Package ‘EffectStars2’

October 22, 2019

Type Package
Title Effect Stars
Version 0.1-3
Date 2019-10-22
Author Gunther Schauberger
Maintainer Gunther Schauberger <gunther.schauberger@tum.de>
Description Provides functions for the method of effect stars as proposed by Tutz and Schauberger (2013) <doi:10.1080/10618600.2012.701379>. Effect stars can be used to visualize estimates of parameters corresponding to different groups, for example in multinomial logit models. Beside the main function 'effectstars' there exist methods for special objects, for example for 'vglm' objects from the 'VGAM' package.
License GPL (>= 2)
Imports VGAM, miscTools
Suggests DIFlasso, DIFboost, VGAMdata
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-22 09:40:02 UTC

R topics documented:

EffectStars2-package ................................................. 2
effectstars.default ................................................. 2
effectstars.DIFboost ............................................. 4
effectstars.DIFlasso .............................................. 6
effectstars.vglm ..................................................... 7
election ............................................................... 10
insolvency ......................................................... 11
plebiscite ......................................................... 13
star.ctrl .......................................................... 14

Index 16
Description

The package provides functions for the method of effect stars as proposed by Tutz and Schauberger (2013). Beside the main function `effectstars` there exist methods for special objects, for example for `vglm`-objects.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

effectstars, star.ctrl, effectstars.vglm, effectstars.DIFlasso, effectstars.DIFboost

description

Plot effect stars.

Description

Plots effect stars for grouped coefficients. Effect stars are applicable if the parameters of a model are grouped in some sense. For example, the parameters of a multinomial logit models are grouped by the covariates, i.e. per covariate there is one estimate per response category. But also in many other models, the parameters can have a fixed grouping structure. All estimates have to be positive, typically the exponentials of the estimates are plotted. Every effect star comes with a circle of radius 1. This circle represents the case of no effect, i.e. $\exp(0)=1$.

Usage

```r
## Default S3 method:
effectstars(x, names = NULL, subs = NULL,
labels = NULL, control = star.ctrl(), cols = NULL, fixed = FALSE,
scale = 1, ...)
```
Arguments

- **x**: A matrix containing all coefficients to plot, one column per group/covariate, one row per category. If the arguments `names` and `labels` are not specified, the `colnames` and `rownames` of `x` are used.

- **names**: A vector containing all group/covariate names, will be used as titles of single effect stars. If NULL, `colnames` of `x` is used.

- **subs**: A vector containing all subtitles, one per group/covariate.

- **labels**: A vector or a matrix containing labels of the categories. If labels is a matrix, it needs to have the same dimensions as `x`. Otherwise, `labels` is a vector with length equal to the number of categories, i.e. number rows of `x`. If NULL, `rownames` of `x` is used.

- **control**: Control argument (to set graphical parameters) for method `effectstars`, see `star.ctrl`.

- **cols**: Number of columns for arranging effect stars

- **fixed**: If TRUE, all circles have the same radius. If FALSE, every star is scaled so that the length of the longest ray is equal for all stars.

- **scale**: Global factor to increase (scale>1) or decrease (scale<1) the size of the stars.

- **...**: possible further arguments

Author(s)
Gunther Schauberger <gunther.schauberger@tum.de>

https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also
`star.ctrl`, `effectstars.vglm`, `effectstars.DIFlasso`, `effectstars.DIFboost`

