Package ‘EpiContactTrace’

October 19, 2017

Title Epidemiological Tool for Contact Tracing
Version 0.12.0
Description Routines for epidemiological contact tracing and visualisation of network of contacts.
License EUPL
URL https://github.com/stewid/EpiContactTrace
BugReports https://github.com/stewid/EpiContactTrace/issues
Type Package
LazyData true
Depends R(>= 3.0.2)
Imports graphics, methods, tools, utils
Collate ‘Contacts.r’ ‘ContactTrace.r’ ‘EpiContactTrace-package.r’
 ‘in-degree.r’ ‘ingoing-contact-chain.r’ ‘network-structure.r’
 ‘network-summary.r’ ‘out-degree.r’ ‘outgoing-contact-chain.r’
 ‘plot.r’ ‘report.r’ ‘shortest-paths.r’ ‘show.r’ ‘trace.r’
 ‘tree.r’
RoxygenNote 6.0.1
NeedsCompilation yes
Author Maria Noremark [aut],
 Stefan Widgren [aut, cre]
Maintainer Stefan Widgren <stefan.widgren@gmail.com>
Repository CRAN
Date/Publication 2017-10-19 17:00:46 UTC

R topics documented:

 EpiContactTrace-package ... 2
 Contacts-class ... 3
 ContactTrace-class .. 5
 InDegree ... 5
Description

Routines for epidemiological contact tracing and visualisation of network of contacts.

Details

In many countries, livestock movement data are collected with the major objective to enable contact tracing during disease outbreaks. Livestock movement data can also be of relevance for risk based surveillance - both during outbreak or when investigating if a disease is present in the population. However, the livestock movement databases are not always structured in such a way that relevant information for contact tracing or surveillance design is easily retrieved. EpiContactTrace uses the network parameters in-degree, out-degree, ingoing contact-chain and outgoing contact-chain, which are relevant for forward- and backward contact-tracing respectively. The measures can also be used for identifying herds with many contacts, which can be used in risk based disease surveillance. Different time periods for ingoing and outgoing contacts can be of interest in the contact tracing, based on possible window of introduction, and this can be adjusted in the tool. The output from the analysis is available as a dataset, but moreover, the tool automatically generates a report on farm level. The report both contains an overview of the situation on the farm, including a graph, as well as detailed information including dates of movements on group or individual level on all contacts.

Maintainer

Stefan Widgren <stefan.widgren@sva.se>

Note

Plots are not supported in version 0.8.6 since igraph0 has been archived. We intend to resolve the issue in a future version. Install version 0.8.5 and igraph0 manually from the archive if plots are required. See section 6.3 in 'R Installation and Administration' on how to install packages from source.
Contacts-class

Author(s)
Stefan Widgren Maria Noremark

References

Examples

```r
## Load data
data(transfers)

## Perform contact tracing
contactTrace <- Trace(movements=transfers,
                      root=2645,
                      tEnd='2005-10-31',
                      days=90)

show(contactTrace)

## Not run:
## Generate an html report showing details of the contact tracing for
## root 2645.
## Note: Creates the files 2645.html and 2645.png in the working
## directory.
Report(contactTrace)

## End(Not run)
```

Contacts-class

Class "Contacts"

Description

Class to handle contacts.

Details

The Contacts class keeps track of all ingoing or outgoing livestock transfers in the contact chain for a specific root within the time window used for contact tracing. The slots source, destination, t, id, n and category contains contact information extracted from the movement dataset during
contact tracing. The index slot is an index to the extracted contacts within the class that together with the distance slot can be used to rebuild the exact contacts that were extracted from each search step during the contact tracing.

Slots

- **root** A character vector of length one with the identifier of the root.
- **tBegin** A Date vector of length one with the start date of the time window used for contact tracing.
- **tEnd** A Date vector of length one with the end date of the time window used for contact tracing.
- **source** A character vector with the identifiers of the source holdings of the livestock transfer.
- **destination** A character vector with the identifier of the destination holdings of the livestock transfer.
- **t** A Date vector of the livestock transfer.
- **id** A character vector with the identifiers of the animals.
- **n** A numeric vector with the number of animals transferred.
- **category** A character vector with the category of animals e.g. cattle.
- **index** A integer index vector.
- **distance** A integer vector with the distance from root for the contact[index]
- **direction** A character vector of length one equal to the direction 'in' or 'out' of the contacts.

