variables by which to aggregate achievement levels. The percentage column sums up to 100 for all levels of all variables specified here. When set to the default of NULL, the percentage column sums up to 100 for all levels of all variables specified in achievementVars.

- **data**: an edsurvey.data.frame

- **cutpoints**: numeric vector indicating cutpoints. Set to standard NAEP cutpoints for Basic, Proficient, and Advanced by default.

- **returnDiscrete**: logical indicating if discrete achievement levels should be returned. Defaults to TRUE.

- **returnCumulative**: logical indicating if cumulative achievement levels should be returned. Defaults to FALSE. The first and last categories are the same as defined for discrete levels.
achievementLevels

weightVar character string indicating the weight variable to use. Only the name of the weight variable needs to be included here, and any replicate weights will be automatically included. When this argument is NULL, the function uses the default. Use `showWeights` to find the default.

jrrIMax a numeric value. When using the jackknife variance estimation method, the default estimation option, `jrrIMax=1`, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr} term (see *Statistical Methods Used in EdSurvey* for the definition of V_{jrr}) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of `jrrIMax` lead to longer computing times and more accurate variance estimates.

dropOmittedLevels a logical value. When set to the default value (TRUE), it drops those levels in all factor variables that are specified in `achievementVars` and `aggregateBy`. Use `print` on an `edsurvey.data.frame` to see the omitted levels.

defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.

recode a list of lists to recode variables. Defaults to NULL. Can be set as `recode = list(var1= list(from=c("a", "b", "c"), to ="d"))`. See Examples.

returnNumberOfPSU a logical value set to TRUE to return the number of primary sampling units (PSUs)

returnVarEstInputs a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

omittedLevels this argument is deprecated. Use `dropOmittedLevels`.

Details

The `achievementLevels` function applies appropriate weights and the variance estimation method for each `edsurvey.data.frame`, with several arguments for customizing the aggregation and output of the analysis results. Namely, by using these optional arguments, users can choose to generate the percentage of students performing at each achievement level (discrete), generate the percentage of students performing at or above each achievement level (cumulative), calculate the percentage distribution of students by achievement level (discrete or cumulative) and selected characteristics (specified in `aggregateBy`), and compute the percentage distribution of students by selected characteristics within a specific achievement level.

Calculation of percentages: The details of the methods are shown in the vignette titled *Statistical Methods Used in EdSurvey* in “Estimation of Weighted Percentages When Plausible Values Are Present” and are used to calculate all cumulative and discrete probabilities.

When the requested achievement levels are discrete (`returnDiscrete = TRUE`), the percentage A is the percentage of students (within the categories specified in `aggregateBy`) whose scores
achievementLevels

lie in the range \([c_{\text{cutPoints}_i}, c_{\text{cutPoints}_{i+1}}], i = 0, 1, ..., n\). \text{cutPoints} is the score thresholds provided by the user with \(c_{\text{cutPoints}_0}\) taken to be 0. \text{cutPoints} are set to NAEP standard cutpoints for achievement levels by default. To aggregate by a specific variable, for example, dsex, specify dsex in aggregateBy and all other variables in achievementVars. To aggregate by subscale, specify the name of the subscale (e.g., num_oper) in aggregateBy and all other variables in achievementVars.

When the requested achievement levels are cumulative (\(\text{returnCumulative} = \text{TRUE}\)), the percentage \(A\) is the percentage of students (within the categories specified in aggregateBy) whose scores lie in the range \([c_{\text{cutPoints}_i}, \infty], i = 1, 2, ..., n - 1\). The first and last categories are the same as defined for discrete levels.

Calculation of standard error of percentages: The method used to calculate the standard error of the percentages is described in the vignette titled Statistical Methods Used in EdSurvey in the sections “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Present, Using the Jackknife Method” and “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Taylor Series Method.” For “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Present, Using the Jackknife Method,” the value of jrrIMax sets the value of \(m^*\).

Value

A list containing up to two data frames, one discrete achievement levels (when \(\text{returnDiscrete}\) is \text{TRUE}) and one for cumulative achievement levels (when \(\text{returnCumulative}\) is \text{TRUE}). The data.frame contains the following columns:

- **Level** one row for each level of the specified achievement cutpoints
- **Variables in achievementVars** one column for each variable in achievementVars and one row for each level of each variable in achievementVars
- **Percent** the percentage of students at or above each achievement level aggregated as specified by aggregateBy
- **StandardError** the standard error of the percentage, accounting for the survey sampling methodology. See the vignette titled Statistical Methods Used in EdSurvey.
- **N** the number of observations in the incoming data (the number of rows when omittedLevels and defaultConditions are set to \text{FALSE})
- **wtdN** the weighted number of observations in the data
- **nPSU** the number of PSUs at or above each achievement level aggregated as specified by aggregateBy. Only returned with \(\text{returnNumberOfPSU} = \text{TRUE}\).

Author(s)

Huade Huo, Ahmad Emad, and Trang Nguyen

References

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

discrete achievement levels
achievementLevels(achievementVars=c("composite"), aggregateBy=NULL, data=sdf)

discrete achievement levels with a different subscale
achievementLevels(achievementVars=c("num_oper"), aggregateBy=NULL, data=sdf)

cumulative achievement levels
achievementLevels(achievementVars=c("composite"), aggregateBy=NULL, data=sdf,
 returnCumulative=TRUE)

cumulative achievement levels with a different subscale
achievementLevels(achievementVars=c("num_oper"), aggregateBy=NULL, data=sdf,
 returnCumulative=TRUE)

achievement levels as independent variables, by sex aggregated by composite
achievementLevels(achievementVars=c("composite", "dsex"), aggregateBy="composite",
 data=sdf, returnCumulative=TRUE)

achievement levels as independent variables, by sex aggregated by sex
achievementLevels(achievementVars=c("composite", "dsex"), aggregateBy="dsex",
 data=sdf, returnCumulative=TRUE)

achievement levels as independent variables, by race aggregated by race
achievementLevels(achievementVars=c("composite", "sdracem"), aggregateBy="sdracem",
 data=sdf, returnCumulative=TRUE)

use customized cutpoints
achievementLevels(achievementVars=c("composite"), aggregateBy=NULL, data=sdf,
 cutpoints = c("Customized Basic" = 200,
 "Customized Proficient" = 300,
 "Customized Advanced" = 400))

use recode to change values for specified variables:
achievementLevels(achievementVars=c("composite", "dsex", "b017451"), aggregateBy = "dsex", sdf,
 recode=list(b017451=list(from=c("Never or hardly ever",
 "Once every few weeks",
 "About once a week"),
 to="Infrequently"),
 b017451=list(from=c("2 or 3 times a week",
 "Every day"),
 to="Frequently")))

End(Not run)
as.data.frame

Coerce to a Data Frame

Description

Function to coerce a light.edsurvey.data.frame to a data.frame.

Usage

```r
## S3 method for class 'light.edsurvey.data.frame'
as.data.frame(x, ...)
```

Arguments

- `x`: a light.edsurvey.data.frame
- `...`: other arguments to be passed to `as.data.frame`

Value

- a data.frame

Author(s)

- Trang Nguyen

cbind.light.edsurvey.data.frame

Combine R Objects by Rows or Columns

Description

Implements `cbind` and `rbind` for light.edsurvey.data.frame class. It takes a sequence of `vector`, `matrix`, `data.frame`, or `light.edsurvey.data.frame` arguments and combines by columns or rows, respectively.

Usage

```r
## S3 method for class 'light.edsurvey.data.frame'
cbind(..., deparse.level = 1)
```

```r
## S3 method for class 'light.edsurvey.data.frame'
rbind(..., deparse.level = 1)
```
contourPlot

Arguments

one or more objects of class vector, data.frame, matrix, or light.edsurvey.data.frame

deparse.level integer determining under which circumstances column and row names are built from the actual arguments. See cbind.

Details

Because cbind and rbind are standard generic functions that do not use method dispatch, we set this function as generic, which means it overwrites base::cbind and base::rbind on loading. If none of the specified elements are of class light.edsurvey.data.frame, the function will revert to the standard base method. However, to be safe, you might want to explicitly use base::cbind when needed after loading the package.

The returned object will contain attributes only from the first light.edsurvey.data.frame object in the call to cbind.light.edsurvey.data.frame.

Value

a matrix-like object like matrix or data.frame. Returns a light.edsurvey.data.frame if there is at least one light.edsurvey.data.frame in the list of arguments.

Author(s)

Trang Nguyen, Michael Lee, and Paul Bailey

See Also

cbind

Description

Diagnostic plots for regressions can become too dense to interpret. This function helps by adding a contour plot over the points to allow the density of points to be seen, even when an area is entirely covered in points.

Usage

contourPlot(
 x, y,
 m = 30L,
 xrange, yrange,
 xkernel, ykernel,
)
contourPlot

nlevels = 9L,
densityColors = heat.colors(nlevels),
pointColors = "gray",
...
)

Arguments

x numeric vector of the x data to be plotted

y numeric vector of the y data to be plotted

m integer value of the number of x and y grid points

xrange numeric vector of length two indicating x-range of plot; defaults to range(x)

yrange numeric vector of length two indicating y-range of plot; defaults to range(y)

xkernel numeric indicating the standard deviation of Normal x kernel to use in generating contour plot

ykernel numeric indicating the standard deviation of Normal y kernel to use in generating contour plot

nlevels integer with the number of levels of the contour plot

densityColors colors to use, specified as in par. Defaults to the heat.colors with nlevels. When specified, colors overrides nlevels.

pointColors color for the plot points

... additional arguments to be passed to a plot call that generates the scatter plot and the contour plot

Author(s)

Yuqi Liao and Paul Bailey

Examples

Not run:
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
 lm1 <- lm.sdf(formula=composite ~ pared * dsex + sdracem, data=sdf)
 # plot the results
 contourPlot(x=lm1$fitted.values,
 y=lm1$residuals[,1], # use only the first plausible value
 m=30,
 xlab="fitted values",
 ylab="residuals",
 main="Figure 1")

add a line indicating where the residual is zero
 abline(0,0)

End(Not run)
cor.sdf

Bivariate Correlation

Description

Computes the correlation of two variables on an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list. The correlation accounts for plausible values and the survey design.

Usage

```r
cor.sdf(
  x, 
  y, 
  data, 
  method = c("Pearson", "Spearman", "Polychoric", "Polyserial"), 
  weightVar = "default", 
  reorder = NULL, 
  dropOmittedLevels = TRUE, 
  defaultConditions = TRUE, 
  recode = NULL, 
  condenseLevels = TRUE, 
  fisherZ = if (match.arg(method) %in% "Pearson") { 
    TRUE 
  } else { 
    FALSE 
  }, 
  jrrIMax = Inf, 
  verbose = TRUE, 
  omittedLevels = deprecated()
)
```

Arguments

- `x` a character variable name from the data to be correlated with `y`
- `y` a character variable name from the data to be correlated with `x`
- `data` an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
- `method` a character string indicating which correlation coefficient (or covariance) is to be computed. One of Pearson (default), Spearman, Polychoric, or Polyserial. For Polyserial, the continuous argument must be `x`.
- `weightVar` character indicating the weight variable to use. See Details section in `lm.sdf`.
- `reorder` a list of variables to reorder. Defaults to NULL (no variables are reordered). Can be set as `reorder = list(var1 = c("a", "b", "c"), var2 = c("4", "3", "2", "1"))`. See Examples.
dropOmittedLevels

A logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels.

defaultConditions

A logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.

recode

A list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a", "b", "c"), to = "d")). See Examples.

condenseLevels

A logical value. When set to the default value of TRUE and either x or y is a categorical variable, the function will drop all unused levels and rank the levels of the variable before calculating the correlation. When set to FALSE, the numeric levels of the variable remain the same as in the codebook. See Examples.

fisherZ

For standard error and mean calculations, set to TRUE to use the Fisher Z-transformation (see details), or FALSE to use no transformation of the data. The fisherZ argument defaults to Fisher Z-transformation for Pearson and no transformation for other correlation types.

jrrIMax

A numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=Inf, uses the sampling variance from all plausible values as the component for sampling variance estimation. The Vjrr term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

verbose

A logical value. Set to FALSE to avoid messages about variable conversion.

omittedLevels

This argument is deprecated. Use dropOmittedLevels.

Details

The getData arguments and recode.sdf may be useful. (See Examples.) The correlation methods are calculated as described in the documentation for the wCorr package—see browseVignettes(package="wCorr"). When method is set to polyserial, all x arguments are assumed to be continuous and all y assumed discrete. Therefore, be mindful of variable selection as this may result in calculations taking a very long time to complete.

The Fisher Z-transformation is both a variance stabilizing and normalizing transformation for the Pearson correlation coefficient (Fisher, 1915). The transformation takes the inverse hyperbolic tangent of the correlation coefficients and then calculates all variances and confidence intervals. These are then transformed back to the correlation space (values between -1 and 1, inclusive) using the hyperbolic tangent function. The Taylor series approximation (or delta method) is applied for the standard errors.

Value

An edsurvey.cor that has print and summary methods.

The class includes the following elements:
correlation numeric estimated correlation coefficient
Zse standard error of the correlation ($V_{imp} + V_{jrr}$). In the case of Pearson, this is calculated in the linear atanh space and is not a standard error in the usual sense.
correlates a vector of length two showing the columns for which the correlation coefficient was calculated
variables correlates that are discrete
order a list that shows the order of each variable
method the type of correlation estimated
Vjrr the jackknife component of the variance estimate. For Pearson, in the atanh space.
Vimp the imputation component of the variance estimate. For Pearson, in the atanh space.
weight the weight variable used
npv the number of plausible values used
njk the number of the jackknife replicates used
n0 the original number of observations
nUsed the number of observations used in the analysis—after any conditions and any listwise deletion of missings is applied
se the standard error of the correlation, in the correlation ([−1,1]) space
ZconfidenceInterval the confidence interval of the correlation in the transformation space
confidenceInterval the confidence interval of the correlation in the correlation ([−1,1]) space
transformation the name of the transformation used when calculating standard errors

Author(s)
Paul Bailey; relies heavily on the wCorr package, written by Ahmad Emad and Paul Bailey

References

See Also
cor and weightedCorr

Examples
```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# for two categorical variables any of the following work
```
c1_pears <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Pearson", weightVar="origwt")
c1_spear <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Spearman", weightVar="origwt")
c1_polyc <- cor.sdf(x="b017451", y="b003501", data=sdf, method="Polychoric", weightVar="origwt")
c1_pears
c1_spear
c1_polyc

for categorical variables, users can either keep the original numeric levels of the variables
or condense the levels (default)
the following call condenses the levels of the variable 'c046501'
cor.sdf(x="c046501", y="c044006", data=sdf)
the following call keeps the original levels of the variable 'c046501'
cor.sdf(x="c046501", y="c044006", data=sdf, condenseLevels = FALSE)

these take awhile to calculate for large datasets, so limit to a subset
sdf_dnf <- subset(sdf, b003601 == 1)
for a categorical variable and a scale score any of the following work
c2_pears <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Pearson", weightVar="origwt")
c2_spear <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Spearman", weightVar="origwt")
c2_polys <- cor.sdf(x="composite", y="b017451", data=sdf_dnf, method="Polyserial", weightVar="origwt")
c2_pears
c2_spear
c2_polys

recode two variables
cor.sdf(x="c046501", y="c044006", data=sdf, method="Spearman", weightVar="origwt", recode=list(c046501=list(from="0%",to="None"),
c046501=list(from=c("1-5%", "6-10%", "11-25%", "26-50%",
"51-75%", "76-90%", "Over 90%"),
to="Between 0% and 100%")),
c044006=list(from=c("1-5%", "6-10%", "11-25%", "26-50%",
"51-75%", "76-90%", "Over 90%"),
to="Between 0% and 100%")))

reorder two variables
cor.sdf(x="b017451", y="sdracem", data=sdf, method="Spearman", weightVar="origwt", reorder=list(sdracem=c("White", "Hispanic", "Black", "Asian/Pacific Island",
"Amer Ind/Alaska Natv", "Other"),
b017451=c("Every day", "2 or 3 times a week", "About once a week",
"Once every few weeks", "Never or hardly ever")))

recode two variables and reorder
cor.sdf(x="pared", y="b013801", data=subset(sdf, !pared %in% "I Don\'t Know"),
method="Spearman", weightVar = "origwt",
recode=list(pared=list(from="Some ed after H.S.", to="Graduated H.S."),
pared=list(from="Graduated college", to="Graduated H.S."),
be13801=list(from="0-10", to="Less than 100"),
b013801=list(from="11-25", to="Less than 100"),
b013801=list(from="26-100", to="Less than 100")),
reorder=list(be013801=c("Less than 100",">100")))

End(Not run)

dim.edsurvey.data.frame

Dimensions of an edsurvey.data.frame or an edsurvey.data.frame.list

Description

Returns the dimensions of an edsurvey.data.frame or an edsurvey.data.frame.list.

Usage

```r
## S3 method for class 'edsurvey.data.frame'
dim(x)
```

Arguments

- `x`: an edsurvey.data.frame or an edsurvey.data.frame.list

Value

For an edsurvey.data.frame, returns a numeric vector of length two, with the first element being the number of rows and the second element being the number of columns.

For an edsurvey.data.frame.list, returns a list of length two, where the first element is named `nrow` and is a numeric vector containing the number of rows for each element of the edsurvey.data.frame.list. The second element is named `ncol` and is the number of columns for each element. This is done so that the `nrow` and `ncol` functions return meaningful results, even if nonstandard.

Author(s)

Paul Bailey
DoFCorrection

Description

Calculates the degrees of freedom for a statistic (or of a contrast between two statistics) based on the jackknife and imputation variance estimates.

Usage

DoFCorrection(
 varEstA,
 varEstB = varEstA,
 varA,
 varB = varA,
 method = c("WS", "JR")
)

Arguments

- **varEstA**: the varEstInput object returned from certain functions, such as \texttt{lm.sdf} when returnVarEstInputs=TRUE). The variable \texttt{varA} must be on this dataset. See Examples.
- **varEstB**: similar to the \texttt{varEstA} argument. If left blank, both are assumed to come from \texttt{varEstA}. When set, the degrees of freedom are for a contrast between \texttt{varA} and \texttt{varB}, and the \texttt{varB} values are taken from \texttt{varEstB}.
- **varA**: a character that names the statistic in the \texttt{varEstA} argument for which the degrees of freedom calculation is required.
- **varB**: a character that names the statistic in the \texttt{varEstB} argument for which a covariance is required. When \texttt{varB} is specified, returns the degrees of freedom for the contrast between \texttt{varA} and \texttt{varB}.
- **method**: a character that is either \texttt{WS} for the Welch-Satterthwaite formula or \texttt{JR} for the Johnson-Rust correction to the Welch-Satterthwaite formula

Details

This calculation happens under the notion that statistics have little variance within strata, and some strata will contribute fewer than a full degree of freedom.

The functions are not vectorized, so both \texttt{varA} and \texttt{varB} must contain exactly one variable name.

The method used to compute the degrees of freedom is in the vignette titled \textit{Statistical Methods Used in EdSurvey} section “Estimation of Degrees of Freedom.”

Value

numeric; the estimated degrees of freedom
downloadCivEDICCS

Author(s)

Paul Bailey

References

Examples

```r
## Not run:
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))
lm1 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf, returnVarEstInputs=TRUE)
summary(lm1)
# this output agrees with summary of lm1 coefficient for dsex
DoFCorrection(lm1$varEstInputs,
  varA="dsexFemale",
  method="JR")
# second example, a covariance term requires more work
# first, estimate the covariance between two regression coefficients
# note that the variable names are parallel to what they are called in lm1 output
covFEveryDay <- varEstToCov(lm1$varEstInputs,
  varA="dsexFemale",
  varB="b017451Every day",
  jkSumMultiplier=EdSurvey:::getAttributes(data=sdf, attribute="jkSumMultiplier"))
# second, find the difference and the SE of the difference
se <- lm1$coefmat["dsexFemale","se"] + lm1$coefmat["b017451Every day","se"] +
  -2*covFEveryDay
# third, calculate the t-statistic
tv <- (coef(lm1)["dsexFemale"] - coef(lm1)["b017451Every day"]/se
# fourth, calculate the p-value, which requires the estimated degrees of freedom
doFFEveryDay <- DoFCorrection(lm1$varEstInputs,
  varA="dsexFemale",
  varB="b017451Every day",
  method="JR")
# finally, the p-value
2*(1-pt(abs(tv), df=doFFEveryDay))
## End(Not run)
```

downloadCivEDICCS

Instructions for Downloading and Unzipping CivED or ICCS Files

Description

Provides instructions to download CivED or ICCS data to be processed in `readCivEDICCS`.
Usage

downloadCivEDICCS(years = c(1999, 2009, 2016))

Arguments

years an integer vector indicating the study year. Valid years are 1999, 2009, and 2016.

Author(s)

Tom Fink

See Also

readCivEDICCS

Examples

Not run:
view instructions to manually download study data
downloadCivEDICCS()

End(Not run)

downloadECLS_K Download and Unzip ECLS_K Files

Description

Uses an Internet connection to download ECLS_K data. Data come from nces.ed.gov zip files. This function works for 1998 and 2011 data.

Usage

downloadECLS_K(root, years = c(1998, 2011), cache = FALSE, verbose = TRUE)

Arguments

root a character string indicating the directory where the ECLS_K data should be stored. Files are placed in a subdirectory named ECLS_K/[year].

years an integer vector of the assessment years to download. Valid years are 1998 and 2011.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.
downloadELS

Details

Beginning for the ECLS_K 2011 Study Grade 5 data files, the ChildK5p.zip source data file is a DEFLATE64 compressed zip file. This means that the user must manually extract the contained childK5p.dat file using an external zip program capable of handling DEFLATE64 zip format. As existing R functions are unable to handle this zip format natively.

Author(s)

Tom Fink

See Also

readECLS_K1998 and readECLS_K2011

Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadECLS_K(years=c(1998, 2011), root = "~/")

# cache=TRUE will download then process the datafiles
downloadECLS_K(years=c(1998, 2011), root = "~/", cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadECLS_K(root="~/", verbose = FALSE)

## End(Not run)
```

downloadELS

Download and Unzip ELS Files

Description

Uses an Internet connection to download ELS data. Data come from nces.ed.gov zip files. This function works for 2002 data.

Usage

downloadELS(root, years = c(2002), cache = FALSE, verbose = TRUE)

Arguments

- **root**: a character string indicating the directory where the ELS data should be stored. Files are placed in a subdirectory named ELS/[year].
- **years**: an integer vector of the assessment years to download. Valid year is 2002 only.
cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)
Tom Fink

See Also
readELS

Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadELS(years=2002, root = "~/")

# cache=TRUE will download then process the datafiles
downloadELS(years=2002, root = "~/", cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadELS(root="~/", verbose = FALSE)

## End(Not run)
```

downloadHSLS

Download and Unzip HSLS Files

Description

Uses an Internet connection to download HSLS data. Data come from nces.ed.gov zip files. This function works for 2009 data.

Usage

downloadHSLS(root, years = c(2009), cache = FALSE, verbose = TRUE)

Arguments

root a character string indicating the directory where the HSLS data should be stored. Files are placed in a subdirectory named HSLS/[year].

years an integer vector of the assessment years to download. Valid year is 2009 only.
cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)
Tom Fink

See Also
readHSLS

Examples

Not run:
root argument will vary by operating system conventions
downloadHSLS(root = "~/", years=2009)

set verbose=FALSE for silent output
if year not specified, download all years
downloadHSLS(root="~/", verbose = FALSE)

End(Not run)

downloadICILS Instructions for Downloading and Unzipping ICILS Files

Description

Provides instructions to download ICILS data to be processed in readICILS.

Usage

downloadICILS(years = c(2013, 2018))

Arguments

years an integer vector indicating the study year. Valid year is 2013 only.

Author(s)
Tom Fink

See Also
readICILS
Not run:
view instructions to manually download study data
downloadICILS()

End(Not run)

Description

Usage

```r
downloadNHES(
)
```

Arguments

Note

The NHES data files are additionally available from the NHES data product page. However, the data files provided at that page do not include all available years of data, and contain inconsistent data file formats.

Author(s)

Tom Fink

See Also

`readNHES`
downloadPIAAC

Examples

Not run:
#view instructions to manually download NHES data
downloadNHES()

End(Not run)

downloadPIAAC Download and Unzip PIAAC Files

Description

Uses an Internet connection to download PIAAC data to a computer. Data come from the OECD website.

Usage

downloadPIAAC(root, cycle = 1, cache = FALSE, verbose = TRUE)

Arguments

- **root**: a character string indicating the directory where the PIAAC data should be stored. Files are placed in a folder named PIAAC/cycle [cycle number].
- **cycle**: a numeric value indicating the assessment cycle to download. Valid cycle is 1 only.
- **cache**: a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
- **verbose**: a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Eric Buehler, Paul Bailey, and Trang Nguyen

Examples

Not run:
download all available data for PIAAC round 1 to "~/PIAAC/Round 1" folder
root argument will vary by operating system conventions
downloadPIAAC(root="~/")

End(Not run)
Description

Uses an Internet connection to download PIRLS data. Data come from timssandpirls.bc.edu zip files. This function works for 2001, 2006, 2011, 2016, and 2021 data.

Usage

downloadPIRLS(
 root,
 cache = FALSE,
 verbose = TRUE
)

Arguments

root a character string indicating the directory where the PIRLS data should be stored. Files are placed in a subdirectory named PIRLS/[year].
cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

readPIRLS

Examples

Not run:
root argument will vary by operating system conventions
downloadPIRLS(year=c(2006, 2011), root = "~/")

cache=TRUE will download then process the datafiles
downloadPIRLS(year=2011, root = "~/", cache = TRUE)

set verbose=FALSE for silent output
downloadPISA

if year not specified, download all years
downloadPISA(root="~/", verbose = FALSE)

End(Not run)

downloadPISA Download and Unzip PISA Files

Description

Uses an Internet connection to download PISA data to a computer. Data come from the OECD website.

