Package ‘EloOptimized’

September 17, 2018

Title Optimized Elo Rating Method for Obtaining Dominance Ranks

Version 0.3.0

Date 2018-09-05

Description Provides an implementation of the maximum likelihood methods for deriving Elo scores as published in Foerster, Franz et al. (2016) <DOI:10.1038/srep35404>.

Depends R (= 3.3.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

Imports dplyr, reshape2, BAMMtools, tcltk, rlist, magrittr, lubridate, rlang

URL https://github.com/jtfeld/EloOptimized

BugReports https://github.com/jtfeld/EloOptimized/issues

NeedsCompilation no

Author Joseph Feldblum [aut, cre],
 Steffen Foerster [aut],
 Mathias Franz [aut]

Maintainer Joseph Feldblum <feldblum@umich.edu>

Repository CRAN

Date/Publication 2018-09-17 11:50:08 UTC

R topics documented:

 chimpagg_f ... 2
 chimpagg_m ... 2
 chimppres_f ... 3
 chimppres_m ... 4
 elo.m3lik_vect ... 4
 elo.model1 .. 5
Anonymized female chimpanzee pant-grunt data from Gombe

Description
Female data from Gombe National Park, Tanzania from 1969 to 2013. Data are submissive pant-grunt vocalizations.

Usage
chimpagg_f

Format
A data frame with 1015 rows and 3 variables:

Date date of interaction
Winner winning individual
Loser losing individual

Source

Anonymized male chimpanzee pant-grunt data from Gombe

Description
Data from Gombe National Park, Tanzania from 1978 to 2011. Data are submissive pant-grunt vocalizations.

Usage
chimpagg_m
chimppres_f

Format

A data frame with 2741 rows and 3 variables:

Date date of interaction
Winner winning individual
Loser losing individual

Source

Anonymized female chimpanzee presence data from Gombe

Description

Female presence data from Gombe National Park, Tanzania from 1969 to 2013. Presence criteria are given in Foerster, Franz et al. (2016)

Usage

chimppres_f

Format

A data frame with 44 rows and 3 variables:

id female code
start_date start date
end_date date of departure

Source

chimppres_m Anonymized male chimpanzee presence data from Gombe

Description
Male presence data from Gombe National Park, Tanzania from 1978 to 2011. Presence criteria are given in Foerster, Franz et al. (2016)

Usage
chimppres_m

Format
A data frame with 22 rows and 3 variables:
- id male code
- start_date start date
- end_date date of departure

Source

elo.m3_lik_vect optimize k parameter and entry Elo scores, vectorized

Description
Function to optimize k parameter and entry Elo scores

Usage
elo.m3_lik_vect(par, IA_data, all_ids)

Arguments
- par list of parameters, with par[1] being log(k), and par[2:length(par)] being the initial elo scores of individuals
- IA_data list of interaction data, with columns "Date", "Winner", and "Loser" (in that order)
- all_ids list of all ids to rank

Examples
for internal use
 elo.model1

Optimize k parameter in Elo rating method

Description

Function to optimize k parameter in Elo Rating Method

Usage

```r
elo.model1(par, burn_in = 100, init_elo = 1000, IA_data, all_ids, p_function = "sigmoid", return_likelihood = T)
```

Arguments

- `par` initial value of log(k)
- `burn_in` burn in period for establishing initial elo scores. Defaults to 100
- `init_elo` Initial Elo score for all individuals. Defaults to 1000
- `IA_data` Data frame with Date, Winner, and Loser
- `all_ids` list of all IDs in sample
- `p_function` function used to calculate probability of winning. Defaults to sinusoidal function, but use "pnorm" to use the `pnorm`-based method implemented in the Elo-Rating package.
- `return_likelihood` Logical; if TRUE, returns log likelihood based on given par, if FALSE returns agonistic interactions table with elo scores based on given value of par

Examples

```r
#for internal use
```

 elo.model3

Optimize k parameter and entry Elo scores

Description

Function to optimize k parameter and entry Elo scores

Usage

```r
elo.model3(par, IA_data, all_ids, return_likelihood = T)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>list of parameters, with par[1] being log(k), and par[2:length(par)] being the initial elo scores of individuals</td>
</tr>
<tr>
<td>IA_data</td>
<td>list of interaction data, with columns "Date", "Winner", and "Loser" (in that order)</td>
</tr>
<tr>
<td>all_ids</td>
<td>list of all ids to rank</td>
</tr>
<tr>
<td>return_likelihood</td>
<td>If TRUE, returns the total likelihood based on all interactions given a particular set of parameters. If FALSE, returns a table of Elo scores based on a given set of parameters.</td>
</tr>
</tbody>
</table>

Examples