Objects from the Class

Objects can be created by calls of the form new("Contacts", root, startDate, days, source, destination, t, id, n, category, level, direction, N).

Examples

```r
## Load data
data(transfers)

## Perform contact tracing
contactTrace <- Trace(movements = transfers,
    root = 2645,
    tEnd = '2005-10-31',
    days = 90)

## Show structure of ingoing contacts
str(contactTrace@ingoingContacts)

## Show structure of outgoing contacts
str(contactTrace@outgoingContacts)
```
ContactTrace-class

Class "ContactTrace"

Description

Class to handle contact tracing.

Details

The ContactTrace class holds information for the ingoing and outgoing contact chain for a specific root within the time window used for contact tracing.

Slots

 root A character vector of length one with the identifier of the root.
 ingoingContacts A Contacts object with the contacts for the ingoing contact chain.
 outgoingContacts A Contacts object with the contacts for the outgoing contact chain.

Objects from the Class

Objects can be created by calls of the form new("ContactTrace", root, ingoingContacts, outgoingContacts,...)

Examples

```r
## Load data
data(transfers)

## Perform contact tracing
contactTrace <- Trace(movements = transfers,
  root = 2645,
  tEnd = '2005-10-31',
  days = 90)

## Show structure
str(contactTrace)
```

```
InDegree

Description

The number of herds with direct movements of animals to the root herd during the defined time window used for tracing.
```
Usage

InDegree(x, ...)

S4 method for signature 'Contacts'
InDegree(x)

S4 method for signature 'ContactTrace'
InDegree(x)

S4 method for signature 'data.frame'
InDegree(x, root = NULLL, tend = NULLL, days = NULLL, inBegin = NULLL, inEnd = NULLL)

Arguments

x a ContactTrace object, or a list of ContactTrace objects or a data.frame with movements of animals between holdings, see Trace for details.

... Additional arguments to the method

root vector of roots to calculate indegree for.

tEnd the last date to include ingoing movements. Defaults to NULL

days the number of previous days before tEnd to include ingoing movements. Defaults to NULL

inBegin the first date to include ingoing movements. Defaults to NULL

inEnd the last date to include ingoing movements. Defaults to NULL

Details

The time period used for InDegree can either be specified using tEnd and days or inBegin and inEnd.

If using tEnd and days, the time period for ingoing contacts ends at tEnd and starts at days prior to tEnd. The indegree will be calculated for each combination of root, tEnd and days.

An alternative way is to use inBegin and inEnd. The time period for ingoing contacts starts at inBegin and ends at inEndDate. The vectors root inBegin, inEnd must have the same lengths and the indegree will be calculated for each index of them.

The movements in InDegree is a data.frame with the following columns:

source an integer or character identifier of the source holding.

destination an integer or character identifier of the destination holding.

t the Date of the transfer

id an optional character vector with the identity of the animal.

n an optional numeric vector with the number of animals moved.

category an optional character or factor with category of the animal e.g. Cattle.
Value

A data.frame with the following columns:

- **root** The root of the contact tracing
- **inBegin** The first date to include ingoing movements
- **inEnd** The last date to include ingoing movements
- **inDays** The number of days in the interval inBegin to inEnd
- **inDegree** The InDegree of the root within the time-interval

Methods

signature(x = "ContactTrace") Get the InDegree of a ContactTrace object.

signature(x = "data.frame") Get the InDegree for a data.frame with movements, see details and examples.

References

See Also

- NetworkSummary

Examples

```r
## Not run:

## Load data
data(transfers)

c## Perform contact tracing using tEnd and days
contactTrace <- Trace(movements=transfers,
  root=2645,
tEnd='2005-10-31',
days=91)

## Calculate indegree from a ContactTrace object
id.1 <- InDegree(contactTrace)

## Calculate indegree using tEnd and days
id.2 <- InDegree(transfers,
  root=2645,
tEnd='2005-10-31',
days=91)
```
Description

The ingoing contact chain is the number of holdings in the network of direct and indirect contacts to the root holding, with regard to temporal and order of the contacts during the defined time window used for contact tracing.