Usage

downloadPISA(
 root,
 database = c("INT", "CBA", "FIN"),
 cache = FALSE,
 verbose = TRUE
)

Arguments

root a character string indicating the directory where the PISA data should be stored. Files are placed in a folder named PISA/[year].

database a character vector to indicate which database to download from. For 2012, three databases are available (INT = International, CBA = Computer-Based Assessment, and FIN = Financial Literacy). For other years, only INT is available (for example, if PISA 2015 financial literacy is to be downloaded, the database argument should be set to INT). Defaults to INT.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details

The function uses `download.file` to download files from provided URLs. Some machines might require a different user agent in HTTP(S) requests. If the downloading gives an error or behaves unexpectedly (e.g., a zip file cannot be unzipped or a data file is significantly smaller than expected), users can toggle HTTPUserAgent options to find one that works for their machines. One common alternative option is
options(HTTPUserAgent="Mozilla/5.0 (Windows NT 6.1; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0")

Beginning in the 2018 data files, the SPSS_STU_COG.zip source data file is a DEFLATE64 compressed zip file. This means that the user must manually extract the contained CY07_MSU_STU_COG.sav file using an external zip program capable of handling DEFLATE64 zip format, as existing R functions are unable to handle this zip format natively.

Author(s)

Yuqi Liao, Paul Bailey, and Trang Nguyen

See Also

readPISA, download.file, options

Examples

Not run:
download PISA 2012 data (for all three databases)
downloadPISA(years = 2012, database = c("INT","CBA","FIN"), root="~/")

download PISA 2009, 2012, and 2015 data (International Database only)
to C:/PISA/2009, C:/PISA/2012, and C:/PISA/2015 folders, respectively

End(Not run)

downloadPISA_YAFS

Instructions for Downloading and Unzipping PISA YAFS Files

Description

Provides instructions to download PISA YAFS data to be processed in readPISA_YAFS.

Usage

downloadPISA_YAFS(years = c(2016))

Arguments

years an integer vector indicating the study year. Valid year is 2016 only.

Author(s)

Tom Fink

See Also

readPISA_YAFS
downloadSSOCS

Examples

Not run:
view instructions to manually download study data
downloadPISA_YAFS()

End(Not run)

downloadSSOCS

Instructions for Downloading and Unzipping SSOCS Files

Description

Usage

Arguments

years

an integer vector of the study years to download. Valid years are as follows: 2000, 2004, 2006, 2008, 2010, 2016, 2018 (see description). The instructions are the same for each year, this is for reference only.

Note

The year parameter value is shortened to the ending year of the school year (e.g., 2006 refers to the 2005–2006 school year data). Manually downloading the data files is required to fulfill the data usage agreement.

Author(s)

Tom Fink

See Also

readSSOCS

Examples

Not run:
see instructions for downloading SSOCS Data
downloadSSOCS()

End(Not run)
downloadTALIS Download and Unzip TALIS Files

Description

Uses an Internet connection to download TALIS data. Data come from OECD TALIS site international zip files. This function works for 2008, 2013, and 2018 data.

Usage

```r
downloadTALIS(root, years = c(2008, 2013, 2018), cache = FALSE, verbose = TRUE)
```

Arguments

- **root**: a character string indicating the directory where the TALIS data should be stored. Files are placed in a subdirectory named TALIS/[year].
- **years**: a numeric value indicating the assessment year. Available years are 2008, 2013, and 2018.
- **cache**: a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
- **verbose**: a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink and Trang Nguyen

See Also

- `readTALIS`

Examples

```r
## Not run:
# root argument will vary by operating system conventions
downloadTALIS(root = "~/", years = 2018)

# cache=TRUE will download then process the data files
downloadTALIS(root = "~/", years = 2015, cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
downloadTALIS(root="~/", verbose = FALSE)

## End(Not run)
```
downloadTIMSS Download and Unzip TIMSS Files

Description
Uses an Internet connection to download TIMSS data. Data come from timssandpirls.bc.edu zip files. This function works for 2003, 2007, 2011, 2015, and 2019 data.

Usage
downloadTIMSS(
 root,
 cache = FALSE,
 verbose = TRUE
)

Arguments
root a character string indicating the directory where the TIMSS data should be stored. Files are placed in a subdirectory named TIMSS/[year].
cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)
Tom Fink

See Also
readTIMSS

Examples
Not run:
root argument will vary by operating system conventions
downloadTIMSS(year=c(2019, 2015, 2011), root = "~/")

cache=TRUE will download then process the datafiles
downloadTIMSS(year=2015, root = "~/", cache = TRUE)

set verbose=FALSE for silent output
if year not specified, download all years
downloadTIMSS(root="~/", verbose = FALSE)

End(Not run)

downloadTIMSSAdv Download and Unzip TIMSS Advanced Files

Description
Uses an Internet connection to download TIMSS Advanced data. Data come from timssandpirls.bc.edu zip files. This function works for 1995, 2008, and 2015 data.

Usage
downloadTIMSSAdv(
 root,
 cache = FALSE,
 verbose = TRUE
)

Arguments

root a character string indicating the directory where the TIMSS Advanced data should be stored. Files are placed in a subdirectory named TIMSSAdv/[year].

years an integer vector of the assessment years to download. Valid years are 1995, 2008, and 2015.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)
Tom Fink

See Also
readTIMSSAdv
download_ePIRLS

Examples

Not run:
root argument will vary by operating system conventions
downloadTIMSSAdv(year=c(2008, 2015), root = "~/")

cache=TRUE will download then process the datafiles
downloadTIMSSAdv(year=2015, root = "~/", cache = TRUE)

set verbose=FALSE for silent output
if year not specified, download all years
downloadTIMSSAdv(root="~/", verbose = FALSE)

End(Not run)

download_ePIRLS Download and Unzip ePIRLS Files

Description

Uses an Internet connection to download ePIRLS data. Data come from timssandpirls.bc.edu zip files. This function works for 2016 data.

Usage

download_ePIRLS(root, years = c(2016), cache = FALSE, verbose = TRUE)

Arguments

root a character string indicating the directory where the ePIRLS data should be stored. Files are placed in a subdirectory named ePIRLS/[year].

years an integer vector of the assessment years to download. Valid year is 2016 only.

cache a logical value set to process and cache the text (.txt) version of files. This takes a very long time but saves time for future uses of the data. Default value is FALSE.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Author(s)

Tom Fink

See Also

read_ePIRLS
Examples

```r
## Not run:
# root argument will vary by operating system conventions
download_ePIRLS(years=2016, root = "~/")

# cache=TRUE will download then process the datafiles
download_ePIRLS(years=2016, root = "~/", cache = TRUE)

# set verbose=FALSE for silent output
# if year not specified, download all years
download_ePIRLS(root="~/", verbose = FALSE)

## End(Not run)
```

drawPVs.sdf Draw plausible values from an mml fit

Description

Draw plausible values from an mml fit

Usage

```r
## S3 method for class 'sdf'
drawPVs(
  x,
  npv = 5L,
  pvVariableNameSuffix = "_dire",
  data,
  stochasticBeta = FALSE,
  construct = NULL,
  ...
)
```

Arguments

- `x`: a fit from a call to `mml.sdf`, or a summary.mml.sdf, which is a summary of `mml.sdf` call.
- `npv`: integer indicating the number of plausible values to draw
- `pvVariableNameSuffix`: suffix to append to the name of the new plausible values
- `data`: an edsurvey.data.frame or light.edsurvey.data.frame to which the plausible values will be added and from which the covariates and item responses will be taken to generate them
- `stochasticBeta`: logical when TRUE the regressopm coefficients will be drawn from their posterior distribution. Can also be a data frame of values (see Details).
edsurvey.data.frame

construct the construct to draw PVs for

... additional parameters

edsurvey.data.frame EdSurvey Class Constructors and Helpers

Description

Two new classes in EdSurvey are described in this section: the edsurvey.data.frame and light.edsurvey.data.frame. The edsurvey.data.frame class stores metadata about survey data, and data are stored on the disk (via the LaF package), allowing gigabytes of data to be used easily on a machine otherwise inappropriate for manipulating large datasets. The light.edsurvey.data.frame is typically generated by the getData function and stores the data in a data.frame. Both classes use attributes to manage metadata and allow for correct statistics to be used in calculating results; the getAttributes acts as an accessor for these attributes, whereas setAttributes acts as a mutator for the attributes. As a convenience, edsurvey.data.frame implements the $ function to extract a variable.

Usage

edsurvey.data.frame(
 userConditions,
 defaultConditions,
 dataList = list(),
 weights,
 pvvars,
 subject,
 year,
 assessmentCode,
 dataType,
 gradeLevel,
 achievementLevels,
 omittedLevels,
 survey,
 country,
 psuVar,
 stratumVar,
 jkSumMultiplier,
 recodes = NULL,
 validateFactorLabels = FALSE,
 forceLower = TRUE,
 reqDecimalConversion = TRUE,
 fr2Path = NULL,
 dim0 = NULL,
 cacheDataLevelName = NULL
)

S3 method for class 'edsurvey.data.frame'
x.

S3 replacement method for class 'edsurvey.data.frame'
xname <- value

S4 method for signature 'edsurvey.data.frame,ANY'
$x %in% table

S4 method for signature 'edsurvey.data.frame.list,ANY'
$x %in% table

defaultConditions

getAttributes(data, attribute = NULL, errorCheck = TRUE)

setAttributes(data, attribute, value)

defaultConditions

defaultConditions

getPSUVar(
 data,
 weightVar = attributes(getAttributes(data, "weights"))[["default"]]
)

defaultConditions

getStratumVar(
 data,
 weightVar = attributes(getAttributes(data, "weights"))[["default"]]
)

Arguments

userConditions a list of user conditions that includes subsetting or recoding conditions

defaultConditions

a list of default conditions that often are set for each survey

dataList a list of dataListItem objects to model the data structure of the survey

weights a list that stores information regarding weight variables. See Details.

pvvars a list that stores information regarding plausible values. See Details.

subject a character that indicates the subject domain of the given data

year a character or numeric that indicates the year of the given data

assessmentCode a character that indicates the code of the assessment. Can be National or International.

dataType a character that indicates the unit level of the main data. Examples include Student, teacher, school, Adult Data.

gradeLevel a character that indicates the grade level of the given data

achievementLevels

a list of achievement-level categories and cutpoints

omittedLevels a list of default omitted levels for the given data

survey a character that indicates the name of the survey

country a character that indicates the country of the given data
edsurvey.data.frame

psuVar a character that indicates the PSU sampling unit variable. Ignored when weights have psuVar defined.

stratumVar a character that indicates the stratum variable. Ignored when weights have stratumVar defined.

jkSumMultiplier a numeric value of the jackknife coefficient (used in calculating the jackknife replication estimation)

recodes a list of variable recodes of the given data

validateFactorLabels a Boolean that indicates whether the getData function needs to validate factor variables

forceLower a Boolean; when set to TRUE, will automatically lowercase variable names

reqDecimalConversion a Boolean; when set to TRUE, a getData call will multiply the raw file value by a decimal multiplier

fr2Path a character file location for NAEP assessments to identify the location of the codebook file in fr2 format

dim0 numeric vector of length two. To speed construction, the dimensions of the data can be provided

cacheDataLevelName a character value set to match the named element in the dataList to utilize the data caching scheme. See details.

x an edsurvey.data.frame

i a character, the column name to extract

ame a character vector of the column to edit

value outside of the assignment context, new value of the given attribute

table an edsurvey.data.frame or edsurvey.data.frame.list where x is searched for

data an edsurvey.data.frame

attribute a character, name of an attribute to get or set

errorCheck logical; see Details

weightVar a character indicating the full sample weights. Required in getPSUVar and getStratumVar when there is no default weight.

Details

The weight list has an element named after each weight variable name that is a list with elements jkbase and jksuffixes. The jkbase variable is a single character indicating the jackknife replicate weight base name, whereas jksuffixes is a vector with one element for each jackknife replicate weight. When the two are pasted together, they should form the complete set of the jackknife replicate weights. The weights argument also can have an attribute that is the default weight. If the primary sampling unit and stratum variables change by weight, they also can be defined on the weight list as psuVar and stratumVar. When this option is used, it overrides the psuVar and
stratumVar on the edsurvey.data.frame, which can be left blank. A weight must define only one of psuVar and stratumVar.

The pvvars list has an element for each subject or subscale score that has plausible values. Each element is a list with a varnames element that indicates the column names of the plausible values and an achievementLevel argument that is a named vector of the achievement-level cutpoints.

An edsurvey.data.frame implements a unique data caching mechanism that allows users to create and merge data columns for flexibility. This cache object is a single data.frame that is an element in the edsurvey.data.frame. To accommodate studies with complex data models the cache can only support one data level at this time. The cacheDataLevelName parameter indicates which named element in the dataList the cache is indicated. The default value cacheDataLevelName = NULL will set the first item in the dataList as the cache level for an edsurvey.data.frame.

Value

An object of class edsurvey.data.frame with the following elements:

Elements that store data connections and data codebooks

dataList a list object containing the surveys dataListItem objects

Elements that store sample design and default subsetting information of the given survey data

userConditions a list containing all user conditions, set using the subset.edsurvey.data.frame method
defaultConditions the default subsample conditions

weights a list containing the weights. See Details.

stratumVar a character that indicates the default strata identification variable name in the data. Often used in Taylor series estimation.

psuVar a character that indicates the default PSU (sampling unit) identification variable name in the data. Often used in Taylor series estimation.

tpvars a list containing the plausible values. See Details.

achievementLevels default achievement cutoff scores and names. See Details.

omittedLevels the levels of the factor variables that will be omitted from the edsurvey.data.frame

Elements that store descriptive information of the survey

survey the type of survey data

subject the subject of the data

year the year of assessment

assessmentCode the assessment code

dataType the type of data (e.g., student or school)

code the grade of the dataset contained in the edsurvey.data.frame

Elements used in mml.sdf

dichotParamTab IRT item parameters for dichotomous items in a data frame
EdSurvey Classes

edsurvey.data.frame is an object that stores connection to data on the disk along with important survey sample design information.

edsurvey.data.frame.list is a list of edsurvey.data.frame objects. It often is used in trend or cross-regional analysis in the gap function. See edsurvey.data.frame.list for more information on how to create an edsurvey.data.frame.list. Users also can refer to the vignette titled Using EdSurvey for Trend Analysis for examples.

Besides edsurvey.data.frame class, the EdSurvey package also implements the light.edsurvey.data.frame class, which can be used by both EdSurvey and non-EdSurvey functions. More particularly, light.edsurvey.data.frame is a data.frame that has basic survey and sample design information (i.e., plausible values and weights), which will be used for variance estimation in analytical functions. Because it also is a base R data.frame, users can apply base R functions for data manipulation. See the vignette titled Using the getData Function in EdSurvey for more examples.

Many functions will remove attributes from a data frame, such as a light.edsurvey.data.frame, and the rebindAttributes function can add them back.

Users can get a light.edsurvey.data.frame object by using the getData method with addAttributes=TRUE.

Basic Methods for EdSurvey Classes

Extracting a column from an edsurvey.data.frame

Users can extract a column from an edsurvey.data.frame object using $ or [] like a normal data frame.

Extracting and updating attributes of an object of class edsurvey.data.frame or light.edsurvey.data.frame

Users can use the getAttributes method to extract any attribute of an edsurvey.data.frame or a light.edsurvey.data.frame. The errorCheck parameter has a default value of TRUE, which throws an error if an attribute is not found. Setting errorCheck = FALSE will suppress error checking, and return NULL if an attribute can’t be found.

A light.edsurvey.data.frame will not have attributes related to data connection because data have already been read in memory.

If users want to update an attribute (i.e., omittedLevels), they can use the setAttributes method.

Author(s)

Tom Fink, Trang Nguyen, and Paul Bailey

See Also

rebindAttributes
Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# run a base R function on a column of edsurvey.data.frame
table(sdf$dsex)

# assignment
table(sdf$b013801)
sdf$books <- ifelse(sdf$b013801 %in% c("0-10", "11-25"), "0-25 books", "26+ books")
table(sdf$books, sdf$b013801)

# extract default omitted levels of NAEP primer data
getAttributes(data=sdf, attribute="omittedLevels")
#[1] "Multiple" NA "Omitted"

# update default omitted levels of NAEP primer data
sdf <- setAttributes(data=sdf, attribute="omittedLevels",
value=c("Multiple", "Omitted", NA, "(Missing)"))
getAttributes(data=sdf, attribute="omittedLevels")
#[1] "Multiple" "Omitted" NA "(Missing)"

## End(Not run)
```

edsurvey.data.frame.list

EdSurvey Dataset Vectorization

Description

The `edsurvey.data.frame.list` function creates an `edsurvey.data.frame.list` object from a series of `edsurvey.data.frame` objects. `append.edsurvey.data.frame.list` creates an `edsurvey.data.frame.list` from two `edsurvey.data.frame` or `edsurvey.data.frame.list` objects.

An `edsurvey.data.frame.list` is useful for looking at data, for example, across time or graphically, and reduces repetition in function calls. The user may specify a variable that varies across the `edsurvey.data.frame` objects that is then included in further output.

Usage

```r
edsurvey.data.frame.list(datalist, cov = NULL, labels = NULL)
append.edsurvey.data.frame.list(sdfA, sdfB, labelsA = NULL, labelsB = NULL)
```

Arguments

- **datalist**: a list of `edsurvey.data.frame` objects to be combined
edsurvey.data.frame.list

cov
a character vector that indicates what varies across the edsurvey.data.frame objects. Guessed if not supplied. For example, if several edsurvey.data.frames for several different countries are supplied, then cov would be set to the country.

labels
a character vector that specifies labels. Must be the same length as datalist. Not needed if cov exists or can be guessed. See Examples.

sdfA
an edsurvey.data.frame or an edsurvey.data.frame.list to be combined

sdfB
an edsurvey.data.frame or an edsurvey.data.frame.list to be combined

labelsA
a character vector that specifies labels for sdfA when creating the new edsurvey.data.frame.list.

labelsB
a character vector that specifies labels for sdfB when creating the new edsurvey.data.frame.list.

Details

The edsurvey.data.frame.list can be used in place of an edsurvey.data.frame in function calls, and results are returned for each of the component edsurvey.data.frames, with the organization of the results varying by the particular method.

An edsurvey.data.frame.list can be created from several edsurvey.data.frame objects that are related; for example, all are NAEP mathematics assessments but have one or more differences (e.g., they are all from different years). Another example could be data from multiple countries for an international assessment.

When cov and labels are both missing, edsurvey.data.frame.list attempts to guess what variables may be varying and uses those. When there are no varying covariates, generic labels are automatically generated.

Value

edsurvey.data.frame.list returns an edsurvey.data.frame.list with elements

datalist
a list of edsurvey.data.frame objects

covs
a character vector of key variables that vary within the edsurvey.data.frame.list. When labels are included, they will be included in covs. In the unusual circumstance that sdfA or sdfB is an edsurvey.data.frame.list has covs, and labels are not supplied, the covs are simply pasted together with colons between them.

append.edsurvey.data.frame.list returns an edsurvey.data.frame.list with elements

datalist
a list of edsurvey.data.frame objects

covs
a character vector of key variables that vary within the edsurvey.data.frame.list. When labels are included, they will be included in covs.

Author(s)

Paul Bailey, Huade Huo
Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M30NT2PM.dat", package="NAEPprimer"))

NOTE: the following code would not normally have to be run but is used here
to generate demo data.
Specifically, make subsets of sdf by the scrpsu variable,
"Scrambled PSU and school code"
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

construct an edsurvey.data.frame.list from these four data sets
sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD),
 labels=c("A locations",
 "B locations",
 "C locations",
 "D locations"))

alternative method of building
sdfl2 <- sdfA + sdfB + sdfC

check contents
sdfA %in% sdfl
note %in% checks by survey (NAEP 2005 Math for sdf,
sdfA, sdfB, sdfC, and sdfD) not by subset, so this also return TRUE
sdfD %in% sdfl2

this shows how these datasets will be described
sdfl$covs
get the gaps between Male and Female for each data set
gap1 <- gap(variable="composite", data=sdfl, dsex="Male", dsex="Female")
gap1

make combine sdfA and sdfB
sdfl1a <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB),
 labels=c("A locations",
 "B locations"))

combine sdfC and sdfD
sdfl1b <- edsurvey.data.frame.list(datalist=list(sdfC, sdfD),
 labels=c("C locations",
 "D locations"))

append to make sdf3 the same as sdfl
sdfl3 <- append.edsurvey.data.frame.list(sdfA=sdfl1a, sdfB=sdfl1b)
identical(sdfl, sdfl3) #TRUE

append to make sdf4 the same as sdfl
sdfl4 <- append.edsurvey.data.frame.list(
append.edsurvey.data.frame.list(sdfA=sdf1a, sdfB=sdfC, labelsB = "C locations"),
sdfD,
labelsB = "D locations")
identical(sdfl, sdf14) #TRUE

show label deconflicting
downloadTIMSS(root="/", years=c(2011, 2015))
t11 <- readTIMSS(path="/TIMSS/2011", countries = c("fin", "usa"), gradeLvl = 4)
t15 <- readTIMSS(path="/TIMSS/2015", countries = c("fin", "usa"), gradeLvl = 4)
these would not be unique
t11$covs
t15$covs
resulting values includes year now

t11_15 <- append.edsurvey.data.frame.list(sdfA=t11, sdfB=t15)
t11_15$covs

End(Not run)

EdSurvey Tables With Conditional Means

Description

Returns a summary table (as a `data.frame`) that shows the number of students, the percentage of students, and the mean value of the outcome (or left-hand side) variable by the predictor (or right-hand side) variable(s).

Usage

```r
edsurveyTable(
  formula,
  data,
  weightVar = NULL,
  jrrIMax = 1,
  pctAggregationLevel = NULL,
  returnMeans = TRUE,
  returnSepct = TRUE,
  varMethod = c("jackknife", "Taylor"),
  drop = FALSE,
  dropOmittedLevels = TRUE,
  defaultConditions = TRUE,
  recode = NULL,
  returnVarEstInputs = FALSE,
  omittedLevels = deprecated()
)
```
Arguments

- **formula**: object of class formula, potentially with a subject scale or subscale on the left-hand side and variables to tabulate on the right-hand side. When the left-hand side of the formula is omitted and returnMeans is TRUE, then the default subject scale or subscale is used. You can find the default composite scale and all subscales using the function `showPlausibleValues`. Note that the order of the right-hand side variables affects the output.

- **data**: object of class `edsurvey.data.frame`. See `readNAEP` for how to generate an `edsurvey.data.frame`.

- **weightVar**: character string indicating the weight variable to use. Note that only the name of the weight variable needs to be included here, and any replicate weights will be automatically included. When this argument is `NULL`, the function uses the default. Use `showWeights` to find the default.

- **jrrIMax**: a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr} term (see the Details section of `lm.sdf` to see the definition of V_{jrr}) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all of the plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

- **pctAggregationLevel**: the percentage variable sums up to 100 for the first `pctAggregationLevel` columns. So, when set to 0, the PCT column adds up to 1 across the entire sample. When set to 1, the PCT column adds up to 1 within each level of the first variable on the right-hand side of the formula; when set to 2, then the percentage adds up to 100 within the interaction of the first and second variable, and so on. Default is NULL, which will result in the lowest feasible aggregation level. See Examples section.

- **returnMeans**: a logical value; set to TRUE (the default) to get the MEAN and SE(MEAN) columns in the returned table described in the Value section.

- **returnSepct**: set to TRUE (the default) to get the SEPCT column in the returned table described in the Value section.

- **varMethod**: a character set to jackknife or Taylor that indicates the variance estimation method to be used.

- **drop**: a logical value. When set to the default value of FALSE, when a single column is returned, it is still represented as a data.frame and is not converted to a vector.

- **dropOmittedLevels**: a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels.

- **defaultConditions**: a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
recode a list of lists to recode variables. Defaults to NULL. Can be set as recode =
list(var1 = list(from = c("a", "b", "c"), to = "c")),

returnVarEstInputs a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

omittedLevels this argument is deprecated. Use dropOmittedLevels.

Details

This method can be used to generate a simple one-way, two-way, or \(n \)-way table with unweighted and weighted \(n \) values and percentages. It also can calculate the average of the subject scale or subscale for students at each level of the cross-tabulation table.

A detailed description of all statistics is given in the vignette titled \textit{Statistical Methods Used in EdSurvey}.

Value

A table with the following columns:

- \textbf{RHS levels} one column for each right-hand side variable. Each row regards students who are at the levels shown in that row.
- \textbf{N} count of the number of students in the survey in the \textbf{RHS levels}
- \textbf{WTD_N} the weighted \textbf{N} count of students in the survey in \textbf{RHS levels}
- \textbf{PCT} the percentage of students at the aggregation level specified by \textbf{pctAggregationLevel} (see Arguments). See the vignette titled \textit{Statistical Methods Used in EdSurvey} in the section “Estimation of Weighted Percentages” and its first subsection “Estimation of Weighted Percentages When Plausible Values Are Not Present.”
- \textbf{SE(PCT)} the standard error of the percentage, accounting for the survey sampling methodology. When \textbf{varMethod} is the jackknife, the calculation of this column is described in the vignette titled \textit{Statistical Methods Used in EdSurvey} in the section “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Jackknife Method.” When \textbf{varMethod} is set to \textbf{Taylor}, the calculation of this column is described in “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Taylor Series Method.”
- \textbf{MEAN} the mean assessment score for units in the \textbf{RHS levels}, calculated according to the vignette titled \textit{Statistical Methods Used in EdSurvey} in the section “Estimation of Weighted Means When Plausible Values Are Present.”
- \textbf{SE(MEAN)} the standard error of the \textbf{MEAN} column (the mean assessment score for units in the \textbf{RHS levels}), calculated according to the vignette titled \textit{Statistical Methods Used in EdSurvey} in the sections “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method” or “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method,” depending on the value of \textbf{varMethod}.

When \textbf{returnVarEstInputs} is \textbf{TRUE}, two additional elements are returned. These are \textbf{meanVarEstInputs} and \textbf{pctVarEstInputs} and regard the \textbf{MEAN} and \textbf{PCT} columns, respectively. These two objects can be used for calculating covariances with \textbf{varEstToCov}.
Author(s)
Paul Bailey and Ahmad Emad

References

Examples
```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# create a table that shows only the breakdown of dsex
edsurveyTable(formula=composite ~ dsex, data=sdf, returnMeans=FALSE, returnSepct=FALSE)