```r
# for internal use
```

EloOptimized

EloOptimized: ML fitting of Elo Scores

Description

This package implements the maximum likelihood methods for deriving Elo scores as published in Foerster, Franz et al. (2016). Chimpanzee females queue but males compete for social status. Scientific Reports 6, 35404, doi:10.1038/srep35404

Primary functions

- `eloratingopt`: main function
- `eloratingfixed`: traditional Elo scores function
- `elo.model1`: internal function for fitting model type 1
- `elo.model3`: internal function for fitting model type 3
- `elo.m3_lik_vect`: vectorized internal function for fitting mod type 3

Plans for future development

- Make package more modular, with a more flexible wrapper function.
- Option to specify K during burn-in period when fitting only K
- Add additional example data
- Create vignette, other package doohickies
- Add additional user control of the optimization procedure, allowing for specification of the burn in period, optimization algorithm, and initial values for optimization.
- Add functionality to plot Elo trajectories from within package.
eloratingfixed

Create daily elo ranks and multiple derivatives with user-defined parameter values

Description

Conducts traditional elo rating analyses using specified K value and outputs raw, normalized, cardinal, and categorical ranks as a list object in R or in an output file. For optimized Elo parameters, use eloratingopt.

Usage

eloratingfixed(agon_data, pres_data, k = 100, init_elo = 1000, outputfile = NULL, returnR = TRUE, p_function = "sigmoid")

Arguments

agon_data Input data frame with dominance interactions, should only contain Date, Winner, Loser. Date should be formatted as MONTH/DAY/YEAR, or already as Date class.
pres_data Input data frame with columns "id", "start_date" and "end_date". Date columns should be formatted as MONTH/DAY/YEAR, or already as Date class. If all IDs are present the whole time, you ignore this and a pres_data table will be automatically generated.
k Specified value of the k parameter, default is 100
init_elo The starting Elo value for all individuals, default is 1000
outputfile Name of csv file to save ranks to. Default is NULL, in which case the function will only return a table in R. If you supply an output file name the function will save the results as a csv file in your working directory.
returnR whether to return an R object from the function call. Default is TRUE
p_function function defining probability of winning. Default "sigmoid" is equation (1) from Foerster, Franz et al. 2016. Use "pnorm" to use the pnorm-based method implemented in the EloRating package.

Details

This function accepts a data frame of date-stamped dominance interactions and (optionally) a data frame of start and end dates for each individual to be ranked, and outputs daily Elo scores with parameters specified by the user. The default function used to determine probability of winning is equation (1) from Foerster, Franz et al. 2016, but for ease of comparison with the EloRating package, we also added the option to use the pnorm-based method implemented in the EloRating package, and future development will add the option to use the original function from Elo 1978 (as implemented in the elo package). This function does not require large presence matrices, and efficiently calculates a series of additional indices (described below).
As opposed to the `eloratingopt` function, this procedure only requires that included individuals have at least one win or one loss.

A detailed description of the function output is given in the **Value** section of this help file:

Value

Returns a list with six elements:

- **elo** Data frame with all IDs and dates they were present, with the following columns:
 - Date: Dates of study period
 - Individual: the names of each ranked individual, for each date they were present
 - Elo: fitted Elo scores for each individual on each day
 - EloOrdinal: Daily ordinal rank based on Elo scores
 - EloScaled: Daily Elo scores rescaled between 0 and 1 according to \((\text{individual Elo} - \min(\text{daily Elo scores})) / (\max(\text{daily Elo scores}) - \min(\text{daily Elo scores}))\)
 - ExpNumBeaten: expected number of individuals in the group beaten, which is the sum of winning probabilities based on relative Elo scores of an individual and all others, following equation (4) in Foerster, Franz et al. 2016
 - EloCardinal: ExpNumBeaten values rescaled as a percentage of the total number of ranked individuals present in the group on the day of ranking. We encourage the use of this measure.
 - JenksEloCardinal: Categorical rank (high, mid, or low) using the Jenks natural breaks classification method implemented in the R package BAMMtools. See `getJenksBreaks`

- **k** User-defined value of the k parameter
- **init_elo** User-defined initial Elo score when individuals enter the hierarchy
- **pred_accuracy** Proportion of correctly predicted interactions
- **logL** The overall log-likelihood of the observed data given the user-supplied parameter values based on winning probabilities (as calculated in equation (1) of Foerster, Franz et al 2016) for all interactions

Examples