Usage

```
IngoingContactChain(x, ...)  
```

Arguments

- **x**: a ContactTrace object, or a list of ContactTrace objects or a data.frame with movements of animals between holdings, see Trace for details.
- **...**: Additional arguments to the method
- **root**: vector of roots to calculate ingoing contact chain for.
- **tEnd**: the last date to include ingoing movements. Defaults to NULL.
IngoingContactChain

- `days` the number of previous days before tEnd to include ingoing movements. Defaults to NULL
- `inBegin` the first date to include ingoing movements. Defaults to NULL
- `inEnd` the last date to include ingoing movements. Defaults to NULL

Details

The time period used for IngoingContactChain can either be specified using `tEnd` and `days` or `inBegin` and `inEnd`.

If using `tEnd` and `days`, the time period for ingoing contacts ends at `tEnd` and starts at `days` prior to `tEnd`. The indegree will be calculated for each combination of root, `tEnd` and `days`.

An alternative way is to use `inBegin` and `inEnd`. The time period for ingoing contacts starts at `inBegin` and ends at `inEndDate`. The vectors `root inBegin`, `inEnd` must have the same lengths and the indegree will be calculated for each index of them.

The movements in IngoingContactChain is a data.frame with the following columns:

- `source` an integer or character identifier of the source holding.
- `destination` an integer or character identifier of the destination holding.
- `t` the Date of the transfer
- `id` an optional character vector with the identity of the animal.
- `n` an optional numeric vector with the number of animals moved.
- `category` an optional character or factor with category of the animal e.g. Cattle.

Value

A data.frame with the following columns:

- `root` The root of the contact tracing
- `inBegin` The first date to include ingoing movements
- `inEnd` The last date to include ingoing movements
- `inDays` The number of days in the interval `inBegin` to `inEnd`
- `ingoingContactChain` The IngoingContactChain of the root within the time-interval

Methods

- `signature(x = "ContactTrace")` Get the IngoingContactChain of a ContactTrace object.
- `signature(x = "data.frame")` Get the IngoingContactChain for a data.frame with movements, see details and examples.

References

See Also

NetworkSummary

Examples

```r
## Not run:

## Load data
data(transfers)

data(transfers)

## Perform contact tracing using tEnd and days
contactTrace <- Trace(movements=transfers,
                      root=2645,
                      tEnd='2005-10-31',
                      days=91)

## Calculate ingoing contact chain from a ContactTrace object
ic.1 <- IngoingContactChain(contactTrace)

## Calculate ingoing contact chain using tEnd and days
ic.2 <- IngoingContactChain(transfers,
                            root=2645,
                            tEnd='2005-10-31',
                            days=91)

## Check that the result is identical
identical(ic.1, ic.2)

## Calculate ingoing contact chain for all included herds
## First extract all source and destination from the dataset
root <- sort(unique(c(transfers$source,
                     transfers$destination)))

## Calculate ingoing contact chain
result <- IngoingContactChain(transfers,
                               root=root,
                               tEnd='2005-10-31',
                               days=91)

## End(Not run)
```

Description

Methods for function NetworkStructure in package EpiContactTrace to get the network tree structure from the contact tracing.
NetworkStructure

Usage

```
NetworkStructure(object)
```

S4 method for signature 'Contacts'

```
NetworkStructure(object)
```

S4 method for signature 'ContactTrace'

```
NetworkStructure(object)
```

Arguments

- `object` A `Contacts` or `linkS4class(ContactTrace)` object.

Details

The contact tracing performs a depth first search starting at the root. The `NetworkStructure` gives the distance from root at each node. The network tree structure given by the depth first search is shown by `show`.

Value

A `data.frame` with the following columns:

- `root` The root of the contact tracing
- `inBegin` If the direction is ingoing, then `inBegin` equals `inBegin` in `Trace` else NA.
- `inEnd` If the direction is ingoing, then `inEnd` equals `inEnd` in `Trace` else NA.
- `outBegin` If the direction is outgoing, then `outBegin` equals `outBegin` in `Trace` else NA.
- `outEnd` If the direction is outgoing, then `outEnd` equals `outEnd` in `Trace` else NA.
- `direction` If the direction is ingoing, then `direction` equals 'in' else 'out'
- `source` The source of the contacts in the depth first search
- `destination` The destination of the contacts in the depth first search
- `distance` The distance from the destination to root in the depth first search

Methods

- `signature(object = "Contacts")` Get the network structure for the `Contacts` object.
- `signature(object = "ContactTrace")` Get the network structure for the ingoing and outgoing `Contacts` of a `ContactTrace` object.
- `signature(object = "list")` Get the network structure for a list of `ContactTrace` objects. Each item in the list must be a `ContactTrace` object.