# create a table with composite scores by dsex
edsurveyTable(formula=composite ~ dsex, data=sdf)

# add a second variable
edsurveyTable(formula=composite ~ dsex + b017451, data=sdf)

# add a second variable, do not omit any levels
edsurveyTable(formula=composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE)

# add a second variable, do not omit any levels, change aggregation level
edsurveyTable(formula=composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=0)
edsurveyTable(formula=composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=1)
edsurveyTable(formula=composite ~ dsex + b017451 + b003501, data=sdf, omittedLevels=FALSE, pctAggregationLevel=2)

# variance estimation using the Taylor series
edsurveyTable(formula=composite ~ dsex + b017451 + b003501, data=sdf, varMethod="Taylor")
## End(Not run)
```

edsurveyTable2pdf

PDF File From an edsurveyTable

Description
Produces the LaTeX code and compiles to a PDF file from the edsurveyTable results.
Usage

edsurveyTable2pdf(
 data,
 formula,
 caption = NULL,
 filename = "",
 toCSV = "",
 returnMeans = TRUE,
 estDigits = 2,
 seDigits = 3
)

Arguments

data the result of a call to edsurveyTable
formula a formula of the form LHS ~ RHS to cast the edsurveyTable results from long format to wide format. This formula takes the form LHS ~ RHS (e.g., var1 + var2 ~ var3). The order of the entries in the formula is essential.
caption character vector of length one or two containing the table's caption or title. If the length is two, the second item is the "short caption" used when LaTeX generates a List of Tables. Set to NULL to suppress the caption. Default value is NULL.
filename a character string containing filenames and paths. By default (filename = ""), table will be saved in the working directory (getwd()). Use filename = "CONSOLE" to print LaTeX code in R console without generating a PDF file.
toCSV a character string containing filenames and paths of .csv table output. "" indicates no .csv output. toCSV is independent to filename, so both a csv file and PDF file would be generated if both filename and toCSV were specified.
returnMeans a logical value set to TRUE (the default) to generate a PDF with the MEAN and SE(MEAN). It is set to FALSE to generate a PDF with the PCT and SE(PCT). See Value in edsurveyTable.
estDigits an integer indicating the number of decimal places to be used for estimates. Negative values are allowed. See Details.
seDigits an integer indicating the number of decimal places to be used for standard errors. Negative values are allowed.

Details

Rounding to a negative number of digits means rounding to a power of 10, so, for example, estDigits = -2 rounds estimates to the nearest hundred.

Note

For more details, see the vignette titled Producing LaTeX Tables From edsurveyTable Results With edsurveyTable2pdf.

Author(s)

Huade Huo
Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# create a table with composite scores by dsex and b017451
est1 <- edsurveyTable(formula=composite ~ dsex + b017451, data=sdf)

# create a table with csv output
edsurveyTable2pdf(data=est1, formula=b017451~dsex, toCSV="C:/example table.csv", filename="C:/example table.pdf", returnMeans=FALSE)

# create a pdf file using the default subject scale or subscale and keep two digits for estimates and three digits for SE after decimal point
edsurveyTable2pdf(data=est1, formula=b017451~dsex, returnMeans=TRUE, estDigits=2, seDigits=3)

# create a pdf file using the percentage of students at the aggregation level specified by \code{pctAggregationLevel} output will be saved as "C:/example table.pdf"
edsurveyTable2pdf(data=est1, formula=b017451~dsex, filename="C:/example table.pdf", returnMeans=FALSE)

## End(Not run)
```

es_round

round output of EdSurvey functions before printing

Description

Applies rounding rules

Usage

```r
es_round(object,
  round_n = getOption("EdSurvey_round_n_function"),
  round_pop_n = getOption("EdSurvey_round_pop_n_function"),
  round_est = getOption("EdSurvey_round_est_function"),
  round_est_se = getOption("EdSurvey_round_est_se_function"),
  round_pct = getOption("EdSurvey_round_pct_function"),
  round_pct_se = getOption("EdSurvey_round_pct_se_function"),
  round_specific_element = NULL,
  ...
)
```
Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>the object (usually the result of an analysis function) to be rounded</td>
</tr>
<tr>
<td>round_n</td>
<td>function used to round sample n-sizes</td>
</tr>
<tr>
<td>round_pop_n</td>
<td>function used to round weighted n-sizes, these are also called population size estimates</td>
</tr>
<tr>
<td>round_est</td>
<td>function used to round estimates; examples include means and percentiles of scores, as well as regression coefficients</td>
</tr>
<tr>
<td>round_est_se</td>
<td>function used to round standard errors of estimates</td>
</tr>
<tr>
<td>round_pct</td>
<td>function used to round percentages</td>
</tr>
<tr>
<td>round_pct_se</td>
<td>function used to round the standard errors of percentages</td>
</tr>
<tr>
<td>round_specific_element</td>
<td>a list of rounding functions, the function is applied to elements with that name.</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments passed to methods</td>
</tr>
<tr>
<td></td>
<td>rounds every statistic that is a function of data, including the header and tables</td>
</tr>
</tbody>
</table>

Value

the object is returned, with relevant elements rounded

Author(s)

Paul Bailey

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# by default uses jackknife variance method using replicate weights
es1 <- edsurveyTable(formula=composite ~ dsex + b017451, data=sdf)
# turn on rounding by default
options(EdSurvey_round_output= TRUE)
es1
# turn off rounding by default
options(EdSurvey_round_output= FALSE)

# request rounding for this output
print(es1, use_es_round=TRUE)
# round, then print

# round the PCT column to one digit
es_round(es1, round_specific_element=list(PCT=roundn(1)))
```

End(Not run)
Description

Compares the average levels of a variable between two groups that potentially share members.

Usage

```r
gap(
  variable,
  data,
  groupA = "default",
  groupB = "default",
  percentiles = NULL,
  achievementLevel = NULL,
  achievementDiscrete = FALSE,
  stDev = FALSE,
  targetLevel = NULL,
  weightVar = NULL,
  jrrIMax = 1,
  varMethod = c("jackknife"),
  dropOmittedLevels = TRUE,
  defaultConditions = TRUE,
  recode = NULL,
  referenceDataIndex = 1,
  returnVarEstInputs = FALSE,
  returnSimpleDoF = FALSE,
  returnSimpleN = FALSE,
  returnNumberOfPSU = FALSE,
  noCov = FALSE,
  pctMethod = c("unbiased", "symmetric", "simple"),
  includeLinkingError = FALSE,
  omittedLevels = deprecated()
)
```

Arguments

- `variable`: a character indicating the variable to be compared, potentially with a subject scale or subscale.
- `data`: an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.
- `groupA`: an expression or character expression that defines a condition for the subset. This subset will be compared to `groupB`. If not specified, it will define a whole sample as in `data`.
- `groupB`: an expression or character expression that defines a condition for the subset. This subset will be compared to `groupA`. If not specified, it will define a whole sample as in `data`. If set to `NULL`, estimates for the second group will be dropped.
The gap function calculates the mean when this argument is omitted or set to NULL. Otherwise, the gap at the percentile given is calculated. The achievement level(s) at which percentages should be calculated. A logical indicating if the achievement level specified in the achievementLevel argument should be interpreted as discrete so that just the percentage in that particular achievement level will be included. Defaults to FALSE so that the percentage at or above that achievement level will be included in the percentage. A logical, set to TRUE to calculate the gap in standard deviations. A character string. When specified, calculates the gap in the percentage of students at targetLevel in the variable argument. This is useful for comparing the gap in the percentage of students at a survey response level. A character indicating the weight variable to use. See Details. A numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The Vjrr term, or sampling variance term, can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates. A logical value. When set to the default value of TRUE, drops those levels of all factor variables. Use print on an edsurvey.data.frame to see the omitted levels. A logical value. When set to the default value of TRUE, uses the default conditions stored in edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions. A list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a", "b", "c"), to = "d")). A numeric used only when the data argument is an edsurvey.data.frame.list, indicating which dataset is the reference dataset that other datasets are compared with. Defaults to 1. A logical value; set to TRUE to return the inputs to the jackknife and imputation variance estimates which allows for the computation of covariances between estimates. A logical value set to TRUE to return the degrees of freedom for some statistics (see Value section) that do not have a t-test; useful primarily for further computation. A logical value set to TRUE to add the count (n-size) of observations included in groups A and B in the percentage object.
returnNumberOfPSU

- a logical value set to TRUE to return the number of PSUs used in the calculation

noCov

- set the covariances to zero in result

pctMethod

- a character that is one of unbiased or simple. See the help for percentile for more information.

includeLinkingError

- a logical value set to TRUE to include the linking error in variance estimation. Standard errors (e.g., diffAAse, diffBBse, and diffABABse) and p-values (e.g., diffAAPvalue, diffBBpValue, and diffABABpValue) would be adjusted for comparisons between digitally based assessments (DBA) and paper-based assessments (PBA) data. This option is supported only for NAEP data.

omittedLevels

- this argument is deprecated. Use dropOmittedLevels.

Details

This function calculates the gap between groupA and groupB (which may be omitted to indicate the full sample). The gap is calculated for one of four statistics:

- **the gap in means** The mean score gap (in the score variable) identified in the variable argument. This is the default. The means and their standard errors are calculated using the methods described in the lm.sdf function documentation.

- **the gap in percentiles** The gap between respondents at the percentiles specified in the percentiles argument. This is returned when the percentiles argument is defined. The mean and standard error are computed as described in the percentile function documentation.

- **the gap in achievement levels** The gap in the percentage of students at (when achievementDiscrete is TRUE) or at or above (when achievementDiscrete is FALSE) a particular achievement level. This is used when the achievementLevel argument is defined. The mean and standard error are calculated as described in the achievementLevels function documentation.

- **the gap in a survey response** The gap in the percentage of respondents responding at targetLevel to variable. This is used when targetLevel is defined. The mean and standard deviation are calculated as described in the edsurveyTable function documentation.

Value

The return type depends on if the class of the data argument is an edsurvey.data.frame or an edsurvey.data.frame.list. Both include the call (called call), a list called labels, an object named percentage that shows the percentage in groupA and groupB, and an object that shows the gap called results.

The labels include the following elements:

- definition the definitions of the groups
- nFullData the n-size for the full dataset (before applying the definition)
- nUsed the n-size for the data after the group is subsetted and other restrictions (such as omitted values) are applied
- nPSU the number of PSUs used in calculation—only returned when returnNumberOfPSU = TRUE
The percentages are computed according to the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Weighted Percentages When Plausible Values Are Not Present.” The standard errors are calculated according to “Estimation of the Standard Error of Weighted Percentages When Plausible Values Are Not Present, Using the Jackknife Method.” Standard errors of differences are calculated as the square root of the typical variance formula

\[Var(A - B) = Var(A) + Var(B) - 2Cov(A, B) \]

where the covariance term is calculated as described in the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Covariances.” These degrees of freedom are available only with the jackknife variance estimation. The degrees of freedom used for hypothesis testing are always set to the number of jackknife replicates in the data.

The data argument is an edsurvey.data.frame When the data argument is an edsurvey.data.frame, gap returns an S3 object of class gap.

The percentage object is a numeric vector with the following elements:

- `pctA`: the percentage of respondents in group A compared with the whole sample in data.
- `pctAse`: the standard error on the percentage of respondents in group A.
- `dofA`: degrees of freedom appropriate for a t-test involving `pctA`. This value is returned only if `returnSimpleDoF=TRUE`.
- `pctB`: the percentage of respondents in group B.
- `pctBse`: the standard error on the percentage of respondents in group B.
- `dofB`: degrees of freedom appropriate for a t-test involving `pctA`. This value is returned only if `returnSimpleDoF=TRUE`.
- `diffAB`: the value of `pctA` minus `pctB`.
- `covAB`: the covariance of `pctA` and `pctB`; used in calculating `diffABse`.
- `diffABse`: the standard error of `pctA` minus `pctB`.
- `diffABpValue`: the p-value associated with the t-test used for the hypothesis test that `diffAB` is zero.
- `dofAB`: degrees of freedom used in calculating `diffABpValue`.

The results object is a numeric data frame with the following elements:

- `estimateA`: the mean estimate of group A (or the percentage estimate if `achievementLevel` or `targetLevel` is specified).
- `estimateAse`: the standard error of `estimateA`.
- `dofA`: degrees of freedom appropriate for a t-test involving `meanA`. This value is returned only if `returnSimpleDoF=TRUE`.
- `estimateB`: the mean estimate of group B (or the percentage estimate if `achievementLevel` or `targetLevel` is specified).
- `estimateBse`: the standard error of `estimateB`.
- `dofB`: degrees of freedom appropriate for a t-test involving `meanB`. This value is returned only if `returnSimpleDoF=TRUE`.
diffAB the value of estimateA minus estimateB
covAB the covariance of estimateA and estimateB. Used in calculating diffABse.
diffABse the standard error of diffAB
diffABpValue the p-value associated with the t-test used for the hypothesis test that diffAB is zero.
dofAB degrees of freedom used for the t-test on diffAB

If the gap was in achievement levels or percentiles and more than one percentile or achievement level is requested, then an additional column labeled percentiles or achievementLevel is included in the results object.

When results has a single row and when returnVarEstInputs is TRUE, the additional elements varEstInputs and pctVarEstInputs also are returned. These can be used for calculating covariances with varEstToCov.

the data argument is an edsurvey.data.frame.list When the data argument is an edsurvey.data.frame.list, gap returns an S3 object of class gapList.

The results object in the edsurveyResultList is a data.frame. Each row regards a particular dataset from the edsurvey.data.frame, and a reference dataset is dictated by the referenceDataIndex argument.

The percentage object is a data.frame with the following elements:
covs a data frame with a column for each column in the covs. See previous section for more details.
... all elements in the percentage object in the previous section
diffAA the difference in pctA between the reference data and this dataset. Set to NA for the reference dataset.
covAA the covariance of pctA in the reference data and pctA on this row. Used in calculating diffAAse.
diffAAse the standard error for diffAA
diffAAPValue the p-value associated with the t-test used for the hypothesis test that diffAA is zero
diffBB the difference in pctB between the reference data and this dataset. Set to NA for the reference dataset.
covBB the covariance of pctB in the reference data and pctB on this row. Used in calculating diffBBse.
diffBBse the standard error for diffBB
diffBPValue the p-value associated with the t-test used for the hypothesis test that diffBB is zero
diffABAB the value of diffAB in the reference dataset minus the value of diffAB in this dataset. Set to NA for the reference dataset.
covABAB the covariance of diffAB in the reference data and diffAB on this row. Used in calculating diffABABse.
diffABABse the standard error for diffABAB
diffABApValue the p-value associated with the t-test used for the hypothesis test that diffABAB is zero

The results object is a data.frame with the following elements:

... all elements in the results object in the previous section
diffAA the value of groupA in the reference dataset minus the value in this dataset. Set to NA for the reference dataset.
covAA the covariance of meanA in the reference data and meanA on this row. Used in calculating diffAAse.
diffAApValue the p-value associated with the t-test used for the hypothesis test that diffAA is zero
diffBB the value of groupB in the reference dataset minus the value in this dataset. Set to NA for the reference dataset.
covBB the covariance of meanB in the reference data and meanB on this row. Used in calculating diffBBse.
diffBBpValue the p-value associated with the t-test used for the hypothesis test that diffBB is zero
diffAB the value of diffAB in the reference dataset minus the value of diffAB in this dataset. Set to NA for the reference dataset.
covAB the covariance of diffAB in the reference data and diffAB on this row. Used in calculating diffABse.
diffABpValue the p-value associated with the t-test used for the hypothesis test that diffABAB is zero

sameSurvey a logical value indicating if this line uses the same survey as the reference line. Set to NA for the reference line.

Author(s)
Paul Bailey, Trang Nguyen, and Huade Huo

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

find the mean score gap in the primer data between males and females
gap(variable="composite", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female")

find the score gap of the quartiles in the primer data between males and females
gap(variable="composite", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female", percentile=50)
find the percent proficient (or higher) gap in the primer data between males and females

```r
gap(variable="composite", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female", percentile=c(25, 50, 75))
```

find the discrete achievement level gap--this is harder to interpret

```r
gap(variable="composite", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female", achievementLevel="Proficient", achievementDiscrete=TRUE)
```

find the percent talk about studies at home (b017451) never or hardly ever gap in the primer data between males and females

```r
gap(variable="b017451", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female", targetLevel="Never or hardly ever")
```

example showing how to compare multiple levels

```r
gap(variable="b017451", data=sdf, groupA=dsex=="Male", groupB=dsex=="Female", targetLevel="Infrequently", recode=list(b017451=list(from=c("Never or hardly ever", "Once every few weeks", "About once a week"), to=c("Infrequently"))))
```

make subsets of sdf by scrpsu, "Scrambled PSU and school code"

```r
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)
```

```r
sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD), labels=c("A locations", "B locations", "C locations", "D locations"))
```

```r
gap(variable="composite", data=sdfl, groupA=dsex=="Male", groupB=dsex=="Female", percentile=c(50))
```

End(Not run)

Not run:

example showing using linking error with gap

load Grade 4 math data

```r
# requires NAEP RUD license with these files in the folder the user is currently in
g4math2015 <- readNAEP("M46NT1AT.dat")
g4math2017 <- readNAEP("M48NT1AT.dat")
g4math2019 <- readNAEP("M50NT1AT.dat")
```

make an edsurvey.data.frame.list from math grade 4 2015, 2017, and 2019 data

```r
g4math <- edsurvey.data.frame.list(datalist=list(g4math2019, g4math2017, g4math2015), labels = c("2019", "2017", "2015"))
```
getAllItems

gap analysis with linking error in variance estimation across surveys
gap(variable="composite", data=g4math,
groupA=dsex="Male", groupB=dsex="Female", includeLinkingError=TRUE)
gap(variable="composite", data=g4math,
groupA=dsex="Male", groupB=dsex="Female", percentiles = c(10, 25),
includeLinkingError=TRUE)
gap(variable="composite", data=g4math, groupA=dsex="Male", groupB=dsex="Female",
achievementDiscrete = TRUE, achievementLevel=c("Basic", "Proficient", "Advanced"),
includeLinkingError=TRUE)

End(Not run)

getAllItems

Retrieve IRT Item Variable Names

description

Retrieves the IRT item variable names associated with construct names for use with mml.sdf function.

Usage

getAllItems(sdf, construct = NULL)

Arguments

- **sdf**: an edsurvey.data.frame or light.edsurvey.data.frame containing IRT information. Supports NAEP and TIMSS 2011, 2015, and 2019 studies only.
- **construct**: a character value (or vector) for which to return the associated item variable names. Default value is NULL which returns all IRT item variable names. Use the showPlausibleValues function to view construct details.

Value

A character vector of the items names associated for the values in construct.

Note

If construct is a vector, all item names will be returned for those constructs. Use getAllItems with getData when creating a light.edsurvey.data.frame, see example for use.

Author(s)

Tom Fink, Sun-Joo Lee, Eric Buehler, and Paul Bailey

See Also

mml.sdf
getData

Examples

```r
## Not run:
#TIMSS Example
t15 <- readTIMSS(path="~/TIMSS/2015", "usa", 4)

showPlausibleValues(data=t15) #view constructs in console

#ensure we have all data needed for mml.sdf on light.edsurvey.data.frame
#must be specified ahead of time. the 'getAllItems' function makes this easy
mathItems <- getAllItems(sdf=t15, construct="mmat") #get mathematics items
sciItems <- getAllItems(sdf=t15, construct="ssci") #get science items
allItems <- getAllItems(sdf=t15, construct="NULL")

wgtVar <- "totwgt"
psustr <- c(getPSUVar(t15, wgtVar), getStratumVar(t15, wgtVar))
lsdf <- getData(data=t15,
                varnames=c("ROWID", "mmat", mathItems, psustr, wgtVar),
                omittedLevels=FALSE,
                addAttributes=TRUE) #builds light.edsurvey.data.frame

#as a light.edsurvey.data.frame all elements must be present
mml.sdf(formula=mmat ~ 1, data=lsdf, weightVar="totwgt")

#as edsurvey.data.frame elements retrieved automatically for user
mml.sdf(formula=mmat ~ 1, data=t15, weightVar="totwgt")

#NAEP example
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

allItems <- getAllItems(sdf=sdf, construct=NULL)
algebraItems <- getAllItems(sdf=sdf, construct="algebra")

## End(Not run)
```

Description

Reads in selected columns to a data.frame or a light.edsurvey.data.frame. On an edsurvey.data.frame, the data are stored on disk.

Usage

```r
getData(
  data,
  varnames = NULL,
  drop = FALSE,
  dropUnusedLevels = TRUE,
```
getData

```r
dropOmittedLevels = TRUE,
defaultConditions = TRUE,
formula = NULL,
recode = NULL,
includeNaLabel = FALSE,
addAttributes = FALSE,
returnJKreplicates = TRUE,
omittedLevels = deprecated()
)
```

Arguments

- `data` an `edsurvey.data.frame` or a `light.edsurvey.data.frame`
- `varnames` a character vector of variable names that will be returned. When both `varnames` and a `formula` are specified, variables associated with both are returned. Set to `NULL` by default.
- `drop` a logical value. When set to the default value of `FALSE`, when a single column is returned, it is still represented as a `data.frame` and is not converted to a vector.
- `dropUnusedLevels` a logical value. When set to the default value of `TRUE`, drops unused levels of all factor variables.
- `dropOmittedLevels` a logical value. When set to the default value of `TRUE`, drops those levels of all factor variables that are specified in an `edsurvey.data.frame`. Use `print` on an `edsurvey.data.frame` to see the omitted levels. The omitted levels also can be adjusted with `setAttributes`; see Examples.
- `defaultConditions` a logical value. When set to the default value of `TRUE`, uses the default conditions stored in an `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.
- `formula` a formula. When included, `getData` returns data associated with all variables of the formula. When both `varnames` and a `formula` are specified, the variables associated with both are returned. Set to `NULL` by default.
- `recode` a list of lists to recode variables. Defaults to `NULL`. Can be set as `recode = list(var1 = list(from = c("a","b","c"), to = "d")).` See Examples.
- `includeNaLabel` a logical value to indicate if NA (missing) values are returned as literal NA values or as factor levels coded as NA.
- `addAttributes` a logical value set to `TRUE` to get a `data.frame` that can be used in calls to other functions that usually would take an `edsurvey.data.frame`. This `data.frame` also is called a `light.edsurvey.data.frame`. See Description section in `edsurvey.data.frame` for more information on `light.edsurvey.data.frame`.
- `returnJKreplicates` a logical value indicating if JK replicate weights should be returned. Defaults to `TRUE`.
- `omittedLevels` this argument is deprecated. Use `dropOmittedLevels`.
getData

Details

By default, an edsurvey.data.frame does not have data read into memory until getData is called and returns a data frame. This structure allows EdSurvey to have a minimal memory footprint. To keep the footprint small, you need to limit varnames to just the necessary variables.

There are two methods of attaching survey attributes to a data.frame to make it usable by the functions in the EdSurvey package (e.g., lm.sdf): (a) setting the addAttributes argument to TRUE at in the call to getData or (b) by appending the attributes to the data frame with rebindAttributes.

When getData is called, it returns a data frame. Setting the addAttributes argument to TRUE adds the survey attributes and changes the resultant data.frame to a light.edsurvey.data.frame. Alternatively, a data.frame can be coerced into a light.edsurvey.data.frame using rebindAttributes. See Examples in the rebindAttributes documentation.

If both formula and varnames are populated, the variables on both will be included.

See the vignette titled Using the getData Function in EdSurvey for long-form documentation on this function.

Value

When addAttributes is FALSE, getData returns a data.frame containing data associated with the requested variables. When addAttributes is TRUE, getData returns a light.edsurvey.data.frame.

Author(s)

Tom Fink, Paul Bailey, and Ahmad Emad

See Also

rebindAttributes

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# get two variables, without weights
df <- getData(data = sdf, varnames = c("dsex", "b017451"))
table(df)

# example of using recode
df2 <- getData(data = sdf, varnames = c("dsex", "t088301"),
                recode = list(t088301=list(from = c("Yes, available", "Yes, I have access"),
                                 to = c("Yes")),
                              t088301=list(from = c("No, have no access"),
                                           to = c("No")))))
table(df2)

# when readNAEP is called on a data file, it appends a default
# condition to the edsurvey.data.frame. You can see these conditions
# by printing the sdf
```
As per the default condition specified, `getData` restricts the data to only Reporting Sample. This behavior can be changed as follows:

```r
df2 <- getData(data=sdf, varnames=c("dsex", "b017451"), defaultConditions = FALSE)
table(df2)
```

Similarly, the default behavior of omitting certain levels specified in the `edsurvey.data.frame` can be changed as follows:

```r
df2 <- getData(data=sdf, varnames=c("dsex", "b017451"), omittedLevels = FALSE)
table(df2)
```

`omittedLevels` can also be edited with `setAttributes()`

```r
sdfIncludeMultiple <- setAttributes(data=sdf, attribute="omittedLevels", value=c(NA, "Omitted"))
```

```r
getAttributes(data=sdfIncludeMultiple, attribute="omittedLevels")
```

```r
dfIncludeMultiple <- getData(data=sdfIncludeMultiple, varnames=c("dsex", "b017451"))
table(dfIncludeMultiple)
```

The variable "c052601" is from the school-level data file; merging is handled automatically.

```r
gddat <- getData(data=sdf, varnames=c("composite", "dsex", "b017451","c052601"), addAttributes = TRUE)
class(gddat)
```

```r
head(gddat)
```

get a selection of variables, recode using ifelse, and reappend attributes

```r
df0 <- getData(data=sdf, varnames=c("composite", "dsex", "b017451","origwt"))
df0$sex <- ifelse(df0$dsex=="Male", "boy", "girl")
df0 <- rebindAttributes(data=df0, attributeData=sdf)
```

```r
# getting all the data can use up all the memory and is generally a bad idea
df0 <- getData(data=sdf, varnames=colnames(sdf),
               omittedLevels=FALSE, defaultConditions=FALSE)
```

End(Not run)

getNHES_SurveyInfo

Get NHES Survey Code Definitions and Survey Meta-data

Description

This function returns a data.frame object that defines NHES Survey Codes and survey parameters that are compatible with the `readNHES` function for use. The resulting data.frame object is useful for user reference or other advanced techniques.
getPlausibleValue

Usage

getNHES_SurveyInfo()

Note

Any changes or modifications to the data.frame object will not change the behavior of readNHES. This function should be treated only as a read-only source of information.