```r
nbadata = EloOptimized::nba # nba wins and losses from the 1995-96 season
nbaelo = eloratingfixed(agon_data = nbadata)
# generates traditional Elo scores (with init_elo = 1000 & k = 100) and saves
# them as "nbaelo"
```

eloratingopt

Create daily ML fitted Elo ranks and multiple derivatives

Description

Conducts **optimized** elo rating analyses as per Foerster, Franz et al and outputs raw, normalized, cardinal, and categorical ranks as a list object in R or in an output file. For non-optimized Elo score calculation, use `eloratingfixed`.
eloratingopt

Usage

eloratingopt(agon_data, pres_data, fit_init_elo = FALSE, outputfile = NULL, returnR = TRUE)

Arguments

agon_data Input data frame with dominance interactions, should only contain Date, Winner, Loser. Date should be formatted as MONTH/DAY/YEAR, or already as Date class.

pres_data Input data frame with columns "id", "start_date" and "end_date". Date columns should be formatted as MONTH/DAY/YEAR, or already as Date class. If all IDs are present the whole time, you can ignore this and a pres_data table will be automatically generated.

fit_init_elo If FALSE (the default), fits only the K parameter, with a default starting Elo score of 1000 for each individual. If TRUE, fits K and starting Elo for each individual. The latter option is much slower.

outputfile Name of csv file to save ranks to. Default is NULL, in which case the function will only return a table in R. If you supply an output file name the function will save the results as a csv file in your working directory.

returnR whether to return an R object from the function call. Default is TRUE

Details

This function accepts a data frame of date-stamped dominance interactions and (optionally) a data frame of start and end dates for each individual to be ranked, and outputs daily Elo scores with K parameter, and optionally initial elo scores, fitted using a maximum likelihood approach. The optimization procedure uses the optim() function, with a burn in period of 100 interactions. We use the "Brent" method when fitting only the K parameter, and the "BFGS" method for fitting both K and initial Elo scores. See optim for more details. Future package development will add additional user control of the optimization procedure, allowing for specification of the burn in period, optimization algorithm, and initial values for optimization.

Note also that the fitting procedure requires each individual to have at least one win and one loss, so any individual that doesn’t meet those criteria is automatically removed. Additionally, any instance of an individual winning against itself is cleaned from the data, and several other checks of the data are performed before the optimization procedure is run.

A detailed description of the function output is given in the Value section of this help file:

Value

Returns a list with five or six elements (depending on input):

• elo Data frame with all IDs and dates they were present, with the following columns:
 – Date: Dates of study period
 – Individual: the names of each ranked individual, for each date they were present
 – Elo: fitted Elo scores for each individual on each day
 – EloOrdinal: Daily ordinal rank based on Elo scores
EloScaled: Daily Elo scores rescaled between 0 and 1 according to \(\text{[(individual Elo) - min([daily Elo scores])] / (max([daily Elo scores]) - min([daily Elo scores]))} \)

- ExpNumBeaten: expected number of individuals in the group beaten, which is the sum of winning probabilities based on relative Elo scores of an individual and all others, following equation (4) in Foerster, Franz et al. 2016

- EloCardinal: ExpNumBeaten values rescaled as a percentage of the total number of ranked individuals present in the group on the day of ranking. We encourage the use of this measure.

- JenksEloCardinal: Categorical rank (high, mid, or low) using the Jenks natural breaks classification method implemented in the R package BAMMtools. See `getJenksBreaks`

- **k** The maximum-likelihood fitted k parameter value
- **pred_accuracy** Proportion of correctly predicted interactions
- **maxLogL** The overall log-likelihood of the observed data given the fitted parameter values based on winning probabilities (as calculated in equation (1) of Foerster, Franz et al 2016) for all interactions
- **AIC** Akaike’s Information Criterion value as a measure of model fit
- **init_elo** *(Only returned if you fit initial Elo scores)* initial Elo for each individual

Examples

```r
nbadata = EloOptimized::nba #nba wins and losses from the 1995-96 season
nbaelo = eloratingopt(agon_data = nbadata, fit_init_elo = FALSE)
# generates optimized elo scores (optimizing only K) and saves them as "nbaelo"
```

Description

Outcome of NBA games during the 1995-1996 regular season, adapted from a dataset from fivethirtyeight

Usage

nba

Format

A data frame with 1189 rows and 3 variables:

- **Date** date of game
- **Winner** winning team
- **Loser** losing team

Source

https://github.com/fivethirtyeight/data/blob/master/nba-elo/nbaallelo.csv
Index

*Topic datasets
 chimpagg_f, 2
 chimpagg_m, 2
 chimppres_f, 3
 chimppres_m, 4
 nba, 10

 chimpagg_f, 2
 chimpagg_m, 2
 chimppres_f, 3
 chimppres_m, 4

 elo.m3.lik_vect, 4, 6
 elo.model1, 5, 6
 elo.model3, 5, 6
 EloOptimized, 6
 EloOptimized-package (EloOptimized), 6
 eloratingfixed, 6, 7, 8
 eloratingopt, 6–8, 8

 getJenksBreaks, 8, 10

 nba, 10

 optim, 9

 pnorm, 5, 7