See Also

- `show`
Examples

```r
## Not run:

## Load data
data(transfers)

## Perform contact tracing
contactTrace <- Trace(movements=transfers,
  root=2645,
  tEnd='2005-10-31',
  days=90)

NetworkStructure(contactTrace)

## End(Not run)
```

Description

`NetworkSummary` gives a summary of the contact tracing including the time-window, `InDegree`, `OutDegree`, `IngoingContactChain` and `OutgoingContactChain`.

Usage

```r
NetworkSummary(x, ...)
```

S4 method for signature 'ContactTrace'

```r
NetworkSummary(x)
```

S4 method for signature 'data.frame'

```r
NetworkSummary(x, root, tEnd = NULL, days = NULL,
  inBegin = NULL, inEnd = NULL, outBegin = NULL, outEnd = NULL)
```

Arguments

- `x` a `ContactTrace` object or a `data.frame` with movements of animals between holdings, see `Trace` for details.
- `...` Additional arguments to the method
- `root` vector of roots to calculate network summary for.
- `tEnd` the last date to include ingoing movements. Defaults to `NULL`.
- `days` the number of previous days before `tEnd` to include ingoing movements. Defaults to `NULL`.
- `inBegin` the first date to include ingoing movements. Defaults to `NULL`.
- `inEnd` the last date to include ingoing movements. Defaults to `NULL`.
- `outBegin` the first date to include outgoing movements. Defaults to `NULL`.
- `outEnd` the last date to include outgoing movements. Defaults to `NULL`.
Details

The time period used for `NetworkSummary` can either be specified using `tEnd` and `days` or `inBegin`, `inEnd`, `outBegin` and `outEnd`.

If using `tEnd` and `days`, the time period for ingoing and outgoing contacts ends at `tEnd` and starts at `days` prior to `tEnd`. The network summary will be calculated for each combination of `root`, `tEnd` and `days`.

An alternative way is to use `inBegin`, `inEnd`, `outBegin` and `outEnd`. The time period for ingoing contacts starts at `inBegin` and ends at `inEndDate`. For outgoing contacts the time period starts at `outBegin` and ends at `outEnd`. The vectors `root`, `inBegin`, `inEnd`, `outBegin` and `outEnd` must have the same lengths and the network summary will be calculated for each index of them.

The movements in `NetworkSummary` is a `data.frame` with the following columns:

- **source**: an integer or character identifier of the source holding.
- **destination**: an integer or character identifier of the destination holding.
- **t**: the Date of the transfer.
- **id**: an optional character vector with the identity of the animal.
- **n**: an optional numeric vector with the number of animals moved.
- **category**: an optional character or factor with category of the animal e.g. Cattle.

Value

A `data.frame` with the following columns:

- **root**: The root of the contact tracing.
- **inBegin**: Equals `inBegin` in `Trace`.
- **inEnd**: Equals `inEnd` in `Trace`.
- **outBegin**: Equals `outBegin` in `Trace`.
- **outEnd**: Equals `outEnd` in `Trace`.
- **inDegree**: The `InDegree` of the contact tracing.
- **outDegree**: The `OutDegree` of the contact tracing.
- **ingoingContactChain**: The `IngoingContactChain` of the contact tracing.
- **outgoingContactChain**: The `OutgoingContactChain` of the contact tracing.

Methods

- `signature(x = "ContactTrace")` Get the network summary for the ingoing and outgoing Contacts of a `ContactTrace` object.
- `signature(x = "data.frame")` Get the network summary for a `data.frame` with movements, see details and examples.
References