Author(s)

Tom Fink

See Also

readNHES, viewNHES_SurveyCodes

Examples

```r
## Not run:
# retrieves the NHES survey meta-data to a data.frame
surveyInfo <- getNHES_SurveyInfo()

# View the survey data where the year is equal to 2016 in RStudio
View(subset(surveyInfo, surveyInfo$Year==2016))

## End(Not run)
```

getPlausibleValue Get Plausible Value Variables

Description

Gets the set of variables on an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list associated with the given subject or subscale.

Usage

getPlausibleValue(var, data)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>a character vector naming the subject scale or subscale</td>
</tr>
<tr>
<td>data</td>
<td>an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list</td>
</tr>
</tbody>
</table>

Details

This function will return a set of plausible value names for variables that hasPlausibleValue returns as true.
getWeightJkReplicates

Retrieve the Jackknife Replicate Weights

Description

Returns the jackknife replicate weights on an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list associated with a weight variable.

Usage

```r
getWeightJkReplicates(var, data)
```

Arguments

- `var` character indicating the name of the weight variable for which the jackknife replicate weights are desired
- `data` an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Value

a character vector of the jackknife replicate weights

Author(s)

Michael Lee and Paul Bailey

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

getPlausibleValue(var="composite", data=sdf)
## End(Not run)
```

Value

a character vector of the set of variable names for the plausible values

Author(s)

Michael Lee and Paul Bailey

See Also

`showPlausibleValues`, `updatePlausibleValue`
Examples

```r
# Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

getWeightJKReplicates(var="origwt", data=sdf)
```

glm.sdf

EdSurvey Generalized Linear Models

Description

Fits a logit or probit that uses weights and variance estimates appropriate for the `edsurvey.data.frame`, the `light.edsurvey.data.frame`, or the `edsurvey.data.frame.list`.

Usage

```r
glm.sdf(formula, family = binomial(link = "logit"), data,
        weightVar = NULL, relevels = list(),
        varMethod = c("jackknife", "Taylor"), jrrIMax = 1,
        dropOmittedLevels = TRUE, defaultConditions = TRUE, recode = NULL,
        returnNumberOfPSU = FALSE, returnVarEstInputs = FALSE,
        omittedLevels = deprecated())
```

```r
logit.sdf(
formula,
data,
weightVar = NULL,
relevels = list(),
varMethod = c("jackknife", "Taylor"),
jrrIMax = 1,
dropOmittedLevels = TRUE,
defaultConditions = TRUE,
recode = NULL,
returnNumberOfPSU = FALSE,
returnVarEstInputs = FALSE,
oneMittedLevels = deprecated())
```

```r
probit.sdf(
formula,
data,
weightVar = NULL,
relevels = list(),
varMethod = c("jackknife", "Taylor"),
```

```r
```
glm.sdf

jrrIMax = 1,
dropOmittedLevels = TRUE,
defaultConditions = TRUE,
recode = NULL,
returnNumberOfPSU = FALSE,
returnVarEstInputs = FALSE,
omittedLevels = deprecated()
)

Arguments

formula a formula for the linear model. See glm. For logit and probit, we recommend
using the I() function to define the level used for success. (See Examples.)

family the glm.sdf function currently fits only the binomial outcome models, such as
logit and probit, although other link functions are available for binomial models.
See the link argument in the help for family.

data an edsurvey.data.frame

weightVar character indicating the weight variable to use (see Details). The weightVar
must be one of the weights for the edsurvey.data.frame. If NULL, uses the
default for the edsurvey.data.frame.

relevels a list; used to change the contrasts from the default treatment contrasts to the
treatment contrasts with a chosen omitted group. The name of each element
should be the variable name, and the value should be the group to be omitted.

varMethod a character set to “jackknife” or “Taylor” that indicates the variance estimation
method to be used. See Details.

jrrIMax the Vjrr sampling variance term (see Statistical Methods Used in EdSurvey)
can be estimated with any positive number of plausible values and is estimated on the
lower of the number of available plausible values and jrrIMax. When jrrIMax
is set to Inf, all plausible values will be used. Higher values of jrrIMax lead to
longer computing times and more accurate variance estimates.

dropOmittedLevels a logical value. When set to the default value of TRUE, drops those levels of all
factor variables that are specified in edsurvey.data.frame. Use print on an
edsurvey.data.frame to see the omitted levels.

defaultConditions a logical value. When set to the default value of TRUE, uses the default condi-
tions stored in an edsurvey.data.frame to subset the data. Use print on an
edsurvey.data.frame to see the default conditions.

recode a list of lists to recode variables. Defaults to NULL. Can be set as recode=
list(var1=list(from=c("a", "b", "c"), to="d"))).

returnNumberOfPSU a logical value set to TRUE to return the number of primary sampling units
(PSUs)

returnVarEstInputs a logical value set to TRUE to return the inputs to the jackknife and imputation
variance estimates, which allow for the computation of covariances between
estimates.
omittedLevels this argument is deprecated. Use dropOmittedLevels

Details

This function implements an estimator that correctly handles left-hand side variables that are logical, allows for survey sampling weights, and estimates variances using the jackknife replication or Taylor series. The vignette titled Statistical Methods Used in EdSurvey describes estimation of the reported statistics and how it depends on varMethod.

The coefficients are estimated using the sample weights according to the section “Estimation of Weighted Means When Plausible Values Are Not Present” or the section “Estimation of WeightedMeans When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.

How the standard errors of the coefficients are estimated depends on the presence of plausible values (assessment variables), But once it is obtained, the t statistic is given by

$$t = \frac{\hat{\beta}}{\sqrt{\text{var}(\hat{\beta})}}$$

where $\hat{\beta}$ is the estimated coefficient and $\text{var}(\hat{\beta})$ is its variance of that estimate.

logit.sdf and probit.sdf are included for convenience only; they give the same results as a call to glm.sdf with the binomial family and the link function named in the function call (logit or probit). By default, glm fits a logistic regression when family is not set, so the two are expected to give the same results in that case. Other types of generalized linear models are not supported.

Variance estimation of coefficients: All variance estimation methods are shown in the vignette titled Statistical Methods Used in EdSurvey. When the predicted value does not have plausible values and varMethod is set to jackknife, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present and varMethod is set to jackknife, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

When the predicted value does not have plausible values and varMethod is set to Taylor, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Taylor Series Method.”

When plausible values are present and varMethod is set to Taylor, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method.”

Value

An edsurveyGlm with the following elements:

- call the function call
- formula the formula used to fit the model
- coef the estimates of the coefficients
- se the standard error estimates of the coefficients
Vimp the estimated variance caused by uncertainty in the scores (plausible value variables)

Vjrr the estimated variance from sampling

M the number of plausible values

nPSU the number of PSUs used in the calculation

varm the variance estimates under the various plausible values

coefm the values of the coefficients under the various plausible values

coefmat the coefficient matrix (typically produced by the summary of a model)

weight the name of the weight variable

npv the number of plausible values

njk the number of the jackknife replicates used

varMethod always jackknife

varEstInputs when returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.

Testing

Of the common hypothesis tests for joint parameter testing, only the Wald test is widely used with plausible values and sample weights. As such, it replaces, if imperfectly, the Akaike Information Criteria (AIC), the likelihood ratio test, chi-squared, and analysis of variance (ANOVA, including F-tests). See waldTest or the vignette titled Methods and Overview of Using EdSurvey for Running Wald Tests.

Author(s)

Paul Bailey

See Also

glm

Examples

```R
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# by default uses the jackknife variance method using replicate weights
table(sdf$b013801)
logit1 <- logit.sdf(formula = I(b013801 %in% c("26-100", ">100")) ~ dsex + b017451, data = sdf)

# use summary to get detailed results
summary(logit1)

# Taylor series variance estimation
logit1t <- logit.sdf(formula = I(b013801 %in% c("26-100", ">100")) ~ dsex + b017451, data = sdf, varMethod = "Taylor")

summary(logit1t)
```
logit2 <- logit.sdf(formula=I(composite >= 300) ~ dsex + b013801, data=sdf)
summary(logit2)

logit3 <- glm.sdf(formula=I(composite >= 300) ~ dsex + b013801, data=sdf,
family=quasibinomial(link="logit"))

Wald test for joint hypothesis that all coefficients in b013801 are zero
waldTest(model=logit3, coefficients="b013801")

summary(logit3)

End(Not run)

hasPlausibleValue

Plausible Value Test

Description

Returns a value indicating if this variable has associated plausible values in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

hasPlausibleValue(var, data)

Arguments

- **var**
 - a character indicating the variable in question
- **data**
 - an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Details

This function returns TRUE only when the variable passed to it is the name for a set of plausible values but not if it is an individual plausible value from such a set. Thus, on the NAEP Primer, composite has plausible values (and so TRUE would be returned by this function), but any of the plausible values or variable names defined in the actual data (such as "mrpcm1" or "dsex") are not.

Value

a Boolean (or vector when var is a vector) indicating if each element of var has plausible values associated with it

Author(s)

Michael Lee and Paul Bailey
isWeight

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# TRUE
hasPlausibleValue(var = "composite", data = sdf)

# FALSE
hasPlausibleValue(var = "dsex", data = sdf)

## End(Not run)
```

isWeight Weight Test

Description

Returns logical values indicating whether a vector of variables is a weight for an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.

Usage

```r
isWeight(var, data)
```

Arguments

- `var` a character vector of variables
- `data` an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`

Details

Note that this function returns `TRUE` only when the `var` element is the name of the weight used for making estimates but not if it is one of the individual jackknife replicates.

Value

A logical vector of values indicating if each element of `var` is a weight.

Author(s)

Michael Lee and Paul Bailey
Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

TRUE
isWeight(var="origwt", data=sdf)

FALSE
isWeight(var="dsex", data=sdf)

End(Not run)

levelsSDF

Print Levels and Labels

Description

Retrieve the levels and labels of a variable from an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

levelsSDF(varnames, data, showOmitted = TRUE, showN = TRUE)

Arguments

varnames a vector of character strings to search for in the database connection object (data)
data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
showOmitted a Boolean indicating if omitted levels should be shown
showN a Boolean indicating if (unweighted) n-sizes should be shown for each response level

Author(s)

Michael Lee and Paul Bailey

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

search variables in the sdf
levelsSDF(varnames="pared", data=sdf)

search multiple variables
levelsSDF(varnames=c("pared","ell3"), data=sdf)

search multiple variables in a light.edsurvey.data.frame with recodes
df2 <- getData(data=sdf, varnames=c("dsex", "t088301"),
 recode=list(t088301=list(from=c("Yes, available","Yes, I have access"),
 to=c("Yes")),
 t088301=list(from=c("No, have no access"),
 to=c("No"))),
 addAttributes=TRUE)
levelsSDF(varnames=c("dsex","t088301"), data=df2)

End(Not run)

lm.sdf

EdSurvey Linear Models

Description

Fits a linear model that uses weights and variance estimates appropriate for the data.

Usage

```r
lm.sdf(formula, data, weightVar = NULL, relevels = list(),
    varMethod = c("jackknife", "Taylor"), jrrIMax = 1,
    dropOmittedLevels = TRUE, defaultConditions = TRUE, recode = NULL,
    returnVarEstInputs = FALSE, returnNumberOfPSU = FALSE,
    standardizeWithSamplingVar = FALSE, verbose=TRUE,
    omittedLevels = deprecated())
```

Arguments

- **formula**
 - a formula for the linear model. See `lm`. If `y` is left blank, the default subject scale or subscale variable will be used. (You can find the default using `showPlausibleValues`.) If `y` is a variable for a subject scale or subscale (one of the names shown by `showPlausibleValues`), then that subject scale or subscale is used.

- **data**
 - an `edsurvey.data.frame`, a `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`

- **weightVar**
 - a character indicating the weight variable to use (see Details). The `weightVar` must be one of the weights for the `edsurvey.data.frame`. If `NULL`, it uses the default for the `edsurvey.data.frame`.

- **relevels**
 - a list. Used to change the contrasts from the default treatment contrasts to the treatment contrasts with a chosen omitted group (the reference group). The name of each element should be the variable name, and the value should be the group to be omitted (the reference group).

- **varMethod**
 - a character set to “jackknife” or “Taylor” that indicates the variance estimation method to be used. See Details.
jrrIMax

a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_j term (see *Statistical Methods Used in EdSurvey*) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

dropOmittedLevels

a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an `edsurvey.data.frame`. Use `print` on an `edsurvey.data.frame` to see the omitted levels.

defaultConditions

a logical value. When set to the default value of TRUE, uses the default conditions stored in an `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.

recode

a list of lists to recode variables. Defaults to NULL. Can be set as `recode=list(var1=list(from= c("a", "b", "c"), to= "d"))`. See Examples.

returnVarEstInputs

a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allow for the computation of covariances between estimates.

returnNumberOfPSU

a logical value set to TRUE to return the number of primary sampling units (PSUs).

standardizeWithSamplingVar

a logical value indicating if the standardized coefficients should have the variance of the regressors and outcome measured with sampling variance. Defaults to FALSE.

verbose

logical; indicates whether a detailed printout should display during execution.

omittedLevels

this argument is deprecated. Use `dropOmittedLevels`.

Details

This function implements an estimator that correctly handles left-hand side variables that are either numeric or plausible values and allows for survey sampling weights and estimates variances using the jackknife replication method. The vignette titled *Statistical Methods Used in EdSurvey* describes estimation of the reported statistics.

Regardless of the variance estimation, the coefficients are estimated using the sample weights according to the sections “Estimation of Weighted Means When Plausible Values Are Not Present” or “Estimation of Weighted Means When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.

How the standard errors of the coefficients are estimated depends on the value of `varMethod` and the presence of plausible values (assessment variables). But once it is obtained, the t statistic is given by

$$t = \frac{\hat{\beta}}{\sqrt{\text{var}(\hat{\beta})}}$$
where $\hat{\beta}$ is the estimated coefficient and $\text{var}(\hat{\beta})$ is the variance of that estimate.

The **coefficient of determination (R-squared value)** is similarly estimated by finding the average R-squared using the average across the plausible values.

Standardized regression coefficients: Standardized regression coefficients can be returned in a call to `summary`, by setting the argument `src` to `TRUE`. See Examples.

By default, the standardized coefficients are calculated using standard deviations of the variables themselves, including averaging the standard deviation across any plausible values. When `standardizeWithSamplingVar` is set to `TRUE`, the variance of the standardized coefficient is calculated similar to a regression coefficient and therefore includes the sampling variance in the variance estimate of the outcome variable.

Variance estimation of coefficients: All variance estimation methods are shown in the vignette titled `Statistical Methods Used in EdSurvey`. When `varMethod` is set to the `jackknife` and the predicted value does not have plausible values, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present and `varMethod` is `jackknife`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

When plausible values are not present and `varMethod` is `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Taylor Series Method.”

When plausible values are present and `varMethod` is `Taylor`, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Taylor Series Method.”

Value

An `edsurvey.lm` with the following elements:

- `call`: the function call
- `formula`: the formula used to fit the model
- `coef`: the estimates of the coefficients
- `se`: the standard error estimates of the coefficients
- `Vimp`: the estimated variance from uncertainty in the scores (plausible value variables)
- `Vjrr`: the estimated variance from sampling
- `M`: the number of plausible values
- `varm`: the variance estimates under the various plausible values
- `coefm`: the values of the coefficients under the various plausible values
- `coefmat`: the coefficient matrix (typically produced by the summary of a model)
- `r.squared`: the coefficient of determination
- `weight`: the name of the weight variable
- `npv`: the number of plausible values
jrrMax the jrrMax value used in computation
njk the number of the jackknife replicates used; set to NA when Taylor series variance estimates are used
varMethod one of Taylor series or the jackknife
residuals residuals from the average regression coefficients
PV.residuals residuals from the by plausible value coefficients
PV.fitted.values fitted values from the by plausible value coefficients
B imputation variance covariance matrix, before multiplication by (M+1)/M
U sampling variance covariance matrix
rbar average relative increase in variance; see van Buuren (2012, eq. 2.29)
nPSt number of PSUs used in calculation
n0 number of rows on an edsurvey.data.frame before any conditions were applied
nUsed number of observations with valid data and weights larger than zero
data data used for the computation
Xstdev standard deviations of regressors, used for computing standardized regression coefficients when standardizeWithSamplingVar is set to FALSE (the default)
varSummary the result of running summary2 (unweighted) on each variable in the regression
varEstInputs when returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.
standardizeWithSamplingVar when standardizeWithSamplingVar is set to TRUE, this element is returned. Calculates the standard deviation of the standardized regression coefficients like any other variable.

Testing

Of the common hypothesis tests for joint parameter testing, only the Wald test is widely used with plausible values and sample weights. As such, it replaces, if imperfectly, the Akaike Information Criteria (AIC), the likelihood ratio test, chi-squared, and analysis of variance (ANOVA, including F-tests). See waldTest or the vignette titled Methods and Overview of Using EdSurvey for Running Wald Tests.

Author(s)

Paul Bailey

References

merge.edsurvey.data

See Also

lm

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

by default uses jackknife variance method using replicate weights
lm1 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf)

the summary function displays detailed results
summary(lm1)

to show standardized regression coefficients
summary(lm1, src=TRUE)

to specify a variance method, use varMethod
lm2 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf, varMethod="Taylor")

use relevel to set a new omitted category
lm3 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf, relevels=list(dsex="Female"))

test of a simple joint hypothesis
waldTest(lm3, "b017451")

use recode to change values for specified variables
lm4 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf,
 recode=list(b017451=list(from=c("Never or hardly ever",
 "Once every few weeks",
 "About once a week"),
 to=c("Infrequently")),
 b017451=list(from=c("2 or 3 times a week","Every day"),
 to=c("Frequently"))))

Note: "Infrequently" is the dropped level for the recoded b017451
summary(lm4)

End(Not run)

merge.edsurvey.data EdSurvey Merge

Description

Takes a data.frame or a light.edsurvey.data.frame and merges with a edsurvey.data.frame into it's internal data cache.
merge.edsurvey.data

Usage

S3 method for class 'edsurvey.data.frame'
merge(x, y, by = "id", by.x = by, by.y = by, ...)

Arguments

x a edsurvey.data.frame. The x object is retained and has y values stored in
the internal cache in memory. x also supports light.edsurvey.data.frame
objects if y is a data.frame or light.edsurvey.data.frame object.

y either a light.edsurvey.data.frame or a data.frame

by the column name(s) to perform the data merge operation. If differing column
names between the x and y objects, use the by.x and by.y arguments.

by.x the column name(s) to perform the data merge operation for the x object. De-
defaults to by.

by.y the column name(s) to perform the data merge operation for the y object. De-
defaults to by.

... arguments passed to merge, note that all.x will always be TRUE (the data on the
edsurvey.data.frame will always be kept) and all.y will always be FALSE to
avoid adding data not on the edsurvey.data.frame.

Value

a merged data set the same object type as x. For edsurvey.data.frame objects then resulting
merged data is stored in the objects internal data cache.

Author(s)

Tom Fink

See Also

merge

Examples

Not run:
read in NAEP primer data
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
lsdf <- getData(data=sdf, varnames=c("dsex", "b017451"), addAttributes = TRUE)
df <- data.frame(dsex = c("Male","Female"), dsex2 = c("Boy","Girl"))

#merging an edsurvey.data.frame with a data.frame/light.edsurvey.data.frame
#returns an edsurvey.data.frame/light.edsurvey.data.frame object
sdf2 <- merge(sdf, df, by = "dsex")
table(sdf2$dsex2)

merging a light.edsurvey.data.frame with a data.frame
returns a light.edsurvey.data.frame object
merged_lsdf <- merge(lsdf,df, by = "dsex")
class(merged_lsdf) # "light.edsurvey.data.frame" "data.frame"
head(merged_lsdf) # shows merge results

merging behaves similarly to base::merge
df2 <- data.frame(dsex = c("Male","Female"), b017451 = c(1,2))
merged_lsdf2 <- merge(lsdf, df2, by = "dsex")
names(merged_lsdf2) # "dsex" "b017451.x" "b017451.y"
head(merged_lsdf2) # shows merge results

End(Not run)

mergev

Description

More verbose merge function

Usage

mergev(
x, y,
by = NULL,
by.x = NULL,
by.y = NULL,
all.x = NULL,
all.y = NULL,
all = FALSE,
order = c("sort", "unsorted", "x", "y"),
fast = FALSE,
merge.type.colname = "merge.type",
return.list = FALSE,
verbose = TRUE,
showWarnings = TRUE,
...)

Arguments

x first data.frame to merge, same as in merge.
y second data.frame to merge, same as in merge.
by character vector of column names to merge by. When by is used, the column names must be the same in x and y. Silently overrides by.x and by.y
by.x character vector of column names on x to merge by. The resulting file will have these names.
by.y character vector of column names on y to merge by.
mergev

all.x logical value indicating if unmerged rows from x should be included in the output.

call.x logical value indicating if unmerged rows from x should be included in the output.

call logical value indicating if unmerged rows from x and y should be included in the output. Silently overrides all.x and all.y.

order character string from "sort", "unsorted", "x", and "y". Specifies the order of the output. Setting this to "sort" gives the same result as merge with sort=TRUE. unsorted gives the same result as sort=FALSE. "x" and "y" sort by the incoming sort order of x and y, respectively.

call fast logical value indicating if data.table should be used to do the merge.

call type.colname character indicating the column name of the resulting merge type column. See description.

call return.list logical value indicating if the merged data.frame and verbose output should be returned as elements of a list. Defaults to FALSE where the function simply returns a data.frame.

call verbose logical value indicating if output should be reported. Defaults to TRUE. Useful for testing.

showWarnings logical value to output warning messages (TRUE) or suppress (FALSE). Defaults to TRUE.

... additional parameters passed to merge.

Details

This is a wrapper for the base package merge function that prints out verbose information about the merge, including the merge type (one/many to one/many), the overlapping column names that will have suffixes applied, the number of rows and the number of unique keys that are in each dataset and in the resulting dataset.

Also gives more detailed errors when, e.g. the columns named in the by argument are not on the x or y data.frames.

Value

depends on the value of return.list.

When return.list is FALSE, returns a data.frame.

When return.list is TRUE, returns a list with two elements. The first is the same data.frame result. The second is a list with the values that were printed out. Elements include merge.type with two elements, each "one" or "many" indicating the merge type for x and y, respectively; inBoth, the list of column names in both merged data.frames; and merge.matrix the matrix printed out by this function.
mixed.sdf

EdSurvey Mixed-Effects Model

Description

Fits a linear weighted mixed-effects model.

Usage

mixed.sdf(
 formula,
 data,
 weightVars = NULL,
 weightTransformation = TRUE,
 recode = NULL,
 defaultConditions = TRUE,
 tolerance = 0.01,
 nQuad = NULL,
 verbose = 0,
 family = NULL,
 centerGroup = NULL,
 centerGrand = NULL,
 fast = FALSE,
 ...
)

Arguments

formula a formula for the multilevel regression or mixed model. See Examples and the vignette titled Methods Used for Estimating Mixed-Effects Models in EdSurvey for more details on how to specify a mixed model. If y is left blank, the default subject scale or subscale variable will be used. (You can find the default using showPlausibleValues.) If y is a variable for a subject scale or subscale (one of the names shown by showPlausibleValues), then that subject scale or subscale is used.

data an edsurvey.data.frame or a light.edsurvey.data.frame

weightVars character vector indicating weight variables for corresponding levels to use. The weightVar must be the weights for the edsurvey.data.frame. The weight variables must be in the order of level (from lowest to highest level).

weightTransformation a logical value to indicate whether the function should standardize weights before using it in the multilevel model. If set to TRUE, the function will look up standard weight transformation methods often used for a specific survey. Weight transformation can be found in the vignette titled Methods Used for Estimating Mixed-Effects Models in EdSurvey. If set to FALSE or if the survey of the specified data does not have a standard weight transformation method, raw weights will be used.
recode a list of lists to recode variables. Defaults to NULL. Can be set as `recode=list(var1=list(from=c("a", "b", "c"), to="d"))`. See Examples in `lm.sdf`.

defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an `edsurvey.data.frame` to subset the data. Use `print` on an `edsurvey.data.frame` to see the default conditions.

tolerance depreciated, no effect

nQuad depreciated, no effect

verbose an integer; when set to 1, it will print out the brief progress of the function `mix.sdf`. Users can use these traced messages for further diagnosis. When set to 2, it will print out the detailed progress, including temporary estimates during the optimization. Defaults to 0, which will run the function without output.

family this argument is depreciated; please use the `WeMix` package’s `mix` function directly for binomial models.

centerGroup a list in which the name of each element is the name of the aggregation level, and the element is a formula of variable names to be group mean centered. For example, to group mean center gender and age within the group student: `list("student"=~gender+age)`. Defaults to NULL, which means predictors are not adjusted by group centering. See Examples in the `WeMix` function `mix`.

centerGrand a formula of variable names to be grand mean centered. For example, to center the variable education by overall mean of education: `~education`. Defaults to NULL, which means predictors are not adjusted by grand centering.

fast depreciated, no effect

... other potential arguments to be used in `mix`

Details

This function uses the `mix` call in the `WeMix` package to fit mixed models. When the outcome does not have plausible values, the variance estimator directly from the `mix` function is used; these account for covariance at the top level of the model specified by the user.