Examples
```r
## Not run:
#####################
### Simple example for basic effectstars function
p <- 4; k <- 5
coeffs <- matrix(exp(rnorm(p*k,sd=0.5)),ncol=k)
rownames(coefs) <- paste("Variable",1:p)
colnames(coefs) <- paste("Cat",1:k)
effectstars(coefs)
```
### Example for effect stars for a multivariate logit model

```r
data(xs.nz, package = "VGAMdata")
xs.nz$age <- scale(xs.nz$age)
library(VGAM)

cats_dogs <- vglm(cbind(cat, dog) ~ age + sex + marital,
                   data = xs.nz, family = binom2.or(zero = NULL))

summary(cats_dogs)

# quick and dirty
effectstars(exp(coef(cats_dogs, matrix = TRUE)))

# make it pretty
# create the effects matrix you want to plot, name rows and columns
effects <- exp(coef(cats_dogs, matrix = TRUE))
colnames(effects) <- c("cat", "dog", "OR")
rownames(effects) <- c("Intercept", "Age", "Gender", rep("Marital", 3))

# create subtitles containing category labels of predictors
subs <- c(rep("",2), "(male)", "(married)", "(separated/divorced)", "(widowed)")

# create labels containing the response categories and all p-values
p_values <- formatC(summary(cats_dogs)@coef3[,4], format="f", digits=3)
labels <- matrix(paste0(rep(c("cat", "dog", "OR"), nrow(effects)), "\n\n", p_values), byrow = TRUE, ncol = 3)

# plot effectstars
effectstars(effects, labels = labels, subs = subs)
```

### Example for method effectstars.vglm for a multinomial logit model calculated in VGAM

```r
data(election)
library(VGAM)
m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment + Pol.Interest + Democracy + Religion, family = multinomial(), data = election)
effectstars(m_elect)
```

## effectstars.DIFboost

Plot effect stars for DIFboost objects.

### Description

Plots effect stars for `DIFboost`-objects. The parameter estimates for DIF-items are plotted, grouped by items.
For more details on plotting effect stars see `effectstars`.

**Usage**

```r
## S3 method for class 'DIFboost'
effectstars(x, only.DIFitems = TRUE, ...)
```

**Arguments**

- `x` A `DIFboost`-object.
- `only.DIFitems` If `TRUE`, only the estimates unequal to zero (estimates from the DIF-items) are visualized with EffectStars.
- `...` further arguments for generic function `effectstars`.

**Author(s)**

Gunther Schauberger  
<gunther.schauberger@tum.de>

[https://www.sg.tum.de/epidemiologie/team/schauberger/](https://www.sg.tum.de/epidemiologie/team/schauberger/)

**References**


**See Also**

`star.ctrl`, `effectstars`

**Examples**

```r
## Not run:  
### example for DIFboost

library(DIFboost)  
data(simul.data)

Y <- simul.data[,1:10]  
X <- simul.data[,11:13]

m1 <- DIFboost(Y = Y, X = X)
effectstars(m1)
```
effectstars.DIFlasso  

Plot effect stars for DIFlasso objects.

Description

Plots effect stars for DIFlasso-objects. The parameter estimates for DIF-items are plotted, grouped by items.

For more details on plotting effect stars see effectstars.

Usage

## S3 method for class 'DIFlasso'
effectstars(x, only.DIFitems = TRUE, ...)

Arguments

x          A DIFlasso-object.
only.DIFitems If TRUE, only the estimates unequal to zero (estimates from the DIF-items) are visualized with EffectStars.
...          further arguments for generic function effectstars.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

star.ctrl, effectstars
Examples

```r
## Not run:
### example for DIFlasso

library(DIFlasso)
data(simul.data)

Y <- simul.data[,1:10]
X <- simul.data[,11:13]

m1 <- DIFlasso(Y = Y, X = X, trace = TRUE)
effectstars(m1)

## End(Not run)
```

Description

Plots effect stars for `vglm`-objects. In particular, the method works for multinomial logit models created by family `multinomial` and for models with ordinal response like `sratio`, `cratio`, `cumulative` or `acat`.

For more details on plotting effect stars see `effectstars`.

Usage

```r
## S3 method for class 'vglm'
effectstars(x, p.values = FALSE, symmetric = TRUE, plot.parallel = FALSE, ...)
```