Examples

```r
## Not run:

## Load data
data(transfers)

## Perform contact tracing using tEnd and days
contactTrace <- trace(movements=transfers,
                      root=2645,
                      tEnd='2005-10-31',
                      days=91)

## Calculate network summary from a ContactTrace object
ns1 <- NetworkSummary(contactTrace)

## Calculate network summary using tEnd and days
ns2 <- NetworkSummary(transfers,
                      root=2645,
                      tEnd='2005-10-31',
                      days=91)

## Check that the result is identical
identical(ns1, ns2)

## Calculate network summary using inBegin, inEnd
## outBegin and outEnd
ns3 <- NetworkSummary(transfers,
                      root=2645,
                      inBegin='2005-09-01',
                      inEnd='2005-10-31',
                      outBegin='2005-08-01',
                      outEnd='2005-10-31')

## Check that the result is identical
identical(ns2, ns3)

## When calculating the network summary for a data.frame of movements
## a data.frame for each combination of root, tEnd and days are returned.
root <- c(1,2,3)
tEnd <- c("2005-09-01", "2005-10-01")
days <- c(30, 45)
```
OutDegree

Description

The number of herds with direct movements of animals from the root herd during the defined time window used for tracing.

Usage

OutDegree(x, ...)

S4 method for signature 'Contacts'
OutDegree(x)

```r
## S4 method for signature 'ContactTrace'
OutDegree(x)
```

```r
## S4 method for signature 'data.frame'
OutDegree(x, root, tEnd = NULL, days = NULL,
          outBegin = NULL, outEnd = NULL)
```

Arguments

- `x`: a `ContactTrace` object, or a list of `ContactTrace` objects or a `data.frame` with movements of animals between holdings, see `trace` for details.
- `...`: Additional arguments to the method
- `root`: vector of roots to calculate outdegree for.
- `tEnd`: the last date to include outgoing movements. Defaults to `NULL`.
- `days`: the number of previous days before `tEnd` to include outgoing movements. Defaults to `NULL`.
- `outBegin`: the first date to include outgoing movements. Defaults to `NULL`.
- `outEnd`: the last date to include outgoing movements. Defaults to `NULL`.

Details

The time period used for `OutDegree` can either be specified using `tEnd` and `days` or `outBegin` and `outEnd`.

If using `tEnd` and `days`, the time period for outgoing contacts ends at `tEnd` and starts at `days` prior to `tEnd`. The outdegree will be calculated for each combination of `root`, `tEnd` and `days`.

An alternative way is to use `outBegin` and `outEnd`. The time period for outgoing contacts starts at `outBegin` and ends at `outEndDate`. The vectors `root`, `outBegin`, `outEnd` must have the same lengths and the outdegree will be calculated for each index of them.

The movements in `OutDegree` is a `data.frame` with the following columns:

- `source`: an integer or character identifier of the source holding.
- `destination`: an integer or character identifier of the destination holding.
- `t`: the Date of the transfer.
- `id`: an optional character vector with the identity of the animal.
- `n`: an optional numeric vector with the number of animals moved.
- `category`: an optional character or factor with category of the animal e.g. Cattle.

Value

A `data.frame` with the following columns:

- `root`: The root of the contact tracing.
- `outBegin`: The first date to include outgoing movements.
OutDegree

- **outEnd** The last date to include outgoing movements
- **outDays** The number of days in the interval outBegin to outEnd
- **outDegree** The OutDegree of the root within the time-interval

Methods

signature(x = "ContactTrace") Get the OutDegree of a ContactTrace object.

signature(x = "data.frame") Get the OutDegree for a data.frame with movements, see details and examples.

References

See Also

- NetworkSummary

Examples

```r
## Not run:

## Load data
data(transfers)

## Perform contact tracing using tEnd and days
contactTrace <- Trace(movements=transfers, 
                      root=2645, 
                      tEnd='2005-10-31', 
                      days=91)

## Calculate outdegree from a ContactTrace object
od.1 <- OutDegree(contactTrace)

## Calculate outdegree using tEnd and days
od.2 <- OutDegree(transfers, 
                      root=2645, 
                      tEnd='2005-10-31', 
                      days=91)

## Check that the result is identical
identical(od.1, od.2)

## Calculate outdegree for all included herds
## First extract all source and destination from the dataset
```
OutgoingContactChain

The outgoing contact chain is the number of holdings in the network of direct and indirect contacts from the root holding, with regard to temporal and order of the contacts during the defined time window used for contact tracing.