When the outcome has plausible values, the coefficients are estimated in the same way as in `lm.sdf`, that is, averaged across the plausible values. In addition, the variance of the coefficients is estimated as the sum of the variance estimate from the `mix` function and the imputation variance. The formula for the imputation variance is, again, the same as for `lm.sdf`, with the same estimators as in the vignette titled *Statistical Methods Used in EdSurvey*. In the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method” in the formula for V_{imp}, the variance and estimates of the variance components are estimated with the same formulas as the regression coefficients.

Value

A `mixedSdfResults` object with the following elements:

call the original call used in `mixed.sdf`

formula the formula used to fit the model

coef a vector of coefficient estimates
se a vector with the standard error estimates of the coefficients and the standard error of the variance components

vars estimated variance components of the model

levels the number of levels in the model

ICC the intraclass correlation coefficient of the model

npv the number of plausible values

ngroups a data.frame that includes the number of observations for each group

n0 the number of observations in the original data

nused the number of observations used in the analysis

model.frame the data used in the model

If the formula does not involve plausible values, the function will return the following additional elements:

lnlf the likelihood function

lnl the log-likelihood of the model

If the formula involves plausible values, the function will return the following additional elements:

Vimp the estimated variance from uncertainty in the scores

Vjrr the estimated variance from sampling

Author(s)

Paul Bailey, Trang Nguyen, and Claire Kelley

References

See Also

WeMix mix function and lm.sdf

Examples

```r
## Not run:
# save TIMSS 2015 data to ~/TIMSS/2015
downloadTIMSS(root="~/", years=2015)
fin <- readTIMSS(path="~/TIMSS/2015", countries="fin", gradeLvl=4)
# uses all plausible values
mix1 <- mixed.sdf(formula=mmat ~ itsex + (1|idschool), data = fin,
                   weightVar=c("totwgt","schwgt"), weightTransformation=FALSE)
summary(mix1)
# uses only one plausible value
mix2 <- mixed.sdf(formula=asmmat01 ~ itsex + (1|idschool), data = fin,
                   weightVar=c("totwgt","schwgt"), weightTransformation=FALSE)
summary(mix2)
## End(Not run)
```
Description

Prepare IRT parameters and score items and then estimate a linear model with direct estimation.

Usage

mml.sdf(
 formula,
 data,
 weightVar = NULL,
 dropOmittedLevels = TRUE,
 composite = TRUE,
 verbose = 0,
 multiCore = FALSE,
 numberOfCores = NULL,
 minNode = -4,
 maxNode = 4,
 Q = 34,
 idVar = NULL,
 returnMmlCall = FALSE,
 omittedLevels = deprecated()
)

Arguments

formula a formula for the model.

data an edsurvey.data.frame for the National Assessment of Educational Progress (NAEP) and the Trends in International Mathematics and Science Study (TIMSS). The attributes dichotParamTab, polyParamTab, testData, scoreCard (for NAEP), and scoreDict (for TIMSS) must not be NULL. Use the function setNAEPScoreCard or setAttributes to set attributes.

weightVar a character indicating the weight variable to use. The weightVar must be one of the weights for the edsurvey.data.frame. If NULL, it uses the default for the edsurvey.data.frame.

dropOmittedLevels a logical value. When set to the value of TRUE, drops the levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels. To draw plausible values for the full dataset, the user must set this to FALSE.

composite logical; for a NAEP composite, setting to FALSE fits the model to all items at once, in a single construct, whereas setting to TRUE fits the model as a NAEP composite (i.e., a weighted average of the subscales). This argument is not applicable for TIMSS which is always fit as an overall (non-composite).
verbose logical; indicates whether a detailed printout should display during execution, only for NAEP data.

multiCore allows the foreach package to be used. This function will setup and take down the cluster.

numberOfCores the number of cores to be used when using multiCore. Defaults to 75% of available cores. Users can check available cores with detectCores().

minNode numeric; minimum integration point in direct estimation; see mml.

maxNode numeric; maximum integration point in direct estimation; see mml.

Q integer; number of integration points per student used when integrating over the levels of the latent outcome construct.

idVar a variable that is used to explicitly define the name of the student identifier variable to be used from data. Defaults to NULL, and sid is used as the student identifier.

returnMmlCall logical; when TRUE, do not process the mml call but instead return it for the user to edit before calling

omittedLevels this argument is deprecated. Use dropOmittedLevels

Details

Typically, models are fit with NAEP data using plausible values to integrate out the uncertainty in the measurement of individual student outcomes. When direct estimation is used, the measurement error is integrated out explicitly using Q quadrature points. See documentation for mml in the Dire package.

The scoreDict helps turn response categories that are not simple item responses, such as Not Reached and Multiple, to something coded as inputs for the mml function in Dire. How mml treats these values depends on the test. For NAEP, for a dichotomous item, 8 is scored as the same proportion correct as the guessing parameter for that item, 0 is an incorrect response, an NA does not change the student’s score, and 1 is correct. TIMSS does not require a scoreDict.

Value

An mml.sdf object, which is the outcome from mml.sdf, with the following elements:

mml an object containing information from the mml procedure. ?mml can be used for further information.

scoreDict the scoring used in the mml procedure

itemMapping the item mapping used in the mml procedure

References

Examples

Not run:
Direct Estimation with NAEP
Load data
sdfNAEP <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

Inspect scoring guidelines
defaultNAEPScoreCard()

example output:
resCat pointMult pointConst
1 Multiple 8 0
2 Not Reached NA NA
3 Missing NA NA
4 Omitted 8 0
5 Illegible 0 0
6 Non-Rateable 0 0
7 Off Task 0 0

Run NAEP model, warnings are about item codings
mmlNAEP <- mml.sdf(formula=algebra ~ dsex + b013801, data=sdfNAEP, weightVar='origwt')

Call with Taylor
summary(mmlNAEP, varType="Taylor", strataVar="regrp1", PSUVar="jkunit")

Direct Estimation with TIMSS
Load data
downloadTIMSS("~/", year=2015)
sdfTIMSS <- readTIMSS(path="~/TIMSS/2015", countries="usa", grade = "4")

Run TIMSS model, warnings are about item codings
mmlTIMSS <- mml.sdf(formula=mmat ~ itsex + asbg04, data=sdfTIMSS, weightVar='totwgt')

Call with Taylor
summary(mmlTIMSS, varType="Taylor", strataVar="jkzone", PSUVar="jkrep")

End(Not run)

mvrlm.sdf Multivariate Regression

Description

Fits a multivariate linear model that uses weights and variance estimates appropriate for the edsurvey.data.frame.
Usage

mvrlm.sdf(
 formula,
 data,
 weightVar = NULL,
 relevels = list(),
 jrrIMax = 1,
 dropOmittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 returnVarEstInputs = FALSE,
 estMethod = "OLS",
 verbose = TRUE,
 omittedLevels = deprecated()
)

Arguments

formula a Formula package Formula for the linear model. See Formula; left-hand side
 variables are separated with vertical pipes (|). See Examples.

data an edsurvey.data.frame or an edsurvey.data.frame.list

weightVar character indicating the weight variable to use (see Details). The weightVar
 must be one of the weights for the edsurvey.data.frame. If NULL, uses the
default for the edsurvey.data.frame.

relevels a list. Used to change the contrasts from the default treatment contrasts to treat-
 ment contrasts with a chosen omitted group (the reference group). To do this,
 the user puts an element on the list with the same name as a variable to change
 contrasts on and then make the value for that list element equal to the value that
 should be the omitted group (the reference group).

jrrIMax a numeric value; when using the jackknife variance estimation method, the de-
 fault estimation option, jrrIMax=1, uses the sampling variance from the first
 plausible value as the component for sampling variance estimation. The V_{\text{jjr}}
term (see Statistical Methods Used in EdSurvey) can be estimated with any num-
ber of plausible values, and values larger than the number of plausible values on
the survey (including Inf) will result in all plausible values being used. Higher
values of jrrIMax lead to longer computing times and more accurate variance
estimates.

dropOmittedLevels a logical value. When set to the default value of TRUE, drops those levels of all
factor variables that are specified in edsurvey.data.frame. Use print on an
edsurvey.data.frame to see the omitted levels.

defaultConditions a logical value. When set to the default value of TRUE, uses the default con-
ditions stored in edsurvey.data.frame to subset the data. Use print on an
edsurvey.data.frame to see the default conditions.

recode a list of lists to recode variables. Defaults to NULL. Can be set as recode =
 list(var1=list(from=c("a","b","c"), to="d")),
returnVarEstInputs

a logical value. Set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allow for computation of covariances between estimates.

estMethod

a character value indicating which estimation method to use. Default is OLS; other option is GLS.

verbose

logical; indicates whether a detailed printout should display during execution

omittedLevels

this argument is deprecated. Use dropOmittedLevels

Details

This function implements an estimator that correctly handles multiple left-hand side variables that are either numeric or plausible values, allows for survey sampling weights, and estimates variances using the jackknife replication method. The vignette titled *Statistical Methods Used in EdSurvey* describes estimation of the reported statistics.

The coefficients are estimated using the sample weights according to the section “Estimation of Weighted Means When Plausible Values Are Not Present” or the section “Estimation of Weighted Means When Plausible Values Are Present,” depending on if there are assessment variables or variables with plausible values in them.

The coefficient of determination (R-squared value) is similarly estimated by finding the average R-squared using the sample weights for each set of plausible values.

Variance estimation of coefficients: All variance estimation methods are shown in the vignette titled *Statistical Methods Used in EdSurvey*.

When the predicted value does not have plausible values, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Not Present, Using the Jackknife Method.”

When plausible values are present, the variance of the coefficients is estimated according to the section “Estimation of Standard Errors of Weighted Means When Plausible Values Are Present, Using the Jackknife Method.”

For more information on the specifics of multivariate regression, see the vignette titled *Methods and Overview of Using EdSurvey for Multivariate Regression*.

Value

An edsurvey.mvrlm with elements:

call the function call
formula the formula used to fit the model
coeff the estimates of the coefficients
se the standard error estimates of the coefficients
Vimp the estimated variance caused by uncertainty in the scores (plausible value variables)
Vjrr the estimated variance caused by sampling
M the number of plausible values
mvrlm.sdf

varm the variance estimates under the various plausible values
coeffm the values of the coefficients under the various plausible values
coeffmat the coefficient matrix (typically produced by the summary of a model)
r.squared the coefficient of determination
weight the name of the weight variable
npv the number of plausible values
njk the number of the jackknife replicates used
varEstInputs When returnVarEstInputs is TRUE, this element is returned. These are used for calculating covariances with varEstToCov.
residuals residuals for each of the PV models
fitted.values model fitted values
residCov residual covariance matrix for dependent variables
residPV residuals for each dependent variable
inputs coefficient estimation input matrices
n0 full data \(n \)
nUsed \(n \) used for model
\(B \) imputation variance-covariance matrix, before multiplication by \((M+1)/M \)
\(U \) sampling variance-covariance matrix

Author(s)
Alex Lishinski and Paul Bailey

See Also
the stats package \texttt{lmlm.sdf}

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# use | symbol to separate dependent variables in the left-hand side of formula
mvrlm.fit <- mvrlm.sdf(formula = algebra | geometry ~ dsex + m072801, jrrIMax = 5, data = sdf)

# print method returns coefficients, as does coef method
mvrlm.fit
coef(mvrlm.fit)

# for more detailed results, use summary:
summary(mvrlm.fit)

# details of model can also be accessed through components of the returned object; for example:

# coefficients (one column per dependent variable)
```
oddsRatio

Description

Converts coefficients from `edsurveyGlm` logit regression model to odds ratios.

Usage

```r
oddsRatio(model, alpha = 0.05)
```

Arguments

- **model**
 - an `edsurveyGlm` model

- **alpha**
 - the alpha level for the confidence level
Value

An oddsRatio.edsurveyGlm object with the following elements:

- **OR**: odds ratio coefficient estimates
- **2.5%**: lower bound 95% confidence interval
- **97.5%**: upper bound 95% confidence interval

parseNAEPdct | **Format AM dct File for Use with DirectEstimation**

Description

Takes an AM dct file and formats it for use with the mml method as paramTab.

Usage

```r
parseNAEPdct(dct, mml = TRUE)
```

Arguments

- **dct**: a file location from which to read the dct file
- **mml**: a logical for if the paramTab is being used in mml.sdf

Value

- a data.frame in a format suitable for use with mml as a paramTab.

Author(s)

Sun-Joo Lee

parseScript_SPSS | **Parse SPSS Syntax Script for Fixed-Width Data Files**

Description

 Parses an SPSS Syntax Script (.sps) file to return information relating to fixed-width data files.

Usage

```r
parseScript_SPSS(
  spsFilePath,
  verbose = FALSE,
  outputFormat = c("data.frame"),
  encoding = getOption("encoding")
)
```
parseScript_SPSS

Arguments

spsFilePath a character value of the file path to the SPSS script to parse.
verbose a logic value to indicate if user wishes to print parsing activity to console. Default value is FALSE.
outputFormat a named argument to indicate which output format the resulting object should be. See details for information on each format. Currently, data.frame format is only supported.
encoding a character value to indicate the encoding specification that is used by readLines base function for the spsFilePath parameter. Only adjust this parameter if the original file encoding of the file is known, is not producing correct string values, or other errors occur. See ?readLines help for details about it's use for file encoding, and additional details.

Details

NOT CURRENTLY EXPORTED! In Future this could potentially be made to a separate R package
THIS parseScript_SPSS function should be used 100 Old/Previous SPSS script parsers should be slowly transitioned to utilize this function when possible to maximize code use.

The SPSS syntax script parser is focused on gathering details for use with fixed-width data files. This function scans for the following SPSS commands:

• FILE HANDLE
• DATA LIST
• VARIABLE LABEL
• VALUE LABEL
• MISSING VALUE

The outputFormat specified will determine the result object returned. This function currently supports the following formats.

• data.frame
 – variableName - The variable name as defined in the script
 – Start - The start number index of the variable defined for the fixed-width format layout
 – End - The end number index of the variable defined for the fixed-width format layout
 – Width - The length of how many columns the variable uses in the fixed-width format layout
 – Attributes - Any SPSS attributes that are defined in the DATA LIST command. This is typically only for field formatting.
 – RecordNumber - Some fixed-width data files are considered "multi-line" where one record of data can span multiple rows in the file. The RecordNumber indicates which line the variable is assigned.
 – Labels - The descriptive label associated with the variable name to give more detail or context.
labelValues - For categorical variables a stored value will typically be assigned a longer label/definition. This string identifies these mappings. The `^` symbol is used to delimit each individual label value. Then additionally, the `=` is used to split the value from the left side of the `=` symbol, and the remaining right-hand side of `=` is the text label for that value.

dataType - A best-guess of the data type (either `numeric` or `character`) without actually examining the data-file.

missingValues - If a MISSING VALUE clause is included in the script this will list the values that are considered 'Missing'. If multiple values specified, they will be delimited by a `;` (semi-colon) symbol.

Value
returns an object containing information specified by the outputFormat argument.

Author(s)
Tom Fink

Description
Calculates the percentiles of a numeric variable in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage
percentile(
 variable,
 percentiles,
 data,
 weightVar = NULL,
 jrrIMax = 1,
 varMethod = c("jackknife", "Taylor"),
 alpha = 0.05,
 dropOmittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 returnVarEstInputs = FALSE,
 returnNumberOfPSU = FALSE,
 pctMethod = c("symmetric", "unbiased", "simple"),
 confInt = TRUE,
 dofMethod = c("JR", "WS"),
 omittedLevels = deprecated()
)
Arguments

- **variable**: the character name of the variable to percentiles computed, typically a subject scale or subscale.

- **percentiles**: a numeric vector of percentiles in the range of 0 to 100 (inclusive).

- **data**: an edsurvey.data.frame or an edsurvey.data.frame.list.

- **weightVar**: a character indicating the weight variable to use.

- **jrrIMax**: a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The V_{jrr} term (see *Statistical Methods Used in EdSurvey*) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

- **varMethod**: a character set to jackknife or Taylor that indicates the variance estimation method used when constructing the confidence intervals. The jackknife variance estimation method is always used to calculate the standard error.

- **alpha**: a numeric value between 0 and 1 indicating the confidence level. An alpha value of 0.05 would indicate a 95% confidence interval and is the default.

- **dropOmittedLevels**: a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in achievementVars and aggregatBy. Use print on an edsurvey.data.frame to see the omitted levels.

- **defaultConditions**: a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.

- **recode**: a list of lists to recode variables. Defaults to NULL. Can be set as recode=list(var1=list(from=c("a", "b", "c"), to= "d")).

- **returnVarEstInputs**: a logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates which allows for the computation of covariances between estimates.

- **returnNumberOfPSU**: a logical value set to TRUE to return the number of primary sampling units (PSUs).

- **pctMethod**: one of “unbiased”, “symmetric”, “simple”; unbiased produces a weighted median unbiased percentile estimate, whereas simple uses a basic formula that matches previously published results. Symmetric uses a more basic formula but requires that the percentile is symmetric to multiplying the quantity by negative one.

- **confInt**: a Boolean indicating if the confidence interval should be returned.

- **dofMethod**: passed to DoFCorrection as the method argument.

- **omittedLevels**: this argument is deprecated. Use dropOmittedLevels.
Details

Percentiles, their standard errors, and confidence intervals are calculated according to the vignette titled *Statistical Methods Used in EdSurvey*. The standard errors and confidence intervals are based on separate formulas and assumptions.

The Taylor series variance estimation procedure is not relevant to percentiles because percentiles are not continuously differentiable.

Value

The return type depends on whether the class of the data argument is an edsurvey.data.frame or an edsurvey.data.frame.list.

The data argument is an edsurvey.data.frame When the data argument is an edsurvey.data.frame, percentile returns an S3 object of class `percentile`. This is a data.frame with typical attributes (names, row.names, and class) and additional attributes as follows:

- `n0` number of rows on edsurvey.data.frame before any conditions were applied
- `nUsed` number of observations with valid data and weights larger than zero
- `nPSU` number of PSUs used in the calculation
- `call` the call used to generate these results

The columns of the data.frame are as follows:

- `percentile` the percentile of this row
- `estimate` the estimated value of the percentile
- `se` the jackknife standard error of the estimated percentile
- `df` degrees of freedom
- `confInt.ci_lower` the lower bound of the confidence interval
- `confInt.ci_upper` the upper bound of the confidence interval
- `nsmall` the number of units with more extreme results, averaged across plausible values

When the confInt argument is set to FALSE, the confidence intervals are not returned.

The data argument is an edsurvey.data.frame.list When the data argument is an edsurvey.data.frame.list, percentile returns an S3 object of class `percentileList`. This is a data.frame with a call attribute. The columns in the data.frame are identical to those in the previous section, but there also are columns from the edsurvey.data.frame.list.

- `covs` a column for each column in the covs value of the edsurvey.data.frame.list.

See Examples.

When `returnVarEstInputs` is TRUE, an attribute `varEstInputs` also is returned that includes the variance estimate inputs used for calculating covariances with `varEstToCov`.

Author(s)

Paul Bailey
print.achievementLevels

References

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# get the median of the composite
percentile(variable="composite", percentiles=50, data=sdf)

# get several percentiles
percentile(variable="composite", percentiles=c(0,1,25,50,75,99,100), data=sdf)

# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)

sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD),
                                 labels=c("A locations",
                                          "B locations",
                                          "C locations",
                                          "D locations"))

# this shows how these datasets will be described:
sdfl$covs

percentile(variable="composite", percentiles=50, data=sdfl)
percentile(variable="composite", percentiles=c(25, 50, 75), data=sdfl)

## End(Not run)
```

print.achievementLevels

Print AchievementLevels Results

Description

Prints details of discrete and cumulative achievement levels calculated using weights and variance estimates appropriate for the edsurvey.data.frame.

Usage

```r
## S3 method for class 'achievementLevels'
print(
  x,
  printCall = TRUE,
```
print.edsurvey.data.frame

printDiscrete = TRUE,
printCumulative = TRUE,
use_es_round = getOption("EdSurvey_round_output"),
...

Arguments

x an achievementLevels object
printCall a logical value; by default (TRUE), prints details about plausible values and weights used for calculating achievement levels
printDiscrete a logical value; by default (TRUE), prints discrete achievement levels if they are present in x
printCumulative a logical value; by default (TRUE), prints cumulative achievement levels if they are present in x
use_es_round a logical value; use the EdSurvey rounding functions before printing
... these arguments are not passed anywhere and are included only for compatibility

Author(s)

Huade Huo and Ahmad Emad

Description

Prints metadata regarding an edsurvey.data.frame or an edsurvey.data.frame.list

Usage

S3 method for class 'edsurvey.data.frame'
print(
x, printColnames = FALSE,
use_es_round = getOption("EdSurvey_round_output"),
round_n = getOption("EdSurvey_round_n_function"),
...
)
print.gap

Gap Analysis Printing

Description

Prints labels and a results vector of a gap analysis.

Usage

S3 method for class 'gap'
print(
 x,
 ...,
 printPercentage = TRUE,
 use_es_round = getOption("EdSurvey_round_output")
)

S3 method for class 'gapList'
print(x, ..., printPercentage = TRUE)

Arguments

x an R object representing a gap of class gap or gapList
...
printPercentage a logical value set to TRUE to request printing of the percentage in the groups. Defaults to TRUE.
use_es_round use the EdSurvey rounding methods for gap

Author(s)

Paul Bailey
readBTLS Connect to BTLS Data

Description

Opens a connection to the Beginning Teacher Longitudinal Study (BTLS) waves 1 through 5 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readBTLS(dat_FilePath, spss_FilePath, verbose = TRUE)

Arguments

- **dat_FilePath**: a character value to the full path of the BTLS fixed-width (.dat) data file
- **spss_FilePath**: a character value to the full path of the SPSS syntax file to process the dat_FilePath
- **verbose**: a logical value that will determine if you want verbose output while the readBTLS function is running to indicate processing progress (the default value is TRUE)

Details

Reads the spss_FilePath file to parse the dat_FilePath to an edsurvey.data.frame. There is no cached data because the dat_FilePath format already is in fixed-width format.

Value

an edsurvey.data.frame for the BTLS waves 1 to 5 longitudinal dataset.

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

```r
## Not run:

fld <- '~/EdSurveyData/BTLS'
datPath <- file.path(fld, "ASCII Data File", "BTLS2011_12.dat")
spsPath <- file.path(fld, "Input Syntax for Stata and SPSS", "BTLS2011_12.sps")

#read in the data to an edsurvey.data.frame
btls <- readBTLS(datPath, spssPath, verbose = TRUE)
dim(btls)

## End(Not run)
```
readCivEDICCS
Connect to ICCS and CivED Data

Description

Opens a connection to an ICCS (2009, 2016) or CivEd (1999) data file and returns an `edsurvey.data.frame` with information about the file and data.

Usage

```r
readCivEDICCS(
  path,
  countries,
  dataSet = c("student", "teacher"),
  gradeLvl = c("8", "9", "12"),
  forceReread = FALSE,
  verbose = TRUE
)
```

Arguments

- **path** a character value of the full directory to the ICCS/CivED extracted SPSS (.sav) set of data
- **countries** a character vector of the country/countries to include using the three-digit International Organization for Standardization (ISO) country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the ICCS/CivED User Guide to help determine what countries are included within a specific testing year of ICCS/CivED. To select all countries, use a wildcard value of `*`.
- **dataSet** a character value of either student or teacher to indicate which set of data is returned. The student-level and teacher-level datasets cannot both be returned at the same time, unlike other IEA datasets. Note: The CivED 1999 study also included student-to-teacher data for Grade 8. Specifying `dataSet="student"` and `gradeLvl=8` will include both the student and teacher data in the resulting `edsurvey.data.frame`.
- **gradeLvl** a character value of the grade level to return
 - `8` = eighth grade (the default if not specified)
 - `9` = ninth grade
 - `12` = 12th grade (for CivED 1999 only)
- **forceReread** a logical value to force rereading of all processed data. The default value of `FALSE` will speed up the `readCivEDICCS` function by using existing read-in data already processed.
- **verbose** a logical value to either print or suppress status message output. The default value is `TRUE`.
Details

Reads in the unzipped files downloaded from the international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

When using the `getData` function with a CivED or ICCS study `edsurvey.data.frame`, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If a 1999 CivED Grade 8 `edsurvey.data.frame` with teacher data variables is requested by the `getData` call, it will cause teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries, and not all countries contain teacher data.

Calling the `dim` function for a CivED 1999 Grade 8 `edsurvey.data.frame` will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the `edsurvey.data.frame`, even if no teacher data were included in an analysis. The column count returned by `dim` will be the count of unique column variables across all data levels.