Arguments

- **x**: A `vglm`-object.
- **p.values**: Should the p-values of the single coefficients be included in the labels? Default is `FALSE`.
- **symmetric**: Should the parameters be transformed to parameters with symmetric (sum-to-zero) side constraints instead of using reference levels. Default is `TRUE` for `multinomial`-models. If the `multinomial`-model contains object-specific covariates (`xij` argument from `vglm.control`) symmetric side constraints are not possible. In ordinal response models, no side constraints are needed and the option is obsolete.
- **plot.parallel**: Should parallel parameters (equal over all response categories) be represented by effect stars. Default is `FALSE`.
- **...**: Further arguments for generic function `effectstars`.
Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

effectstars effectstars.DIFlasso

Examples

```r
## Not run:
### Examples for multinomial logit model

### German election data
data(election)
library(VGAM)
m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment + Pol.Interest + Democracy + Religion, family = multinomial(), data = election)
effectstars(m_elect)

# include p.values
effectstars(m_elect, p.values = TRUE)

### German election data with category-specific covariates

### German election data

data(election)
election$Social <- election$Social_SPD
election$Immigration <- election$Immigration_SPD
election$Nuclear <- election$Nuclear_SPD
election$Left_Right <- election$Left_Right_SPD

m.all <- vglm(Partychoice ~ Social + Immigration + Nuclear + Left_Right + Age + Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West + Gender, data = election,
```
family = multinomial(parallel = TRUE~-1 + Social + Immigration + Nuclear + Left_Right, reflevel = 1),

xij = list(Social ~ Social_SPD + Social_FDP + Social_Greens + Social_Left, Immigration ~ Immigration_SPD + Immigration_FDP + Immigration_Greens + Immigration_Left, Nuclear ~ Nuclear_SPD + Nuclear_FDP + Nuclear_Greens + Nuclear_Left, Left_Right ~ Left_Right_SPD + Left_Right_FDP + Left_Right_Greens + Left_Right_Left),

form2 = ~Social + Immigration + Nuclear + Left_Right + Age + Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West + Gender + Social_SPD + Social_FDP + Social_Greens + Social_Left + Immigration_SPD + Immigration_FDP + Immigration_Greens + Immigration_Left + Nuclear_SPD + Nuclear_FDP + Nuclear_Greens + Nuclear_Left + Left_Right_SPD + Left_Right_FDP + Left_Right_Greens + Left_Right_Left)

effectstars(m.all, symmetric = FALSE, p.values = TRUE)

summary(m.all)

### Chilean plebiscite data

data(plebiscite)

m_chile <- vglm(Vote ~ ., family = multinomial(), data = plebiscite)
effectstars(m_chile)

# choose fixed circle sizes and use reference category instead of symmetric side constraints

effectstars(m_chile, symmetric = FALSE, fixed = TRUE)

############################################
### Examples for ordinal data
############################################

### Munich insolvency data

data(insolvency)

insolvency$Age <- scale(insolvency$Age)

my_formula <- Insolvency ~ Age + Gender

m_acat <- vglm(my_formula, data = insolvency, family = acat())
m_cratio <- vglm(my_formula, data = insolvency, family = cratio())
m_sratio <- vglm(my_formula, data = insolvency, family = sratio())
m_cumulative <- vglm(my_formula, data = insolvency, family = cumulative())

summary(m_acat)
effectstars(m_acat, p.values = TRUE)

summary(m_cratio)
effectstars(m_cratio, p.values = TRUE)

summary(m_sratio)
effectstars(m_sratio, p.values = TRUE)
Description

The data set contains data from the German Longitudinal Election Study. The response categories refer to the five dominant parties in Germany. The explanatory variables refer to the declarations of single voters.

Format

A data frame with 816 observations on the following 30 variables.

- **Age** Standardized age of the voter
- **AgeOrig** Unstandardized age of the voter
- **Partychoice** Party Choice with levels CDU, SPD, FDP, Greens and Left Party
- **Gender** Gender with levels female and male
- **West** Regional provenance (West-Germany or East-Germany) with levels east and west
- **Union** Member of a Union with levels no member and member
- **Highschool** Educational level with levels no highschool and highschool
- **Unemployment** Unemployment with levels not unemployed and unemployed
- **Pol.Interest** Political Interest with levels very interested and less interested
- **Democracy** Satisfaction with the functioning of democracy with levels satisfied and not satisfied
- **Religion** Religion with levels evangelical, catholic and other religion
- **Social_CDU** Difference in attitude towards the socioeconomic dimension of politics between respondent and CDU
- **Social_SPD** Difference in attitude towards the socioeconomic dimension of politics between respondent and SPD
- **Social_FDP** Difference in attitude towards the socioeconomic dimension of politics between respondent and FDP
- **Social_Greens** Difference in attitude towards the socioeconomic dimension of politics between respondent and the Greens
- **Social_Left** Difference in attitude towards the socioeconomic dimension of politics between respondent and the Left party
- **Immigration_CDU** Difference in attitude towards immigration of foreigners between respondent and CDU
- **Immigration_SPD** Difference in attitude towards immigration of foreigners between respondent and SPD

```
summary(m_cumulative)
effectstars(m_cumulative, p.values = TRUE)

## End(Not run)
```
**Immigration_FDP** Difference in attitude towards immigration of foreigners between respondent and FDP