Usage

```r
OutgoingContactChain(x, ...)```

- **x**: a ContactTrace object, or a list of ContactTrace objects or a data.frame with movements of animals between holdings, see `Trace` for details.
- **...**: Additional arguments to the method
- **root**: vector of roots to calculate outgoing contact chain for.
- **tEnd**: the last date to include outgoing movements. Defaults to NULL
- **days**: the number of previous days before `tEnd` to include outgoing movements. Defaults to NULL
- **outBegin**: the first date to include outgoing movements. Defaults to NULL
- **outEnd**: the last date to include outgoing movements. Defaults to NULL

#### Arguments

```r
result <- outdegree(transfers, root=root, tEnd='2005-10-31', days=91)
```

```r
End(Not run)
```
Value

A data.frame with the following columns:

- **root** The root of the contact tracing
- **outBegin** The first date to include outgoing movements
- **outEnd** The last date to include outgoing movements
- **outDays** The number of days in the interval outBegin to outEnd
- **outDegree** The `OutgoingContactChain` of the root within the time-interval

Methods

- `signature(x = "ContactTrace")` Get the `OutgoingContactChain` of a ContactTrace object.
- `signature(x = "data.frame")` Get the `OutgoingContactChain` for a data.frame with movements, see examples.

References


See Also

- `NetworkSummary`

Examples

```r
Not run:

Load data
data(transfers)

c## Perform contact tracing using tEnd and days
collectTrace <- Trace(movements=transfers,
 root=2645,
 tEnd='2005-10-31',
 days=91)

Calculate outgoing contact chain from a ContactTrace object
oc.1 <- OutgoingContactChain(collectTrace)

Calculate outgoing contact chain using tEnd and days
oc.2 <- OutgoingContactChain(transfers,
 root=2645,
 tEnd='2005-10-31',
 days=91)
```
## plot-methods

### Description

The contact structure can be visualized graphically with a plot. The plot gives an overview of the number of ingoing and outgoing holdings connected to the root holding. The black node is the root holding and all white nodes represent holdings that are direct or indirect holdings with ingoing contacts to root. Grey nodes represent holdings that are direct or indirect holdings with outgoing contacts from root.

### Usage

```r
S4 method for signature 'ContactTrace'
plot(x, y, ...)
```

### Arguments

- **x**: The `ContactTrace` object to plot
- **y**: Not used
- **...**: Additional arguments affecting the plot

### References

Description

EpiContatTrace contains report templates to generate pdf- or html reports for the farm specific contacts. These reports can be useful for hands-on disease tracing in the field. The templates are used by Sweave and can be adapted by the end user. However, in the default setting the report has the following layout; first the contacts are visualised graphically in a plot, as to give an immediate signal to the reader of the report of the number of contacts. In the following, the contact data are presented with different levels of detail split by ingoing and outgoing contacts. The first includes collapsed data and the sequential contact structure at group level (i.e. no information on individuals or dates). In this summary, the sequential structure of each part of the chain is included, and a holding that appears in several different parts of the chain can therefore be included more than once in the summary. The reason for this is to facilitate sequential tracing and getting an overview of each part of the chain. After the summary all details of all contacts included in the contact chains is presented, i.e. date of contact and data on individual level when available. To generate pdf files a TeX installation must exist to compile the latex file. The report is saved in the working directory with the name of the root as filename.

Usage

Report(object, ...)

## S4 method for signature 'ContactTrace'
Report(object, format = c("html", "pdf"),

Examples

```r
Not run:

Load data
data(transfers)

Perform contact tracing
contactTrace <- Trace(movements=transfers,
 root=2645,
 tEnd='2005-10-31',
 days=90)

Plot in- and outgoing contact chain for the root 2645
plot(contactTrace)

End(Not run)
```
template = NULL)

## S4 method for signature 'list'
Report(object, format = c("html", "pdf"), template = NULL)

**Arguments**

- **object**  
  the object

- **...**  
  Additional arguments to the method

- **format**  
  the format to use, can be either 'html' or 'pdf'. The default is 'html'

- **template**  
  the Sweave template file to use. If none is provided, the default is used.

**Methods**

- **signature(object = "ContactTrace")**  
  Generate a report for a ContactTrace object.

- **signature(object = "list")**  
  Generate reports for a list of ContactTrace objects.

**Note**

Plots are not supported in version 0.8.6 since igraph0 has been archived. We intend to resolve the issue in a future version. Install version 0.8.5 and igraph0 manually from the archive if plots are required. See section 6.3 in 'R Installation and Administration' on how to install packages from source.

**References**


**See Also**

Sweave, texi2pdf.

**Examples**

```r
Not run:

Load data
data(transfers)

Perform contact tracing
```
## ReportObject

Get current ContactTrace object when generating a report

### Description

EpiContatTrace contains report templates to generate pdf- or html reports for the farm specific contacts. These reports can be useful for hands-on disease tracing in the field. The templates are used by Sweave and can be adapted by the end user. This method enables communication of the current ContactTrace object to the report.

### Usage

`ReportObject()`

### Value

The current ContactTrace object when generating a report
**Description**

Methods for function `shortestpaths` in package **EpiContactTrace** to get the shortest distance from/to the root given by the contact tracing.

**Usage**

```r
shortestpaths(x, ...)