Value

an `edsurvey.data.frame` for a single specified country or an `edsurvey.data.frame.list` if multiple countries specified

Author(s)

Tom Fink

See Also

`readNAEP`, `readTIMSS`, `getData`, and `downloadCivEDICCS`

Examples

```r
## Not run:
eng <- readCivEDICCS("~/ICCS/2009/", countries = c("eng"),
                      gradeLvl = 8, dataSet = "student")

gg <- getData(getData=eng, varnames=c("famstruc", "totwgts", "civ"))
head(gg)
edsurveyTable(formula=civ ~ famstruc, data=eng)

## End(Not run)
```

Description

Opens a connection to an ECLS-B data file and returns an `edsurvey.data.frame` with information about the file and data.
readECLS_B

Usage

readECLS_B(
 path = getwd(),
 filename,
 layoutFilename,
 forceReread = FALSE,
 verbose = TRUE
)

Arguments

path a character value to the full directory path(s) to the ECLS-B extracted fixed-width-format (.dat) set of datafiles.
filename a character value of the name of the fixed-width-file (.dat) data file in the specified path to be read.
layoutFilename a character value of the filename of either the ASCII text (.txt) layout file of the filename within the specified path, OR a character value of the filename of the SPSS syntax (.sps) layout file of the filename within the specified path
forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.
verbose a logical value that will determine if you want verbose output while the readECLS-K2011 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ECLS-B longitudinal Database.

Value

An edsurvey.data.frame for the ECLS-B longitudinal dataset.

Author(s)

Trang Nguyen

See Also

readNAEP, getData
Description

Opens a connection to an ECLS–K 1998 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readECLS_K1998(
  path = getwd(),
  filename = "eclsk_98_99_k8_child_v1_0.dat",
  layoutFilename = "Layout_k8_child.txt",
  forceReread = FALSE,
  verbose = TRUE
)
```

Arguments

- `path`: a character value to the full directory path(s) to the ECLS–K-extracted fixed-width-format (.dat) set of data files
- `filename`: a character value of the name of the fixed-width (.dat) data file in the specified path to be read
- `layoutFilename`: a character value of the filename of either the ASCII (.txt) layout file of the filename within the specified path or a character value of the filename of the SPSS syntax (.sps) layout file of the filename within the specified path
- `forceReread`: a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.
- `verbose`: a logical value that will determine if you want verbose output while the readECLS-K1998 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ECLS–K 1998 longitudinal dataset(s) to an edsurvey.data.frame. The ECLS–K 1998–99 study consisted of three distinct separate datasets that cannot be combined: (1) Child Grades K–8 Data, (2) School Base-Year Data, and (3) Teacher Base-Year Data. The `filename` and `layoutFilename` arguments default to the corresponding Child K–8 default filenames.

Value

- an edsurvey.data.frame for the ECLS–K 1998 longitudinal dataset
Author(s)
Tom Fink

See Also
readECLS_K2011, readNAEP, getData, downloadECLS_K

Examples

```r
## Not run:
# read-in student file with defaults
eclsk_df <- readECLS_K1998(path="~/ECLS_K/1998") #using defaults
d <- getData(data=eclsk_df, varnames=c("childid", "gender", "race"))
summary(d)
## End(Not run)

## Not run:
# read-in with parameters specified
filename = "eclsk_98_99_k8_child_v1_0.dat",
layoutFilename = "Layout_k8_child.txt",
verbose = TRUE,
forceReread = FALSE)
## End(Not run)
```

readECLS_K2011 Connect to ECLS–K 2011 Data

Description

Opens a connection to an ECLS–K 2011 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readECLS_K2011(
    path = getwd(),
    filename = "childK5p.dat",
    layoutFilename = "ECLSK2011_K5PUF.sps",
    forceReread = FALSE,
    verbose = TRUE
)
```
Arguments

- **path**: a character value to the full directory path(s) to the ECLS–K 2010–11 extracted fixed-with-format (.dat) set of data files.
- **filename**: a character value of the name of the fixed-width (.dat) data file in the specified path to be read.
- **layoutFilename**: a character value of the filename of either the ASCII (.txt) layout file of the filename within the specified path or a character value of the filename of the SPSS syntax (.sps) layout file of the filename within the specified path.
- **forceReread**: a logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.
- **verbose**: a logical value that will determine if you want verbose output while the readECLS--K2011 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ECLS–K 2010–11 longitudinal dataset.

Value

an `edsurvey.data.frame` for the ECLS–K 2010–11 longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K1998, readNAEP, getData, and *downloadECLS_K*

Examples

```r
## Not run:
# read-in student file with defaults
eclsk_df <- readECLS_K2011(path = "~/ECLS_K/2011") #using defaults
d <- getData(data = eclsk_df, varnames = c("childid", "c1hgt1", "c1wgt1"))
summary(d)

## End(Not run)

## Not run:
# read-in with parameters specified
eclsk_df <- readECLS_K2011(path = "~/ECLS_K/2011",
filename = "childK5p.dat",
layoutFilename = "ECLSK2011_K5PUF.sps",
forceReread = FALSE,
verbose = TRUE)

## End(Not run)
```
readELS

Connect to Education Longitudinal Study (ELS:2002) Data

Description

Opens a connection to an ELS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readELS(
  path = getwd(),
  filename = "els_02_12_byf3pststu_v1_0.sav",
  wgtFilename = ifelse(filename == "els_02_12_byf3pststu_v1_0.sav",
                        "els_02_12_byf3stubrr_v1_0.sav", NA),
  forceReread = FALSE,
  verbose = TRUE
)
```

Arguments

- **path**: a character value to the directory path of the extracted set of data files and layout files.
- **filename**: a character value of the name of the SPSS (.sav) data file in the specified path to be read.
- **wgtFilename**: a character value of the name of the associated balanced repeated replication (BRR) weight SPSS (.sav) data file in the specified path to be read. This argument is applicable only for the student-level data, which contains a separate data file containing the weight replicate information. If using default filenames (recommended), then you shouldn’t need to specify this parameter because it will inspect the `filename` argument. For data files with no BRR weight file associated, specify a value of `NULL` or `NA`.
- **forceReread**: a logical value to force rereading of all processed data. The default value of `FALSE` will speed up the read function by using existing read-in data already processed.
- **verbose**: a logical value that will determine if you want verbose output while the `readELS` function is running to indicate processing progress. The default value is `TRUE`.

Details

Reads in the unzipped files downloaded from the ELS longitudinal dataset(s) to an edsurvey.data.frame. The ELS 2002 study consisted of four distinct separate datasets that cannot be combined:

- Student: bas-year through follow-up three (default)
- School: base year through follow-up one
- Institution: follow-up two
- Institution: follow-up three
Value

an edsurvey.data.frame for the ELS longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, getData, and downloadECLS_K

Examples

Not run:
read-in student file including weight file as default
els_df <- readELS(~/ELS/2002) #student level with weights)
d <- getData(data=els_df, varnames=c("stu_id", "bysex", "bystlang"))
summary(d)

read-in with parameters specified (student level with weights)
els_wgt_df <- readELS(path = ~/ELS/2002,
 filename = "els_02_12_byf3pststu_v1_0.sav",
 wgtFilename = "els_02_12_byf3stubrr_v1_0.sav",
 verbose = TRUE,
 forceReread = FALSE)

read-in with parameters specified (school level, no separate weight replicate file)
els_sch_df <- readELS(path = ~/ELS/2002,
 filename = "els_02_12_byf1sch_v1_0.sav",
 wgtFilename = NA,
 verbose = TRUE,
 forceReread = FALSE)

End(Not run)
Usage

readHSB_Senior(
 HSR8086_PRI_FilePath,
 HSR8086_SASSyntax_Path,
 forceReread = FALSE,
 verbose = TRUE
)

Arguments

HSR8086_PRI_FilePath
 a character value to the main study-derived analytical data file (HSR8086_REV.PRI).
 Located within the REVISED_ASCII Folder.

HSR8086_SASSyntax_Path
 a character value to the SAS syntax file for parsing the HSR8086_REV.PRI data file.
 Located within the SAS_EXTRACT_LOGIC Folder.

forceReread
 a logical value to force rereading of all processed data. The default value of FALSE
 will speed up the read function by using existing read-in data already processed.

verbose
 a logical value that will determine if you want verbose output while the readHSB_Senior
 function is running to indicate processing progress. The default value is TRUE.

Details

Reads in the specified HSR8086_SASSyntax_Path file to parse the HSR8086_PRI_FilePath file.
A cached data file and metadata file will be saved in the same directory and filename as the
HSR8086_PRI_FilePath file, having new file extensions of .txt and .meta, respectively.

Please note the original source repcode variable has been split into two variables named repcode_str
for the stratum value and repcode_psu for the primary sampling unit (PSU) value in the resulting
cache data.

Value

an edsurvey.data.frame for the HS&B Senior 1980–1986 longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

Not run:
wrkFld <- "/~/HSB/SENIOR"
dataPath <- file.path(wrkFld, "REVISED_ASCII", "HSR8086_REV.PRI")
sasPath <- file.path(wrkFld, "SAS_EXTRACT_LOGIC", "HSBsr_READ_HSR8086.SAS")

with verbose output as default
hsbSR <- readHSB_Senior(dataPath, sasPath)

silent output
hsbSR <- readHSB_Senior(dataPath, sasPath, verbose = FALSE)

force cache update
hsbSR <- readHSB_Senior(dataPath, sasPath, forceReread = TRUE)

End(Not run)

readHSB_Sophomore

Connect to HS&B Study Sophomore Data

Description

Opens a connection to a High School & Beyond 1980–1992 Sophomore cohort data file and returns an `edsurvey.data.frame` with information about the file and data.

Usage

```
readHSB_Sophomore(
    HSO8092_PRI_FilePath,
    HSO8092_SASSyntax_Path,
    forceReread = FALSE,
    verbose = TRUE
)
```

Arguments

- **HSO8092_PRI_FilePath**
 A character value to the main study-derived analytical data file (HSO8092_REV.PRI). Located within the REVISED_ASCII folder.

- **HSO8092_SASSyntax_Path**
 A character value to the SAS syntax file for parsing the HSO8092_REV.PRI data file. Located within the SAS_EXTRACT_LOGIC folder.

- **forceReread**
 A logical value to force rereading of all processed data. The default value of FALSE will speed up the read function by using existing read-in data already processed.

- **verbose**
 A logical value that will determine if you want verbose output while the `readHSB_Sophomore` function is running to indicate processing progress. The default value is TRUE.
Details

Reads in the specified HSO8092_SASSyntax_Path file to parse the HSO8092_PRI_FilePath file. A cached data file and metadata file will be saved in the same directory and filename as the HSO8092_PRI_FilePath file, having new file extensions of .txt and .meta, respectively.

Please note the original source repcode variable has been split into two variables named repcode_str for the stratum value and repcode_psu for the primary sampling unit (PSU) value in the resulting cache data.

Value

an edsurvey.data.frame for the HS&B Sophomore 1980–1992 longitudinal dataset

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData

Examples

```r
## Not run:
wrkFld <- "~/HSB/SOPHOMORE"

dataPath <- file.path(wrkFld, "REVISED_ASCII", "HSO8092_REV.PRI")
sasPath <- file.path(wrkFld, "SAS_EXTRACT_LOGIC", "HSBso_READ_HSO8092.SAS")

# with verbose output as default
hsbSO <- readHSB_Sophomore(dataPath, sasPath)

# silent output
hsbSO <- readHSB_Sophomore(dataPath, sasPath, verbose = FALSE)

# force cache update
hsbSO <- readHSB_Sophomore(dataPath, sasPath, forceReread = TRUE)

## End(Not run)
```
readHSLS

Usage

readHSLS(
 path = getwd(),
 filename = "hsls_16_student_v1_0.sav",
 wgtFilename = NA,
 forceReread = FALSE,
 verbose = TRUE
)

Arguments

path a character value to the full directory path(s) to the HSLS extracted SPSS (.sav) set of data files
filename a character value of the name of the SPSS (.sav) datafile to be read
wgtFilename a character value of the name of the associated BRR weight SPSS (.sav) data file in the specified path to be read. This argument is only applicable for the restricted-use student level data, which contains a separate data-file containing the weight replicate information. For data files with no balanced repeated replication (BRR) weight file associated, specify a value of NULL or NA.
forceReread a logic value to force a rereading of all processed data. The default value of FALSE speeds up the readHSLS function by using existing read-in data already processed.
verbose a logical value set to TRUE for verbose output that indicates progress

Details

Reads in the unzipped files downloaded from the HSLS longitudinal dataset.

Value

an edsurvey.data.frame for the HSLS longitudinal dataset

Note

The SPSS (.sav) format is preferred over the fixed-width-format (.dat) ASCII file format at this time relating to value label issues identified with the ASCII layout specifications.

Author(s)

Tom Fink

See Also

readECLS_K2011, readNAEP, and getData
Examples

```r
# Not run:
# use function default values at working directory
hsls <- readHSLS("~/HSLS/2009")

# specify parameters with verbose output
hsls <- readHSLS(path="~/HSLS/2009",
    filename = "hsls_16_student_v1_0.sav",
    forceReread = FALSE,
    verbose = TRUE)

# specify parameters silent output
hsls <- readHSLS(path="~/HSLS/2009",
    filename = "hsls_16_student_v1_0.sav",
    forceReread = FALSE,
    verbose = FALSE)

# for restricted-use student data, replicate weights stored in separate file
hslsRUD <- readHSLS(path="~/HSLS/2009",
    filename = "hsls_16_student_v1_0.sav",
    wgtFilename = "hsls_16_student_BRR_v1_0.sav",
    forceReread = FALSE,
    verbose = TRUE)
```

End(Not run)

readHSTS

Connect to HSTS Data

Description

Opens a connection to a High School Transcript Study (HSTS) data files for years 2019. Returns an `edsurvey.data.frame` with information about the file and data.

Usage

```r
readHSTS(
  dataFilePath = getwd(),
  spssPrgPath = dataFilePath,
  year = c("2019"),
  verbose = TRUE
)
```

Arguments

- `dataFilePath`: a character value to the root directory path of extracted set of ASCII data files (.txt or .dat file extension). `readHSTS` will search within sub-directories of this parameter for expected data files based on the specified `year` parameter.
readHSTS

spssPrgPath
a character value to the directory path of where the extracted set of .sps program files are located. The data file and associated SPSS program filenames *must match* (having different file extensions) to determine which files are associated together. readHSTS will search within sub-directories of this parameter for expected SPSS program files based on the specified year parameter.

year
a character value to indicate the year of the dataset. Only one year is supported for a single readHSTS data call. The year is required to help determine specific study information. Only 2019 study is currently supported.

verbose
a logical value that will determine if you want verbose output while the readHSTS function is running to indicate processing progress. The default value is TRUE.

Details

The HSTS data has a complex structure and unique characteristics all handled internally within EdSurvey. The structure allows for automatic dynamic linking across all various data 'levels' based the requested variables. The student data level is the primary analysis unit. Dynamic linking for variables that include both tests and transcript level details will result in an error, as they cannot be simultaneously returned in a single call. Situations may arise where the analyst must derive variables for analysis. See the documentation for merge and $<- functions for more detail. All merge operations are done at the student level (the main analysis unit).

File Layout for HSTS 2019:

- School (school.dat) - School level variables.
 - School Catalog (catalog.dat) - Catalog variables joined to School data. Variables renamed to begin with SchCat_ to distinguish from Transcript Catalog. Cannot be merged with any Student data.
- Student (student.dat) - Student level variables. Primary analysis unit, all merged/cached data must be at this level.
 - NAEP Math (naepmath.dat) - Subset of students containing NAEP Math variables. Variables begin with math_ to ensure they are unique from the NAEP Science variables.
 - NAEP Science (naepsci.dat) - Subset of students containing NAEP Science variables. Variables begin with sci_ to ensure they are unique from the NAEP Math variables.
 - Tests (tests.dat) - Students may have many test records. Contains ACT/SAT testing score details for students. Cannot be merged together with any Transcript or Transcript Catalog data.
 - Transcripts (transcript.dat) - Students may have many transcript records. Contains transcript level details. Cannot be merged together with Test data.
 * Transcript Catalog (catalog.dat) - Each transcript record is associated to a catalog record for giving context to the transcript record. 2019 uses SCED codes for categorizing courses.

Value

an edsurvey.data.frame for the HSTS dataset.

Author(s)

Tom Fink
readICILS

Connect to ICILS Data

Description

Opens a connection to an ICILS data file residing on the disk and returns an edsurvey.data.frame with information about the file and data.

Usage

readICILS(
 path,
 countries,
 dataSet = c("student", "teacher"),
 forceReread = FALSE,
 verbose = TRUE
)

Arguments

- path: a character value to the full directory path to the ICILS extracted SPSS (.sav) set of data
- countries: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the ICILS User Guide to help determine what countries are included within a specific testing year of ICILS. To select all countries, use a wildcard value of *
- dataSet: a character value of either student (the default if not specified) or teacher to indicate which set of data is returned. The student-level and teacher-level datasets cannot both be returned at the same time, unlike other IEA datasets.
- forceReread: a logical value to force rereading of all processed data. The default value of FALSE will speed up the readICILS function by using existing read-in data already processed.
- verbose: a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ICILS international dataset(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

See Also

showCodebook, searchSDF, edsurvey.data.frame, merge.edsurvey.data.frame, and getData
readNAEP

Connect to NAEP Data

Description

Opens a connection to a Main NAEP, or Long-Term Trend NAEP data file residing on the disk. Returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readNAEP(
  path,
  defaultWeight = "origwt",
  defaultPvs = "composite",
  omittedLevels = c("Multiple", NA, "Omitted"),
  frPath = NULL,
  xmlPath = NULL
)
```

Arguments

- `path`: a character value indicating the full filepath location and name of the (.dat) data file
- `defaultWeight`: a character value that indicates the default weight specified in the resulting edsurvey.data.frame. Default value is `origwt` if not specified.
- `defaultPvs`, `omittedLevels`, `frPath`, `xmlPath`: additional arguments.

Examples

```r
## Not run:
pol <- readICILS("~/ICILS/2013", countries = "pol", dataSet = "student")
gg <- getData(data=pol, varnames=c("idstud", "cil", "is1g18b"))
head(gg)
edsurveyTable(formula=cil ~ is1g18b, pol)

## End(Not run)
```

See Also

readNAEP, readTIMSS, and getData
defaultPvs a character value that indicates the default plausible value specified in the resulting edsurvey.data.frame. Default value is composite if not specified.

omittedLevels a character vector indicating which factor levels/labels should be excluded. When set to the default value of c('Multiple', NA, 'Omitted'), adds the vector to the edsurvey.data.frame.

frPath a character value indicating the file location of the .fr2 parameter layout file included with the data companion to parse the specified path data file. The default value of NULL will attempt to search the parent directory for the corresponding .fr2 file for the specified path data file.

xmlPath a character value indicating the file path of the .xml parameter layout file included as part of the NAEPEX companion. This file provides necessary information required to read and parse the (.dat) data file. The default value of NULL will attempt to search the parent directory for the corresponding .xml file for the specified path data file.

Details

The frPath file layout information will take precedence over the xmlPath file when the xmlPath is not explicitly set, or when the xmlPath file cannot be located.

The readNAEP function includes both scaled scores and theta scores, with the latter having names ending in \
theta.

When a NAEP administration includes a linking error variable those variables are included and end in _linking. When present, simply use the _linking version of a variable to get a standard error estimate that includes linking error.

This function supports both the Main NAEP data files, and Long-Term Trend NAEP data files. A table outlining the differences can be found on the NAEP Nations Report Card website.

Value

An edsurvey.data.frame for a NAEP data file.

Author(s)

Tom Fink and Ahmad Emad

See Also

edsurvey.data.frame getData

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))
sdf

To read in an NCES file first set the directory to the /Data subfolder,
then read in the appropriate .dat file:
readNHES

Connect to NHES Survey Data

Description

Opens a connection to a National Household Education Survey (NHES) data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readNHES(savFiles, surveyCode = "auto", forceReread = FALSE, verbose = TRUE)
```

Arguments

- **savFiles**: a character vector to the full file path(s) to the NHES extracted SPSS (*.sav) data files.
- **surveyCode**: a character vector of the surveyCode to identify the year and survey type of the passed savFiles data file(s). The default value is set to auto which attempts to automatically identify the survey/year based on the file attributes. Occasionally, the auto lookup may be unable to determine the surveyCode and must be explicitly set by the user. The lengths of the savFiles vector and surveyCode vector must match, unless surveyCode is set to auto. To view the surveyCodes available, use the getNHES_SurveyInfo, or viewNHES_SurveyCodes function to view the codes.
- **forceReread**: a logical value to force a rereading of all processed data. The default value of FALSE speeds up the readNHES function by using existing read-in data if already processed.
- **verbose**: a logical value that defaults to TRUE for verbose console output that indicates progress information. If verbose = FALSE, no information will be printed.

Details

Reads in the unzipped public-use files downloaded from the NCES Online Codebook (https://nces.ed.gov/datalab/onlinecodebook) in SPSS (*.sav) format. Other sources of NHES data, such as restricted-use files or other websites, may require additional conversion steps to generate the required SPSS data format and/or explicitly setting the surveyCode parameter.
Value

an edsurvey.data.frame if only one NHES file is specified for the savFiles argument, or an
edsurvey.data.frame.list if multiple files are passed to the savFiles argument

Author(s)

Tom Fink

See Also

downloadNHES, getNHES_SurveyInfo, and viewNHES_SurveyCodes

Examples

Not run:
rootPath <- "~/"

get instructions for obtaining NHES data
downloadNHES()

get SPSS *.sav file paths of all NHES files for 2012 and 2016
filesToImport <- list.files(path = file.path(rootPath, "NHES", c(2012, 2016)),
 pattern="\.sav$",
 full.names = TRUE,
 recursive = TRUE)

import all files to edsurvey.data.frame.list object
esdfList <- readNHES(savFiles = filesToImport, surveyCode = "auto",
 forceReread = FALSE, verbose = TRUE)

viewNHES_SurveyCodes() # view NHES survey codes in console

get the full file path to the 2016 ATES NHES survey
path_ates2016 <- list.files(path = file.path(rootPath, "NHES", "2016"),
 pattern=".*ates.*\[.\]sav$",
 full.names = TRUE)

explicitly setting the surveyCode parameter (if required)
esdf <- readNHES(savFiles = path_ates2016, surveyCode = "ATES_2016",
 forceReread = FALSE, verbose = TRUE)

search for variables in the edsurvey.data.frame
searchSDF(string="sex", data=esdf)

End(Not run)
Description

Opens a connection to a PIAAC data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readPIAAC(
 path,
 countries,
 forceReread = FALSE,
 verbose = TRUE,
 usaOption = "12_14"
)

Arguments

- **path**: a character value to the full directory path to the PIAAC .csv files and Microsoft Excel codebook
- **countries**: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the PIAAC codebook or https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes. If files are downloaded using `downloadPIAAC`, a country dictionary text file can be found in the filepath. You can use * to indicate all countries available. For the usa, the year must be specified using: usa12_14 or usa17.
- **forceReread**: a logical value to force rereading of all processed data. Defaults to FALSE. Setting forceReread to be TRUE will cause PIAAC data to be reread and increase the processing time.
- **verbose**: a logical value that will determine if you want verbose output while the function is running to indicate the progress. Defaults to TRUE.
- **usaOption**: a character value of 12_14 or 17 that specifies what year of the USA survey should be used when loading all countries by using * in the countries argument. This will only make a difference when loading all countries. Defaults to 12_14.

Details

Reads in the unzipped .csv files downloaded from the PIAAC dataset using the OECD repository (https://www.oecd.org/skills/piaac/). Users can use `downloadPIAAC` to download all required files automatically.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Trang Nguyen
References

See Also

ggetData and downloadPIAAC

Examples

```r
## Not run:
# the following call returns an edsurvey.data.frame to PIAAC for Canada
can <- readPIAAC("~/PIAAC/Cycle 1/", countries = "can")

# extract a data.frame with a few variables
gg <- ggetData(data=can, varnames=c("c_d05","ageg10lfs"))
head(gg)

# conduct an analysis on the edsurvey.data.frame
edsurveyTable(formula=~ c_d05 + ageg10lfs, data = can)

# the following call returns an edsurvey.data.frame to PIAAC for Canada
can <- readPIAAC("~/PIAAC/Cycle 1/", countries = "can", us)

# There are two years of usa data for round 1: 2012-2014 and 2017.
# The user must specify which usa year they want with the optional "usaOption" argument.
# Otherwise, the read function will return usa 2012-2014. See "?readPIACC()" for more info.