**Immigration_Greens** Difference in attitude towards immigration of foreigners between respondent and the Greens

**Immigration_Left** Difference in attitude towards immigration of foreigners between respondent and the Left party

**Nuclear_CDU** Difference in attitude towards nuclear energy between respondent and CDU

**Nuclear_SPD** Difference in attitude towards nuclear energy between respondent and SPD

**Nuclear_FDP** Difference in attitude towards nuclear energy between respondent and FDP

**Nuclear_Greens** Difference in attitude towards nuclear energy between respondent and the Greens

**Nuclear_Left** Difference in attitude towards nuclear energy between respondent and the Left party

**Left_Right_CDU** Difference in attitude towards the positioning on a political left-right scale between respondent and CDU

**Left_Right_SPD** Difference in attitude towards the positioning on a political left-right scale between respondent and SPD

**Left_Right_FDP** Difference in attitude towards the positioning on a political left-right scale between respondent and FDP

**Left_Right_Greens** Difference in attitude towards the positioning on a political left-right scale between respondent and the Greens

**Left_Right_Left** Difference in attitude towards the positioning on a political left-right scale between respondent and the Left party

**References**

German Longitudinal Election Study (GLES)

**Examples**

data(election)
library(VGAM)
m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment + Pol.Interest + Democracy + Religion, family = multinomial(), data = election)
effectstars(m_elect)

---

**insolvency**

**Insolvency data**

**Description**

The data set originates from the Munich founder study. The data were collected on business founders who registered their new companies at the local chambers of commerce in Munich and surrounding administrative districts. The focus was on survival of firms measured in 7 categories, the first six represent failure in intervals of six months, the last category represents survival time beyond 36 months.
Format

A data frame with 1224 observations on the following 16 variables.

- **Insolvency** Survival of firms in ordered categories with levels 1 < 2 < 3 < 4 < 5 < 6 < 7
- **Sector** Economic Sector with levels industry, commerce and service industry
- **Legal** Legal form with levels small trade, one man business, GmbH and GbR, KG, OHG
- **Location** Location with levels residential area and business area
- **New_Foundation** New Foundation or take-over with levels new foundation and take-over
- **Pecuniary_Reward** Pecuniary reward with levels main and additional
- **Seed_Capital** Seed capital with levels < 25000 and > 25000
- **Equity_Capital** Equity capital with levels no and yes
- **Debt_Capital** Debt capital with levels no and yes
- **Market** Market with levels local and national
- **Clientele** Clientele with levels wide spread and small
- **Degree** Educational level with levels no A-levels and A-Levels
- **Gender** Gender with levels female and male
- **Experience** Professional experience with levels < 10 years and > 10 years
- **Employees** Number of employees with levels 0 or 1 and > 2
- **Age** Age of the founder at formation of the company

Source

Muenchner Gruender Studie

References


Examples

```r
## Not run:
data(insolvency)
insolvency$Age <- scale(insolvency$Age)

my_formula <- Insolvency ~ Age + Gender

m_acat <- vglm(my_formula, data = insolvency,family = acat())
m_cratio <- vglm(my_formula, data = insolvency,family = cratio())
m_sratio <- vglm(my_formula, data = insolvency,family = sratio())
m_cumulative <- vglm(my_formula, data = insolvency,family = cumulative())

summary(m_acat)
```
effectstars(m_acat, p.values = TRUE)

summary(m_cratio)
effectstars(m_cratio, p.values = TRUE)

summary(m_sratio)
effectstars(m_sratio, p.values = TRUE)

summary(m_cumulative)
effectstars(m_cumulative, p.values = TRUE)

## End(Not run)

<table>
<thead>
<tr>
<th>plebiscite</th>
<th>Chilean Plebiscite</th>
</tr>
</thead>
</table>

**Description**

The data origin from a survey referring to the plebiscite in Chile 1988. The chilean people had to decide, whether Augusto Pinochet would remain president for another ten years (voting yes) or if there would be presidential elections in 1989 (voting no).