S4 method for signature 'ContactTrace'
shortestpaths(x)

S4 method for signature 'data.frame'
shortestpaths(x, root, tEnd = NULL, days = NULL,
inBegin = NULL, inEnd = NULL, outBegin = NULL, outEnd = NULL)
```

**Arguments**

- **x**  
a `ContactTrace` object, or a `data.frame` with movements of animals between holdings, see Trace for details.
- **...**  
  Additional arguments to the method
- **root**  
  vector of roots to calculate shortest path for.
- **tEnd**  
  the last date to include ingoing movements. Defaults to `NULL`.
- **days**  
  the number of previous days before `tEnd` to include ingoing movements. Defaults to `NULL`.
- **inBegin**  
  the first date to include ingoing movements. Defaults to `NULL`.
- **inEnd**  
  the last date to include ingoing movements. Defaults to `NULL`.
- **outBegin**  
  the first date to include outgoing movements. Defaults to `NULL`.
- **outEnd**  
  the last date to include outgoing movements. Defaults to `NULL`.

**Details**

The contact tracing performs a depth first search starting at the root. The `shortestPaths` gives the shortest distance from root at each node. The network tree structure given by the depth first search is shown by `show`.

**Value**

A `data.frame` with the following columns:

- **root**  
The root of the contact tracing
- **inBegin**  
  If the direction is ingoing, then `inBegin` equals `inBegin in Trace` else `NA`.  

inEnd  If the direction is ingoing, then inEnd equals inEnd in Trace else NA.
outBegin If the direction is outgoing, then outBegin equals outBegin in Trace else NA.
outEnd  If the direction is outgoing, then outEnd equals outEnd in Trace else NA.
direction If the direction is ingoing, then direction equals 'in' else 'out'
source  The source of the contact at distance from root
destination The destination of the contact at distance from root
distance The shortest distance from/to root in the depth first search

Methods
signature(object = "ContactTrace") Get the shortest paths for the ingoing and outgoing Contacts of a ContactTrace object.
signature(x = "data.frame") Get the shortest paths for a data.frame with movements, see details and examples.

See Also
show and NetworkStructure.

Examples
## Not run:
## Load data
data(transfers)
## Perform contact tracing
contactTrace <- Trace(movements=transfers, root=2645,
                      tEnd='2005-10-31',
                      days=90)
ShortestPaths(contactTrace)

## Calculate shortest paths for all included herds
## First extract all source and destination from the dataset
root <- sort(unique(c(transfers$source, transfers$destination)))
sp <- ShortestPaths(transfers, root=root, tEnd='2005-10-31', days=90)

## End(Not run)
show-methods  

Description

Shows information of the time-window used for contact tracing and summary of network parameters. It also visualizes the contact structure.

Usage

```r
S4 method for signature 'Contacts'
show(object)
```

Arguments

- `object` The `Contacts` or `ContactTrace` object

Value

None (invisible 'NULL').

Methods

- `signature(object = "Contacts")` Show information for the Contacts object.
- `signature(object = "ContactTrace")` Show information for the ingoing and outgoing Contacts of a ContactTrace object.

References


Examples

```r
Not run:

Load data
data(transfers)

Perform contact tracing
contactTrace <- Trace(movements=transfers,
 root=2645,
 tEnd="2005-10-31",
 days=90)
```
show(contactTrace)

## End(Not run)

### Trace

#### Trace Contacts.

**Description**

Contact tracing for a specified node(s) (root) during a specified time period. The time period is divided into two parts, one for ingoing contacts and one for outgoing contacts.

**Usage**