# read in usa 2012-2014
usa12 <- readPIAAC("~/PIAAC/Cycle 1/",
                   countries = "usa", usaOption="12_14")

# read in usa 2017
usa17 <- readPIAAC("~/PIAAC/Cycle 1/",
                   countries = "usa", usaOption="17")

# if reading in all piaac data, the user can still specify usa option.
# Otherwise, by default 2012-1014 will be used when reading in all piaac data.
all_piaac <- readPIAAC("~/PIAAC/Cycle 1/",
                        countries = "*", usaOption="17")
```

End(Not run)

readPIRLS

Connect to PIRLS Data

Description

Opens a connection to a PIRLS data file and returns an edsurvey.data.frame with information about the file and data.
Usage

readPIRLS(path, countries, forceReread = FALSE, verbose = TRUE)

Arguments

path a character value to the full directory path to the PIRLS extracted SPSS (.sav) set of data
countries a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the PIRLS User Guide to help determine what countries are included within a specific testing year of PIRLS. To select all countries, use a wildcard value of *.
forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the readPIRLS function by using existing read-in data already processed.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the PIRLS international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

A PIRLS edsurvey.data.frame includes three distinct data levels:

- student
- school
- teacher

When the getData function is called using a PIRLS edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call, it will cause teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for a PIRLS edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Tom Fink
readPISA

Connect to PISA Data

Description

Opens a connection to a PISA data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readPISA(
 path,
 database = c("INT", "CBA", "FIN"),
 countries,
 cognitive = c("score", "response", "none"),
 forceReread = FALSE,
 verbose = TRUE
)

Arguments

 path a character vector to the full directory path(s) to the PISA-extracted fixed-width files and SPSS control files (.txt).
 database a character to indicate a selected database. Must be one of INT (general database that most people use), CBA (computer-based database in PISA 2012 only), or FIN (financial literacy database in PISA 2012 and 2018). Defaults to INT.
 countries a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the PISA codebook or https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes. If files are downloaded using downloadPISA, a country dictionary text file can be found in the filepath.

Examples

Not run:
nor <- readPIRS("~/PIRLS/2011", countries = c("nor"))
gg <- getData(data=nor, varnames=c("itsex", "totwgt", "rrea"))
head(gg)
edsurveyTable(formula=rrea ~ itsex, nor)

End(Not run)
cognitive one of none, score, or response. Default is score. The PISA database often has three student files: student questionnaire, cognitive item response, and scored cognitive item response. The first file is used as the main student file with student background information. Users can choose whether to merge score or response data into the main file or not (if none).

forceReread a logical value to force rereading of all processed data. Defaults to FALSE. Setting forceReread to be TRUE will cause PISA data to be reread and increase processing time.

verbose a logical value that will determine if you want verbose output while the function is running to indicate progress. Defaults to TRUE.

Details

Reads in the unzipped files downloaded from the PISA database using the OECD Repository (https://www.oecd.org/pisa/). Users can use downloadPISA to download all required files. Student questionnaire files (with weights and plausible values) are used as main files, which are then merged with cognitive, school, and parent files (if available).

The average first-time processing time for 1 year and one database for all countries is 10–15 minutes. If forceReread is set to be FALSE, the next time this function is called will take only 5–10 seconds.

For the PISA 2000 study, please note that the study weights are subject specific. Each weight has different adjustment factors for reading, mathematics, and science based on its original subject source file. For example, the w_fstuwt_read weight is associated with the reading subject data file. Special care must be used to select the correct weight based on your specific analysis. See the OECD documentation for further details. Use the showWeights function to see all three student level subject weights:

- w_fstuwt_read = Reading (default)
- w_fstuwt_scie = Science
- w_fstuwt_math = Mathematics

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries are specified

Author(s)

Tom Fink, Trang Nguyen, and Paul Bailey

References

See Also
gedata and downloadPISA
Examples

```r
## Not run:
# the following call returns an edsurvey.data.frame to
# PISA 2012 International Database for Singapore
sgp2012 <- readPISA(path = "~/PISA/2012", database = "INT", countries = "sgp")

# extract a data.frame with a few variables
gg <- getData(sgp2012, c("cnt","read","w_fstuwt"))
head(gg)

# conduct an analysis on the edsurvey.data.frame
edsurveyTable(formula=read ~ st04q01 + st20q01, data = sgp2012)

## End(Not run)
```

readPISA_YAFS

Description

Opens a connection to the Programme for International Student Assessment (PISA) YAFS 2016 data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readPISA_YAFS(
    datPath = file.path(getwd(), "PISA_YAFS2016_Data.dat"),
    spsPath = file.path(getwd(), "PISA_YAFS2016_SPSS.sps"),
    esdf_PISA2012_USA = NULL
)
```

Arguments

- **datPath**: a character value of the file location where the data file (.dat) file is saved.
- **spsPath**: a character value of the file location where the SPSS (.sps) script file is saved to parse the datPath data file.
- **esdf_PISA2012_USA**: (optional) an edsurvey.data.frame of the USA PISA 2012 data if planning to analyze the PISA YAFS data alongside the USA PISA 2012 dataset.

Details

Reads in the unzipped files for the PISA YAFS. The PISA YAFS dataset is a follow-up study of a subset of the students who participated in the PISA 2012 USA study. It can be analyzed on its own as a singular dataset or optionally merged with the PISA 2012 USA data, in which case there will be two sets of weights in the merged dataset (the default PISA YAFS weights and the PISA 2012 USA weights).
Value

An edsurvey.data.frame for the PISA YAFS dataset if the esdf_PISA2012_USA parameter is NULL. If the PISA 2012 USA edsurvey.data.frame is specified for the esdf_PISA2012_USA parameter, then the resulting dataset will return an edsurvey.data.frame allowing analysis for a combined dataset.

Author(s)

Tom Fink

See Also

readPISA

Examples

Not run:

#Return an edsurvey.data.frame for only the PISA YAFS dataset.
#Either omit, or set the esdf_PISA2012_USA to a NULL value.
yafs <- readPISA_YAFS(datPath = "~/PISA YAFS/2016/PISA_YAFS2016_Data.dat",
spsPath = "~/PISA YAFS/2016/PISA_YAFS2016_SPSS.sps",
esdf_PISA2012_USA = NULL)

#If wanting to analyze the PISA YAFS dataset in conjunction with the PISA 2012 United States of America (USA) dataset, it should be read in first to an edsurvey.data.frame. #Then pass the resulting edsurvey.data.frame as a parameter for the esdf_PISA2012_USA argument. No other edsurvey.data.frames are supported.
usa2012 <- readPISA("~/PISA/2012", database = "INT", countries = "usa")

yafs <- readPISA_YAFS(datPath = "~/PISA YAFS/2016/PISA_YAFS2016_Data.dat",
spsPath = "~/PISA YAFS/2016/PISA_YAFS2016_SPSS.sps",
esdf_PISA2012_USA = usa2012)

head(yafs)

End(Not run)

readSSOCS

Connect to School Survey on Crime and Safety Data

Description

Opens a connection to a School Survey on Crime and Safety (SSOCS) data file and returns an edsurvey.data.frame, or an edsurvey.data.frame.list if multiple files specified, with information about the file(s) and data.

Usage

readSSOCS(sasDataFiles, years, forceReread = FALSE, verbose = TRUE)
Arguments

sasDataFiles a character vector to the full SAS (*.sas7bdat) data file path(s) you wish to read. If multiple paths are specified as a vector, it will return an `edsurvey.data.frame.list`.

forceReread a logical value to force rereading of all processed data. The default value of `FALSE` will speed up the `readSSOCS` function by using existing read-in data already processed.

verbose a logical value to either print or suppress status message output. The default value is `TRUE`.

Details

Reads in the unzipped files downloaded from the SSOCS Data Products website in SAS format. Other sources of SSOCS data, such as restricted-use data or other websites, may require additional conversion steps to generate the required SAS format.

Value

An `edsurvey.data.frame` if one data file is specified or an `edsurvey.data.frame.list` if multiple files are specified in the `sasDataFiles` parameter.

Note

For the `readSSOCS` function, value label information is stored and retrieved automatically within the `EdSurvey` package (based on the year parameter), as the SAS files contain only raw data values.

Author(s)

Tom Fink

See Also

downloadSSOCS, and `getData`

Examples

```r
# Not run:
#download SSOCS data for years 2016 and 2018
downloadSSOCS(years = c(2016, 2018))

rootPath <- "~/"  # may need to change this
# get SAS *.sas7bdat file paths of all SSOCS files for 2016 and 2018
filesToImport <- list.files(path = file.path(rootPath, "SSOCS", c(2016, 2018)),
                           pattern="\sas7bdat$",
                           full.names = TRUE)
```
#import all files to edsurvey.data.frame.list object
esdfList <- readSSOCS(sasDataFiles = filesToImport,
 years = c(2016, 2018),
 forceReread = FALSE,
 verbose = TRUE)

#reading in the 2018 to an edsurvey.data.frame object
esdf <- readSSOCS(sasDataFiles = file.path(rootPath, "SSOCS/2018/pu_ssocs18.sas7bdat"),
 years = 2018,
 forceReread = FALSE,
 verbose = TRUE)

#search for variables in the edsurvey.data.frame containing the word 'bully'
ssearchSDF(string="bully", data=esdf)

End(Not run)

readTALIS

Connect to TALIS Data

Description

Opens a connection to a TALIS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

readTALIS(
 path,
countries,
isced = c("b", "a", "c"),
dataLevel = c("teacher", "school"),
forceReread = FALSE,
verbose = TRUE)

Arguments

- **path**
 a character vector to the full directory path(s) to the TALIS SPSS files (.sav)

- **countries**
 a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found in the TALIS codebook, or you can use https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes. You can use * to indicate all countries available.

- **isced**
 a character value that is one of a, b, or c. a stands for Primary Level, b is for Lower Secondary Level, and c is for Upper Secondary Level. Default to b.

- **dataLevel**
 a character value that indicates which data level to be used. It can be teacher (the default) or school (see details).
forceReread a logical value to force rereading of all processed data. Defaults to FALSE. Setting forceReread to be TRUE will cause readTALIS data to be reread and increase processing time.

verbose a logical value that will determine if you want verbose output while the function is running to indicate the progress. Defaults to TRUE.

Details

Reads in the unzipped files downloaded from the TALIS database using the OECD Repository (https://www.oecd.org/education/talis/). If dataLevel is set to be teacher, it treats the teacher data file as the main dataset, and merges school data into teacher data for each country automatically. Use this option if wanting to analyze just teacher variables, or both teacher and school level variables together. If dataLevel is set school, it uses only the school data file (no teacher data will be available).

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Paul Bailey, Tom Fink, and Trang Nguyen

References

See Also

gedata and downloadTALIS

Examples

```r
## Not run:
#TALIS 2018 - school level data for all countries
talis18 <- readTALIS(path = "~/TALIS/2018",
  isced = "b",
  dataLevel = "school",
  countries = "*")

#unweighted summary
result <- summary2(data=talis18, variable="tc3g01", weightVar = "")

# print usa results to console
result$usa

# the following call returns an edsurvey.data.frame to TALIS 2013
# for US teacher-level data at secondary level
usa2013 <- readTALIS(path = "~/TALIS/2013", isced = "b",
```
extract a data.frame with a few variables
gg <- getData(usa2013, c("tt2g05b", "tt2g01"))
head(gg)

conduct an analysis on the edsurvey.data.frame
edsurveyTable(formula=tt2g05b ~ tt2g01, data = usa2013)

End(Not run)

readTIMSS

Connect to TIMSS Data

Description

Opens a connection to a TIMSS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readTIMSS(path, countries, gradeLvl = c("4", "8", "4b", "8b"), forceReread = FALSE, verbose = TRUE)
```

Arguments

- **path**: a character vector to the full directory path(s) to the TIMSS extracted SPSS (.sav) set of data
- **countries**: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the TIMSS User Guide documentation to help determine what countries are included within a specific testing year of TIMSS and for country code definitions. To select all countries available, use a wildcard value of `*`.
- **gradeLvl**: a character value to indicate the specific grade level you wish to return
 - `4` = fourth grade (the default if not specified)
 - `8` = eighth grade
 - `4B` = fourth grade bridge study (TIMSS 2019 only)
 - `8B` = eight grade bridge study (TIMSS 2019 only)
- **forceReread**: a logical value to force rereading of all processed data. The default value of FALSE will speed up the readTIMSS function by using existing read-in data already processed.
verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the TIMSS international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

A TIMSS edsurvey.data.frame includes three distinct data levels:

- student
- school
- teacher

When the getData function is called using a TIMSS edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call, it will cause teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for a TIMSS edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Beginning with TIMSS 2015, a numeracy dataset was designed to assess mathematics at the end of the primary school cycle for countries where most children are still developing fundamental mathematics skills. The numeracy dataset is handled automatically for the user and is included within the fourth-grade dataset gradeLvl=4. Most numeracy countries have a 4th grade dataset in addition to their numeracy dataset, but some do not. For countries that have both a numeracy and a 4th grade dataset, the two datasets are combined into one edsurvey.data.frame for that country. Data variables missing from either dataset are kept, with NA values inserted for the dataset records where that variable did not exist. Data variables common to both datasets are kept as a single data variable, with records retaining their original values from the source dataset. Consult the TIMSS User Guide for further information.

For the TIMSS 2019 study, a bridge study was conducted to help compute adjustment factors between the electronic test format and the paper/pencil format. The bridge study is considered separate from the normal TIMSS 2019 study. The gradeLvl parameter now includes a "4B" option for the Grade 4 bridge study, and the "8B" option for the Grade 8 bridge study files.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)

Tom Fink
readTIMSSAdv

See Also
readNAEP, getData, and downloadTIMSS

Examples

```r
## Not run:
# single country specified
fin <- readTIMSS(path="~/TIMSS/2015", countries = c("fin"), gradeLvl = 4)
gg <- getData(data=fin, varnames=c("asbg01", "totwgt", "srea"))
head(gg)
edsurveyTable(formula=srea ~ asbg01, fin)

# multiple countries returned as edsurvey.data.frame.list, specify all countries with 'x' argument
timss2011 <- readTIMSS(path="~/TIMSS/2011", countries="x", gradeLvl = 8, verbose = TRUE)
# print out edsurvey.data.frame.list covariates
timss2011$covs

## End(Not run)
```

readTIMSSAdv Connect to TIMSS Advanced Data

Description

Opens a connection to a TIMSS Advanced data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
readTIMSSAdv(
  path,
  countries,
  subject = c("math", "physics"),
  forceReread = FALSE,
  verbose = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>a character vector to the full directory path to the TIMSS Advanced extracted SPSS (.sav) set of data</td>
</tr>
<tr>
<td>countries</td>
<td>a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the TIMSS Advanced User Guide to help determine what countries are included within a specific testing year of TIMSS Advanced. To select all countries, use a wildcard value of <code>*</code>.</td>
</tr>
</tbody>
</table>
subject a character value to indicate if you wish to import the math or physics dataset. Only one subject can be read in at a time.

forceReread a logical value to force rereading of all processed data. The default value of FALSE will speed up the readTIMSSAdv function by using existing read-in data already processed.

verbose a logical value to either print or suppress status message output. The default value is TRUE.

Details
Reads in the unzipped files downloaded from the TIMSS Advanced international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

A TIMSS Advanced edsurvey.data.frame includes three distinct data levels:

- student
- school
- teacher

When the getData function is called using a TIMSS Advanced edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call it will cause the teacher data to be merged. Many students can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for a TIMSS Advanced edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Value
an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries specified

Author(s)
Tom Fink

See Also
readNAEP, readTIMSS, getData, and downloadTIMSSAdv
read_ePIRLS

Not run:
swe <- readTIMSSAdv("~/TIMSSAdv/2015",
countries = c("swe"), subject = "math")
gg <- getData(data=swe, varnames=c("itsex", "totwgt", "malg"))
head(gg)
edsurveyTable(formula=malg ~ itsex, swe)

End(Not run)

Description

Opens a connection to an ePIRLS data file and returns an edsurvey.data.frame with information about the file and data.

Usage

```r
read_ePIRLS(path, countries, forceReread = FALSE, verbose = TRUE)
```

Arguments

- **path**: a character value to the full directory path to the ePIRLS extracted SPSS (.sav) set of data
- **countries**: a character vector of the country/countries to include using the three-digit ISO country code. A list of country codes can be found on Wikipedia at https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes or other online sources. Consult the ePIRLS User Guide to help determine what countries are included within a specific testing year of ePIRLS. To select all countries, use a wildcard value of `*`.
- **forceReread**: a logical value to force rereading of all processed data. The default value of FALSE will speed up the read_ePIRLS function by using existing read-in data already processed.
- **verbose**: a logical value to either print or suppress status message output. The default value is TRUE.

Details

Reads in the unzipped files downloaded from the ePIRLS international database(s) using the IEA Study Data Repository. Data files require the SPSS data file (.sav) format using the default filenames.

An ePIRLS edsurvey.data.frame includes three distinct data levels:

- **Student**
When the getData function is called using an ePIRLS edsurvey.data.frame, the requested data variables are inspected, and it handles any necessary data merges automatically. The school data always will be returned merged to the student data, even if only school variables are requested. If teacher variables are requested by the getData call, it will cause teacher data to be merged. A student can be linked to many teachers, which varies widely between countries.

Please note that calling the dim function for an ePIRLS edsurvey.data.frame will result in the row count as if the teacher dataset was merged. This row count will be considered the full data N of the edsurvey.data.frame, even if no teacher data were included in an analysis. The column count returned by dim will be the count of unique column variables across all three data levels.

Value

an edsurvey.data.frame for a single specified country or an edsurvey.data.frame.list if multiple countries are specified

Author(s)

Tom Fink

See Also

readNAEP, readTIMSS, getData, and download_ePIRLS

Examples

```r
## Not run:
usa <- read_ePIRLS(~/ePIRLS/2016", countries = c("usa"))
gg <- getData(data=usa, varnames=c("itsex", "totwgt", "erea"))
head(gg)
edsurveyTable(formula=erea ~ itsex, data=usa)
## End(Not run)
```

rebindAttributes Copy Data Frame Attributes

Description

Many R functions strip attributes from data frame objects. This function assigns the attributes from the attributeData argument to the data frame in the data argument.

Usage

rebindAttributes(data, attributeData)
Arguments

- `data`: a data.frame
- `attributeData`: an edsurvey.data.frame or light.edsurvey.data.frame that contains the desired attributes

Value

a data.frame with a class of a light.edsurvey.data.frame containing all elements of `data` and the attributes (except names and row.names) from `attributeData`

Author(s)

Paul Bailey and Trang Nguyen

Examples

```r
## Not run:
require(dplyr)
PISA2012 <- readPISA(path = paste0(edsurveyHome, "PISA/2012"),
  database = "INT",
  countries = "ALB", verbose=TRUE)
ledf <- getData(data = PISA2012, varnames = c("cnt", "oecd", "w_fstuwt",
"st62q04", "st62q11",
"st62q13", "math"),
dropOmittedLevels = FALSE, addAttributes = TRUE)

omittedLevels <- c('Invalid', 'N/A', 'Missing', 'Miss', 'NA', '(Missing)')
for (i in c("st62q04", "st62q11", "st62q13"){
  ledf[,i] <- factor(ledf[,i], exclude=omittedLevels)
  ledf[,i] <- as.numeric(ledf[,i])
}

# after applying some dplyr functions, the "light.edsurvey.data.frame" becomes just "data.frame"
PISA2012_lenefd <- ledf %>%
  rowwise() %>%
  mutate(avg_3 = mean(c(st62q04, st62q11, st62q13), na.rm = TRUE)) %>%
  ungroup() %>%
  rebindAttributes(data=PISA2012) # could also be called with ledf
class(PISA2012_lenefd)
# again, a light.edsurvey.data.frame
lma <- lm.sdf(formula=math ~ avg_3, data=PISA2012_lenefd)
summary(lma)

PISA2012_lenefd <- ledf %>%
  rowwise() %>%
  mutate(avg_3 = mean(c(st62q04, st62q11, st62q13), na.rm = TRUE)) %>%
  ungroup() %>%
  rebindAttributes(data=ledf) # return attributes and make a light.edsurvey.data.frame
# again a light.edsurvey.data.frame
lma <- lm.sdf(formula=math ~ avg_3, data=PISA2012_lenefd)
summary(lma)
```
recode.sdf

Recode Levels Within Variables

Description
Recodes variables in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage
recode.sdf(x, recode)

Arguments
x an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
recode a list of recoding rules. See Examples for the format of recoding rules.

Value
an object of the same class as x with the recode added to it

Author(s)
Trang Nguyen and Paul Bailey

Examples
Not run:
filepath argument will vary by operating system conventions
usaG4.15 <- readTIMSS(path="~/TIMSS/2015", "usa", 4)
d <- getData(usaG4.15, "itsex")
summary(d) #show details: MALE/FEMALE
usaG4.15 <- recode.sdf(usaG4.15,
 recode = list(itsex=list(from=c("MALE"),
 to=c("BOY")),
 itsex=list(from=c("FEMALE"),
 to=c("GIRL"))))

d <- getData(usaG4.15, "itsex") #apply recode
summary(d) #show details: BOY/GIRL
End(Not run)
rename.sdf

Modify Variable Names

Description

Renames variables in an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`. This function often is used when users want to conduct a gap analysis across years but variable names differ across two years of data.

Usage

```r
class(rename.sdf(x, oldnames, newnames, avoid_duplicated = TRUE))
```

Arguments

- `x`: an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`
- `oldnames`: a character vector of old variable names
- `newnames`: a character vector of new variable names to replace the corresponding old names
- `avoid_duplicated`: a logical value to indicate whether to avoid renaming the variable if the corresponding new name already exists in the data. Defaults to `TRUE`.

Details

All variable names are coerced to lowercase to comply with the EdSurvey standard.

Value

an object of the same class as `x` with new variable names

Author(s)

Trang Nguyen

See Also

gap

Examples

```r
## Not run:
usaG4.15 <- readTIMSS(path="~/TIMSS/2015", "usa", 4)
usaG4.15.renamed <- rename.sdf(x=usaG4.15,
oldnames=c("itsex", "mmat"),
newnames=c("gender", "math_overall"))
lm1 <- lm.sdf(formula=math_overall ~ gender, data = usaG4.15.renamed)
summary(lm1)
```

End(Not run)
roundn
rounding helper

Description
rounding helper

Usage
`roundn(n)`

Arguments
`n`
round to this level

Value
a function that rounds to `n`

Author(s)
Paul Bailey

roundNCES
rounding helper for NCES

Description
rounding helper for NCES

Usage
`roundNCES(n)`

Arguments
`n`
the value to be rounded; accepts a vector

Value
the rounded value

Author(s)
Paul Bailey
Description

Fits a quantile regression model that uses weights and variance estimates appropriate for the data.

Usage

\[
\text{rq.sdf}(\\quad \text{formula,} \\
\quad \text{data,} \\
\quad \text{tau = 0.5,} \\
\quad \text{weightVar = NULL,} \\
\quad \text{relevels = list(),} \\
\quad \text{jrrIMax = 1,} \\
\quad \text{dropOmittedLevels = TRUE,} \\
\quad \text{defaultConditions = TRUE,} \\
\quad \text{recode = NULL,} \\
\quad \text{returnNumberOfPSU = FALSE,} \\
\quad \text{omittedLevels = deprecated()}, \\
\quad \ldots \\
)
\]

Arguments

- **formula**: a formula for the quantile regression model. See \text{rq} in the \text{quantreg} package. If \(y\) is left blank, the default subject scale or subscale variable will be used. (You can find the default using \text{showPlausibleValues}.) If \(y\) is a variable for a subject scale or subscale (one of the names shown by \text{showPlausibleValues}), then that subject scale or subscale is used.

- **data**: an \text{edsurvey.data.frame}, a \text{light.edsurvey.data.frame}, or an \text{edsurvey.data.frame.list}

- **tau**: the quantile to be estimated. The value could be set between 0 and 1 with a default of 0.5.

- **weightVar**: a character indicating the weight variable to use. The \text{weightVar} must be one of the weights for the \text{edsurvey.data.frame}. If \text{NULL}, it uses the default for the \text{edsurvey.data.frame}.

- **relevels**: a list. Used to change the contrasts from the default treatment contrasts to the treatment contrasts with a chosen omitted group (the reference group). The name of each element should be the variable name, and the value should be the group to be omitted (the reference group).

- **jrrIMax**: when using the jackknife variance estimation method, the default estimation option, \text{jrrIMax=1}, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The \(V_{jrr}\) term can be estimated with any number of plausible values, and values larger than the number...
of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.

`dropOmittedLevels`
a logical value. When set to the default value of TRUE, drops those levels of all factor variables that are specified in an edsurvey.data.frame. Use print on an edsurvey.data.frame to see the omitted levels.

`defaultConditions`
a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.

`recode`
a list of lists to recode variables. Defaults to NULL. Can be set as recode=list(var1 = list(from= c("a", "b", "c"), to= "d")).

`returnNumberOfPSU`
a logical value set to TRUE to return the number of primary sampling units (PSUs)

`omittedLevels`
this argument is deprecated. Use `dropOmittedLevels`

...
additional parameters passed from rq

Details

The function computes an estimate on the tau-th conditional quantile function of the response, given the covariates, as specified by the formula argument. Like `lm.sdf()`, the function presumes a linear specification for the quantile regression model (i.e., that the formula defines a model that is linear in parameters). Unlike `lm.sdf()`, the jackknife is the only applicable variance estimation method used by the function.

For further details on quantile regression models and how they are implemented in R, see Koenker and Bassett (1978), Koenker (2005), and the vignette from the `quantreg` package—accessible by `vignette("rq",package="quantreg")”—on which this function is built.

For further details on how left-hand side variables, survey sampling weights, and estimated variances are correctly handled, see `lm.sdf` or the vignette titled *Statistical Methods Used in EdSurvey*.

Value

An edsurvey.rq with the following elements:

- `call`
 the function call
- `formula`
 the formula used to fit the model
- `tau`
 the quantile to be estimated
- `coef`
 the estimates of the coefficients
- `se`
 the standard error estimates of the coefficients
- `Vimp`
 the estimated variance from uncertainty in the scores (plausible value variables)
- `Vjrr`
 the estimated variance from sampling
- `M`
 the number of plausible values
- `varm`
 the variance estimates under the various plausible values
The values of the coefficients under the various plausible values

the coefficient matrix (typically produced by the summary of a model)

the name of the weight variable

the number of plausible values

the number of the jackknife replicates used; set to NA when Taylor series variance estimates are used

the mean value of the objective function across the plausible values

Author(s)

Trang Nguyen, Paul Bailey, and Yuqi Liao

References

See Also

rq

Examples

```r
# Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# conduct quantile regression at a given tau value (by default, tau is set to be 0.5)
rq1 <- rq.sdf(formula=composite ~ dsex + b017451, data=sdf, tau = 0.8)
summary(rq1)