**Format**

A data frame with 2431 observations on the following 7 variables.

- **Gender** Gender with levels female and male
- **Education** Educational level with levels low and high
- **SantiagoCity** Respondent from Santiago City with levels no and yes
- **Income** (Standardized) Monthly Income in Pesos
- **Population** (Standardized) Population size of respondent’s community
- **Age** (Standardized) Age in years
- **Vote** Response with levels Abstention, No, Undecided and Yes

**Source**

R package carData: Chile

**References**

Examples

```r
## Not run:
data(plebiscite)
m_chile <- vglm(Vote ~ ., family = multinomial(), data = plebiscite)
effectstars(m_chile)
## End(Not run)
```

---

**star.ctrl**

*Control function for effect stars.*

**Description**

Control function to set graphical parameters for method `effectstars`.

**Usage**

```r
star.ctrl(lwd.circle = 1, col.circle = "yellowgreen",
          lty.circle = "solid", col.fill = "yellowgreen", lwd.star = 1.5,
          cex.main = 1.5, cex.labels = 1, col.main = "black",
          col.labels = "black", col.star = "black", dist.labels = 1,
          font.labels = 1, radius = 1)
```

**Arguments**

- `lwd.circle` Line width of circle.
- `col.circle` Color of circle, possibly a vector with one value per covariate.
- `lty.circle` Line type of circle.
- `col.fill` Color to fill the circle, possibly a vector with one value per covariate.
- `lwd.star` Line width for effect star.
- `cex.main` Size of mains.
- `cex.labels` Size of labels.
- `col.main` Color of mains.
- `col.labels` Colors of labels. Can be a vector (one value/color per category) or a even matrix (one column per category, one row per star).
- `col.star` Color of effect star.
- `dist.labels` Tuning parameter for distance of labels from effect star. Default is 1, higher values increase the distance of the labels to effect stars. Can also be specified as a vector, containing one value per star.
- `font.labels` Font type of labels. Can be a vector (one value/color per category) or a even matrix (one column per category, one row per star).
- `radius` Radius for circle. Can also be specified as a vector, containing one value per star.
Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also
effectstars

Examples

## Not run:
data(election)
library(VGAM)

m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment + Pol.Interest + Democracy + Religion, family = multinomial(), data = election)

ctrl <- star.ctrl(col.labels = c("black","red2","yellow2","green2","darkred"),
col.star = "darkgray", col.fill = "lightblue", col.circle = "darkgray",
cex.labels = 1.1)

effectstars(m_elect, control = ctrl)

## End(Not run)
# Index

*Topic **datasets**
  - election, 10
  - insolveny, 11
  - plebiscite, 13
*Topic **multinomial**
  - election, 10
  - plebiscite, 13
*Topic **ordinal**
  - insolveny, 11
*Topic **package**
  - EffectStars2-package, 2
*Topic **response**
  - election, 10
  - insolveny, 11
  - plebiscite, 13

cratio, 7

Chile, 13
cumulative, 7

DIFboost, 4, 5
DIFlasso, 6
effectstars, 2, 3, 5–8, 14, 15
effectstars (effectstars.default), 2
effectstars.default, 2
effectstars.DIFboost, 2, 3, 4
effectstars.DIFlasso, 2, 3, 6, 8
effectstars.vglm, 2, 3, 7
EffectStars2 (EffectStars2-package), 2
EffectStars2-package, 2
election, 10

insolveny, 11

multinomial, 7

plebiscite, 13

sratio, 7
star.ctrl, 2, 3, 5, 6, 14
vglm, 2, 7
vglm.control, 7