# End(Not run)
```
scoreDefault Assessment scoring

Description

Score assessments

Usage

scoreDefault(edf, polyParamTab, dichotParamTab, scoreDict)

Arguments

edf the data
polyParamTab see mml.sdf
dichotParamTab see mml.sdf
scoreDict a data frame; see Details.

Details

default scorer scores column on edf identified by polyParamTab$ItemID, dichotParamTab$ItemID using a crosswalk in scoreDict

the scoreDict is a data frame in long format with columns key, answer, and score. the function maps, within the item identified by key from answer to score.

Value

a data frame with the columns in the scoreDict key column mapped from answer to score.

Author(s)

Paul Bailey and Tom Fink

See Also

mml.sdf
scoreTIMSS

EdSurvey Direct Estimation - TIMSS scoring

Description

Scoring TIMSS data

Usage

```
scoreTIMSS(edf, polyParamTab, dichotParamTab, scoreCard = NULL)
```

Arguments

- `edf`: a TIMSS `light.edsurvey.data.frame` or `edsurvey.data.frame`
- `polyParamTab`: a dataframe containing IRT parameters for all polytomous items in `edf`
- `dichotParamTab`: a dataframe containing IRT parameters for all dichotomous items in `edf`
- `scoreCard`: unused

Details

This function scores TIMSS data. For multiple choice items, correct answers are assigned 1 point, and incorrect answers are assigned 0 points. For constructed response items, correct answers are assigned 2 points, partially correct answers are assigned 1 point, and incorrect answers are assigned 0 points. For both types of items, "NOT REACHED" and "OMITTED OR INVALID" are assigned 0 points. These defaults can be changed by modifying the `scoreDict` columns `pointMult` and `pointConst`, respectively.

Value

- scored `edf`

SD

EdSurvey Standard Deviation

Description

Calculate the standard deviation of a numeric variable in an `edsurvey.data.frame`.
Usage

SD(
 data,
 variable,
 weightVar = NULL,
 jrrIMax = 1,
 varMethod = "jackknife",
 dropOmittedLevels = TRUE,
 defaultConditions = TRUE,
 recode = NULL,
 targetLevel = NULL,
 jkSumMultiplier = getAttributes(data, "jkSumMultiplier"),
 returnVarEstInputs = FALSE,
 omittedLevels = deprecated()
)

Arguments

data an edsurvey.data.frame, an edsurvey.data.frame.list, or a light.edsurvey.data.frame
variable character vector of variable names
weightVar character weight variable name. Default is the default weight of data if it exists. If the given survey data do not have a default weight, the function will produce unweighted statistics instead. Can be set to NULL to return unweighted statistics.
jrrIMax a numeric value; when using the jackknife variance estimation method, the default estimation option, jrrIMax=1, uses the sampling variance from the first plausible value as the component for sampling variance estimation. The Vjrr term (see Statistical Methods Used in EdSurvey) can be estimated with any number of plausible values, and values larger than the number of plausible values on the survey (including Inf) will result in all plausible values being used. Higher values of jrrIMax lead to longer computing times and more accurate variance estimates.
varMethod deprecated parameter; gap always uses the jackknife variance estimation
dropOmittedLevels a logical value. When set to TRUE, drops those levels of the specified variable. Use print on an edsurvey.data.frame to see the omitted levels. Defaults to FALSE.
defaultConditions a logical value. When set to the default value of TRUE, uses the default conditions stored in an edsurvey.data.frame to subset the data. Use print on an edsurvey.data.frame to see the default conditions.
recode a list of lists to recode variables. Defaults to NULL. Can be set as recode = list(var1 = list(from = c("a","b","c"), to = "d"))
targetLevel a character string. When specified, calculates the gap in the percentage of students at targetLevel in the variable argument, which is useful for comparing the gap in the percentage of students at a survey response level.
jkSumMultiplier

When the jackknife variance estimation method—or balanced repeated replication (BRR) method—multiplies the final jackknife variance estimate by a value, set jkSumMultiplier to that value. For an `edsurvey.data.frame` or a `light.edsurvey.data.frame`, the recommended value can be recovered with `EdSurvey::getAttributes(myData, "jkSumMultiplier")`.

returnVarEstInputs

A logical value set to TRUE to return the inputs to the jackknife and imputation variance estimates, which allows for the computation of covariances between estimates.

omittedLevels

This argument is deprecated. Use `dropOmittedLevels`.

Value

A list object with elements:

- **mean**: The mean assessment score for variable, calculated according to the vignette titled *Statistical Methods Used in EdSurvey*.
- **std**: The standard deviation of the mean.
- **stdSE**: The standard error of the std.
- **df**: The degrees of freedom of the std.
- **varEstInputs**: The variance estimate inputs used for calculating covariances with `varEstToCov`. Only returned with `returnVarEstInputs` is TRUE.

Author(s)

Paul Bailey and Huade Huo

Examples

```
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# get standard deviation for Male's composite score
SD(data = subset(sdf, dsex == "Male"), variable = "composite")

# get several standard deviations

# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)
sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD),
                                labels=c("A locations",
                                        "B locations",
                                        "C locations",
                                        "D locations"))
```
this shows how these datasets will be described:
sdfl$covs

SD results for each survey
SD(data = sdfl, variable = "composite")
SD results more compactly and with comparisons
gap(variable="composite", data=sdfl, stDev=TRUE, returnSimpleDoF=TRUE)

End(Not run)

searchSDF

EdSurvey Codebook Search

Description

Retrieves variable names and labels for an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list using character string matching.

Usage

searchSDF(string, data, fileFormat = NULL, levels = FALSE)

Arguments

- **string**
a vector of character strings to search for in the database connection object (data). The function will search the codebook for a matching character string using regular expressions. When a string has several elements, all must be present for a variable to be returned.

- **data**
an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

- **fileFormat**
a character vector indicating the data source to search for variables. The default NULL argument searches all codebooks.

- **levels**
a logical value; set to TRUE to return a snapshot of the levels in an edsurvey.data.frame

Value

a data.frame that shows the variable names, labels, and levels (if applicable) from an edsurvey.data.frame or a light.edsurvey.data.frame based on a matching character string

Author(s)

Michael Lee and Paul Bailey
Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# search both the student and school files by a character string
searchSDF(string = "book", data = sdf)

# use the '|' (OR) operator to search several strings simultaneously
searchSDF(string = "book|home|value", data = sdf)

# use a vector of strings to search for variables that contain multiple strings,
# such as both "book" and "home"
searchSDF(string = c("book", "home"), data = sdf)

# search only the student files by a character string
searchSDF(string = "algebra", data = sdf, fileFormat = "student")

# search both the student and school files and return a glimpse of levels
searchSDF(string = "value", data = sdf, levels = TRUE)

# save the search as an object to return a full data.frame of search
ddf <- searchSDF(string = "value", data = sdf, levels = TRUE)
ddf

## End(Not run)
```

Description

add item response theory data necessary to use mml.sdf on NAEP data

Usage

`setNAEPScoreCard(data, dctPath = NULL)`

Arguments

- `data` a NAEP edsurvey.data.frame
- `dctPath` a file location that points to the location of a NAEP .dct file (usually in the AM folder). A .dct file can be used to input custom item response theory (IRT) parameters and subscale/subtest weights for NAEP assessments compared with those provided in the NAEPirtparams package.

Value

a NAEP edsurvey.data.frame with updated attributes
showCodebook

Examples

```r
## Not run:
datFP <- "~/NAEP_Folder/Data/M50NT3AT.dat"
sdf <- readNAEP(path=datFP)

# how to set NAEP mml attributes
# if readNAEP does not detect them automatically
dctFP <- "~/NAEP_Folder/AM/M50NT3AT.dct"
sdf <- setNAEPScoreCard(data=sdf, dctPath=dctFP)

## End(Not run)
```

showCodebook Summary Codebook

Description

Retrieves variable names, variable labels, and value labels for an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.

Usage

```r
showCodebook(
  data,
  fileFormat = NULL,
  labelLevels = FALSE,
  includeRecodes = FALSE
)
```

Arguments

data an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`

fileFormat a character string indicating the data source to search for variables. The default NULL argument searches all available codebooks in the database connection object.

labelLevels a logical value; set to `TRUE` to return a snapshot of the label levels in an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`. When set to `FALSE` (the default), label levels are removed.

includeRecodes a logical value; set to `TRUE` to return value labels that have been recoded in an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`. When set to `FALSE` (the default), only the original value labels are included in the returned `data.frame`.

Value

A `data.frame` that shows the variable names, variable labels, value labels, value levels (if applicable), and the file format data source from an `edsurvey.data.frame`, `light.edsurvey.data.frame`, or an `edsurvey.data.frame.list`.
Author(s)

Michael Lee and Paul Bailey

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# search both the student and school files, returning levels for variable values
showCodebook(data=sdf, fileFormat=c("student","school"), labelLevels = TRUE, includeRecodes = FALSE)

# return codebook information for the student file, excluding variable value levels,
# including recoded variables
sdf <- recode.sdf(sdf, recode = list(dsex = list(from = c("Male"), to = c("MALE"))))
showCodebook(data=sdf, fileFormat=c("student"), labelLevels = FALSE, includeRecodes = TRUE)

# return codebook information for the student file, including variable value levels
# and recoded variables
showCodebook(data=sdf, fileFormat=c("student","school"), labelLevels = FALSE, includeRecodes = TRUE)

# return codebook information for all codebooks in an edsurvey.data.frame; commonly use View()
View(showCodebook(data=sdf))

## End(Not run)
```

showCutPoints

Retrieve Achievement Level Cutpoints

Description

Retrieves a summary of the achievement level cutpoints for a selected study represented in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

```r
showCutPoints(data)
```

Arguments

- **data**: an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Value

If there are achievement levels defined, prints one line per subject scale. Each line names the subject and then shows the cut point for each achievement level.

Author(s)

Michael Lee and Paul Bailey
showPlausibleValues

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

show the cut points
showCutPoints(data=sdf)

End(Not run)

<table>
<thead>
<tr>
<th>showPlausibleValues</th>
<th>Plausible Value Variable Names</th>
</tr>
</thead>
</table>

Description

Prints a summary of the subject scale or subscale and the associated variables for their plausible values for an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

showPlausibleValues(data, verbose = FALSE)

Arguments

data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
verbose a logical value; set to TRUE to get the variable names for plausible values. Otherwise, prints only the subject scale or subscale names for variables that use plausible values.

Author(s)

Michael Lee and Paul Bailey

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

show the plausible values
showPlausibleValues(data=sdf, verbose=TRUE)

End(Not run)
showWeights

Retrieve Weight Variables

Description

Prints a summary of the weights in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

showWeights(data, verbose = FALSE)

Arguments

data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

verbose a logical value; set to TRUE to print the complete list of jackknife replicate weights associated with each full sample weight; otherwise, prints only the full sample weights

Author(s)

Michael Lee and Paul Bailey

Examples

Not run:
read in the example data (generated, not real student data)
sdf <- readNAEP(path = system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

show the weights
showWeights(data = sdf, verbose = TRUE)

End(Not run)

suggestWeights

Weight suggestions for ECLS-K:2011 data

Description

Suggest Weights for ECLS-K:2011 data based on inputting variables.
suggestWeights

Usage

suggestWeights(
 varnames = NULL,
 data,
 showAllWeightSuggestions = FALSE,
 verbose = FALSE
)

Arguments

varnames character vector indicating variables to be included in the weight suggestion.
data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list
showAllWeightSuggestions a logical value. When set to TRUE, all applicable weights that covers more components, which typically are more conservative with smaller sample size, will be returned. By default (i.e., FALSE), only the most appropriate weight is displayed.
verbose a logical value to either print or suppress status message output.

Details

suggestWeights provides one additional way to assist researchers in deciding which weight to use for analyses. This function find the intersect of possible weights given variables provided, and rank this intersect based on the number of components a weight can adjust.

The best weight would adjust for each and every source used and only those sources. However, for many analyses, there will be no weight that adjusts for nonresponse to all the sources of data that are included and for only those source. When no weight corresponds exactly to the combination of components included in the desired analysis, researchers might prefer to use a weight that includes nonresponse adjustments for more components than they are using in their analysis if that weight also includes nonresponse adjustments for the components they are using.

Researchers should always consult their research questions for optimal weight choice.

Value

A list of weight variables. The first one is the most appropriate choice.

Author(s)

Huade Huo

References

Examples

```r
## Not run:
# read-in ECLS-K:2011 data file with parameters specified
eclsk11 <- readECLS_K2011(path=file.path("~/", "ECLS_K", "2011"), filename = "childKsp.dat",
                          layoutFilename = "ECLSK2011_KSPUF.sps", verbose = FALSE)

# suggest weight for individual variable
suggestWeights(varnames="x8mscalk5", data=eclsk11)

# suggest weight for multiple variables
suggestWeights(varnames=c("x8mscalk5", "x_chsex_r", "x12sesl"), data=eclsk11)
## End(Not run)
```

```r
summary2

Summarize edsurvey.data.frame Variables
```

Description

Summarizes edsurvey.data.frame variables.
Usage

summary2(
 data,
 variable,
 weightVar = attr(getAttributes(data, "weights"), "default"),
 dropOmittedLevels = FALSE,
 omittedLevels = deprecated()
)

Arguments

data an edsurvey.data.frame, an edsurvey.data.frame.list, or light.edsurvey.data.frame
variable character vector of variable names
weightVar character weight variable name. Default is the default weight of data if it exists. If the given survey data do not have a default weight, the function will produce unweighted statistics instead. Can be set to NULL to return unweighted statistics.
dropOmittedLevels a logical value. When set to TRUE, drops those levels of the specified variable. Use print on an edsurvey.data.frame to see the omitted levels. Defaults to FALSE.

Value

summary of weighted or unweighted statistics of a given variable in an edsurvey.data.frame

For categorical variables, the summary results are a crosstab of all variables and include the following:

[variable name] level of the variable in the column name that the row regards. There is one column per element of variable.
N number of cases for each category. Weighted N also is produced if users choose to produce weighted statistics.
Percent percentage of each category. Weighted percent also is produced if users choose to produce weighted statistics.
SE standard error of the percentage statistics

For continuous variables, the summary results are by variable and include the following:

Variable name of the variable the row regards
N total number of cases (both valid and invalid cases)
Min. smallest value of the variable
1st Qu. first quantile of the variable
Median median value of the variable
Mean mean of the variable
Description

Changes the name used to refer to a set of plausible values from oldVar to newVar in an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list.

Usage

updatePlausibleValue(oldVar, newVar, data)
Arguments

oldVar a character value indicating the existing name of the variable
newVar a character value indicating the new name of the variable
data an edsurvey.data.frame, a light.edsurvey.data.frame, or an edsurvey.data.frame.list

Value

an object of the same class as the data argument, with the name of the plausible value updated from oldVar to newVar

Author(s)

Michael Lee and Paul Bailey

See Also

getPlausibleValue and showPlausibleValues

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))

# get the PVs before
showPlausibleValues(data=sdf)
sdf2 <- updatePlausibleValue(oldVar="composite", newVar="overall", data=sdf)
showPlausibleValues(data=sdf2)
lm1 <- lm.sdf(formula="overall ~ b017451", data=sdf2)
summary(lm1)
## End(Not run)
```

Description

When the variance of a derived statistic (e.g., a difference) is required, the covariance between the two statistics must be calculated. This function uses results generated by various functions (e.g., a `lm.sdf`) to find the covariance between two statistics.
Usage

```r
varEstToCov(
  varEstA,
  varEstB = varEstA,
  varA,
  varB = varA,
  jkSumMultiplier,
  returnComponents = FALSE
)
```

Arguments

- **varEstA**: a list of two `data.frame`s returned by a function after the `returnVarEstInputs` argument was turned on. The statistic named in the `varA` argument must be present in each `data.frame`.
- **varEstB**: a list of two `data.frame`s returned by a function after the `returnVarEstInputs` argument was turned on. The statistic named in the `varA` argument must be present in each `data.frame`. When the same as `varEstA`, the covariance is within one result.
- **varA**: a character that names the statistic in the `varEstA` argument for which a covariance is required.
- **varB**: a character that names the statistic in the `varEstB` argument for which a covariance is required.
- **jkSumMultiplier**: when the jackknife variance estimation method—or balanced repeated replication (BRR) method—multiplies the final jackknife variance estimate by a value, set `jkSumMultiplier` to that value. For an `edsurvey.data.frame` or a `light.edsurvey.data.frame`, the recommended value can be recovered with `EdSurvey::getAttributes(myData, "jkSumMultiplier")`.
- **returnComponents**: set to `TRUE` to return the imputation variance separate from the sampling variance.

Details

These functions are not vectorized, so `varA` and `varB` must contain exactly one variable name.

The method used to compute the covariance is in the vignette titled *Statistical Methods Used in EdSurvey*.

The method used to compute the degrees of freedom is in the vignette titled *Statistical Methods Used in EdSurvey* in the section “Estimation of Degrees of Freedom.”

Value

A numeric value; the jackknife covariance estimate. If `returnComponents` is `TRUE`, returns a vector of length three, `V` is the variance estimate, `Vsamp` is the sampling component of the variance, and `Vimp` is the imputation component of the variance.
Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# estimate a regression
lm1 <- lm.sdf(formula=composite ~ dsex + b017451, data=sdf, returnVarEstInputs=TRUE)
summary(lm1)

# estimate the covariance between two regression coefficients
# note that the variable names are parallel to what they are called in lm1 output
jkSumMultiplier <- EdSurvey:::getAttributes(data=sdf, attribute="jkSumMultiplier")
covFEveryDay <- varEstToCov(varEstA=lm1$varEstInputs,
                          varA="dsexFemale",
                          varB="b017451Every day",
                          jkSumMultiplier=jkSumMultiplier)

# the estimated difference between the two coefficients
# note: unname prevents output from being named after the first coefficient
unname(coef(lm1)["dsexFemale"] - coef(lm1)["b017451Every day"])

# the standard error of the difference
# uses the formula SE(A-B) = sqrt(var(A) + var(B) - 2*cov(A,B))
sqrt(lm1$coefmat["dsexFemale", "se"]^2
  + lm1$coefmat["b017451Every day", "se"]^2
  - 2 * covFEveryDay)

## End(Not run)
```

viewNHES_SurveyCodes View NHES Survey Code Definitions

Description

This function prints the defined NHES Survey Codes to console output that are compatible with the readNHES function for use. Typically a user will only need to manually set these codes if the 'auto' survey parameter is not able to correctly identify the correct survey type, or for other unusual situations.

Usage

```r
viewNHES_SurveyCodes()
```

Author(s)

Tom Fink
waldTest

See Also

readNHES, getNHES_SurveyInfo

Examples

Not run:
print the NHES survey information to the console for quick reference
viewNHES_SurveyCodes()

End(Not run)

waldTest Wald Tests

Description

Tests on coefficient(s) of edsurveyGlm and edsurveyLm models.

Usage

waldTest(model, coefficients, H0 = NULL)

Arguments

model an edsurveyGlm and edsurveyLm
coefficients coefficients to be tested, by name or position in coef vector. See Details.
H0 reference values to test coefficients against, default = 0

Details

When plausible values are present, likelihood ratio tests cannot be used. However, the Wald test can be used to test estimated parameters in a model, with the null hypothesis being that a parameter(s) is equal to some value(s). In the default case where the null hypothesis value of the parameters is 0, if the test fails to reject the null hypothesis, removing the variables from the model will not substantially harm the fit of that model. Alternative null hypothesis values also can be specified with the H0 argument. See Examples.

Coefficients to test can be specified by an integer (or integer vector) corresponding to the order of coefficients in the summary output. Coefficients also can be specified using a character vector, to specify coefficient names to test. The name of a factor variable can be used to test all levels of that variable.

This test produces both chi-square and F-tests; their calculation is described in the vignette titled Methods and Overview of Using EdSurvey for Running Wald Tests.
Value

An edsurveyWaldTest object with the following elements:

- **Sigma**: coefficient covariance matrix
- **coefficients**: indices of the coefficients tested
- **H0**: null hypothesis values of coefficients tested
- **result**: result object containing the values of the chi-square and F-tests
- **hypoMatrix**: hypothesis matrix used for the Wald Test

Author(s)

Alex Lishinski and Paul Bailey

References

Examples

```r
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer"))

# example with glm model
myLogit <- logit.sdf(formula=dsex ~ b017451 + b003501, data = sdf, returnVarEstInputs = T)

# single coefficient integer
waldTest(model = myLogit, coefficients = 2)

# set of coefficients integer vector
waldTest(model = myLogit, coefficients = 2:5)

# specify levels of factor variable to test
waldTest(myLogit, c("b017451Every day", "b017451About once a week"))
```
specify all levels of factor variable to test
waldTest(myLogit, "b017451")

example with lm model
fit <- lm.sdf(formula=composite ~ dsex + b017451, data = sdf, returnVarEstInputs = T)
waldTest(model = fit, coefficients = "b017451")

examples with alternative (nonzero) null hypothesis values
waldTest(model = myLogit, coefficients = 2, H0 = 0.5)
waldTest(model = myLogit, coefficients = 2:5, H0 = c(0.5, 0.6, 0.7, 0.8))
waldTest(model = myLogit, coefficients = "b017451", H0 = c(0.5, 0.6, 0.7, 0.8))
waldTest(model = myLogit, coefficients = c("b017451Every day", "b017451About once a week"), H0 = c(0.1, 0.2))

End(Not run)
Index

$.edsurvey.data.frame (edsurvey.data.frame), 35
$<-.edsurvey.data.frame (edsurvey.data.frame), 35
%in%, edsurvey.data.frame, ANY-method (edsurvey.data.frame), 35
%in%, edsurvey.data.frame.list, ANY-method (edsurvey.data.frame), 35
achievementLevels, 5, 6, 52
append.edsurvey.data.frame.list (edsurvey.data.frame.list), 40
as.data.frame, 10, 10
cbind, 10
cbind.light.edsurvey.data.frame, 10
contourPlot, 11
cor.edsurvey.data.frame, 35, 59, 112

dim.edsurvey.data.frame, 17
DoFCorrection, 18, 92
download_ePIRLS, 33, 132
downloadCivEDICCS, 19, 99
downloadECLS_K, 20, 102, 103, 105
downloadELS, 21
downloadHLSLS, 22
downloadICILS, 23
downloadNHES, 24, 116
downloadPIAAC, 25, 117, 118
downloadPIRLS, 26, 120
downloadPISA, 27, 120, 121
downloadPISA_YAFS, 28
downloadSSOCS, 29, 124
downloadTALIS, 30, 126
downloadTIMSS, 31, 129
downloadTIMSSAdv, 32, 130
drawPVs.sdf, 34
EdSurvey (EdSurvey-package), 4
EdSurvey-package, 4
edsurvey.data.frame, 35, 59, 112, 114
edsurvey.data.frame.list, 39, 40
edsurveyTable, 5, 43, 47, 52
edsurveyTable2pdf, 46
es_round, 48, 96
gap, 5, 39, 50, 135
getAllItems, 57
getAttributes (edsurvey.data.frame), 35
data, 5, 14, 39, 58, 97, 99, 100, 102, 103, 105, 106, 108, 109, 112–114, 118, 120, 121, 124, 126, 129, 130, 132
getNHES_SurveyInfo, 61, 116
getPlausibleValue, 62, 154
getPSUVar (edsurvey.data.frame), 35
getStratumVar (edsurvey.data.frame), 35
getWeightJkReplicates, 63
glm.sdf, 64
hasPlausibleValue, 62, 68
isWeight, 69
levelsSDF, 70
lm.sdf, 5, 13, 18, 44, 52, 71, 81, 87, 138, 154
logit.sdf, 5
logit.sdf (glm.sdf), 64
merge, 77, 78
merge.edsurvey.data, 75
merge.edsurvey.data.frame, 112
mergev, 77
mixed.sdf, 5, 79
mml.sdf, 34, 57, 82, 140
mvrlm.sdf, 84
oddsRatio, 88
parseNAEPdct, 89
parseScript_SPSS, 89
percentile, 5, 52, 91, 153

print.achievementLevels, 94
print.edsurvey.data.frame, 95
print.gap, 96
print.gapList (print.gap), 96
probit.sdf (glm.sdf), 64

rbind, 10
rbind.light.edsurvey.data.frame
 (cbind.light.edsurvey.data.frame), 10
read_ePIRLS, 5, 33, 131
readBTLS, 97
readCivEDICCS, 5, 20, 98
readECLS_B, 99
readECLS_K1998, 21, 101, 103
readECLS_K2011, 5, 21, 97, 102, 102, 105,
 106, 108, 109
readELS, 22, 104
readHSB_Senior, 105
readHSB_Sophomore, 107
readHLS, 23, 108
readHSTS, 110
readICILS, 5, 23, 112
readNAEP, 5, 44, 97, 99, 100, 102, 103, 105,
 106, 108, 109, 113, 113, 120, 129,
 130, 132
readNHES, 24, 115
readPIAAC, 5, 116
readPIRLS, 5, 26, 118
readPISA, 5, 28, 120, 123
readPISA_YAFS, 28, 122
readSSOCS, 29, 123
readTALIS, 5, 30, 125
readTIMSS, 5, 31, 99, 113, 120, 127, 130, 132
readTIMSSAdv, 5, 32, 129
rebindAttributes, 39, 60, 132
recode.sdf, 14, 134
rename.sdf, 135
roundn, 136
roundNCES, 136
rq (rq.sdf), 137
rq.sdf, 5, 137

scoreDefault, 140
scoreTIMSS, 141
SD, 141
searchSDF, 112, 144
setAttribute (edsurvey.data.frame), 35

setNAEPScoreCard, 145
showCodebook, 112, 146
showCutPoints, 147
showPlausibleValues, 6, 44, 63, 71, 79, 137,
 148, 154
showWeights, 7, 44, 149
suggestWeights, 149
summary2, 5, 151
updatePlausibleValue, 63, 153

varEstToCov, 45, 54, 67, 74, 87, 93, 143, 154
viewNHES_SurveyCodes, 116, 156

waldTest, 67, 74, 157