```
Trace(movements, root, tEnd = NULL, days = NULL, inBegin = NULL,
inEnd = NULL, outBegin = NULL, outEnd = NULL, maxDistance = NULL)
```

**Arguments**

- **movements**: a data.frame data.frame with movements, see details.
- **root**: vector of roots to perform contact tracing for.
- **tEnd**: the last date to include ingoing and outgoing movements. Defaults to NULL.
- **days**: the number of previous days before tEnd to include ingoing and outgoing movements. Defaults to NULL.
- **inBegin**: the first date to include ingoing movements. Defaults to NULL.
- **inEnd**: the last date to include ingoing movements. Defaults to NULL.
- **outBegin**: the first date to include outgoing movements. Defaults to NULL.
- **outEnd**: the last date to include outgoing movements. Defaults to NULL.
- **maxDistance**: stop contact tracing at maxDistance (inclusive) from root. Default is NULL i.e. don’t use the maxDistance stop criteria.

**Details**

The time period used for Trace can either be specified using tEnd and days or inBegin, inEnd, outBegin and outEnd.

If using tEnd and days, the time period for ingoing and outgoing contacts ends at tEnd and starts at days prior to tEnd. The tracing will be performed for each combination of root, tEnd and days.

An alternative way is to use inBegin, inEnd, outBegin and outEnd. The time period for ingoing contacts starts at inBegin and ends at inEndDate. For outgoing contacts the time period starts at outBegin and ends at outEnd. The vectors root inBegin, inEnd, outBegin and outEnd must have the same lengths and the tracing will be performed for each index of them.

The argument movements in Trace is a data.frame with the following columns:

- **source**: an integer or character identifier of the source holding.
**destination** an integer or character identifier of the destination holding.

**t** the Date of the transfer

**id** an optional character vector with the identity of the animal.

**n** an optional numeric vector with the number of animals moved.

**category** an optional character or factor with category of the animal e.g. Cattle.

References


Examples

```r
Not run:

Load data
data(transfers)

Perform contact tracing using tEnd and days
trace.1 <- Trace(movements=transfers,
 root=2645,
 tEnd='2005-10-31',
 days=91)

Perform contact tracing using inBegin, inEnd
outBegin and outEnd
trace.2 <- Trace(movements=transfers,
 root=2645,
 inBegin='2005-08-01',
 inEnd='2005-10-31',
 outBegin='2005-08-01',
 outEnd='2005-10-31')

Check that the result is identical
identical(trace.1, trace.2)

Show result of contact tracing
show(trace.1)

Create a network summary for all included herds
First extract all source and destination from the dataset
root <- sort(unique(c(transfers$source,
 transfers$destination)))

Perform contact tracing using tEnd and days.
trace.3 <- Trace(movements=transfers,
```
```r
root=root,
tEnd='2005-10-31',
days=91)

Perform contact tracing using inBegin, inEnd
outBegin and outEnd
trace.4 <- Trace(movements=transfers,
 root=root,
inBegin=rep('2005-08-01', length(root)),
inEnd=rep('2005-10-31', length(root)),
outBegin=rep('2005-08-01', length(root)),
outEnd=rep('2005-10-31', length(root)))

Check that the result is identical
identical(trace.3, trace.4)

NetworkSummary(trace.3)

End(Not run)
```

---

## Transfers

**Movement Example Data**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement data included in the package. The data contains fictitious example data of cattle movements during the period 2005-08-01 – 2005-10-31.</td>
</tr>
</tbody>
</table>

**Usage**

```
data(transfers)
```

**Format**

A data frame with 70190 observations on the following 6 variables.

- **source**: a numeric vector with the holding identifier of the source
- **destination**: a numeric vector with holding identifier of the destination.
- **id**: a character vector with the identity of the animal. In this dataset an 5 character hexadecimal vector.
- **t**: a Date of the transfers
- **n**: a numeric vector with the number of animals moved. Always 1 in this dataset.
- **category**: a factor describing the category of the animal. Always Cattle in this dataset.
Examples

```r
Not run:
data(transfers)

contactTrace <- Trace(movements=transfers,
 root=2645,
 tEnd='2005-10-31',
 days=90)

show(contactTrace)

End(Not run)
```
# Index

*Topic **classes**
- Contacts-class, 3
- ContactTrace-class, 5

*Topic **datasets**
- transfers, 29

*Topic **methods**
- InDegree, 5
- IngoingContactChain, 8
- NetworkStructure, 10
- NetworkSummary, 12
- OutDegree, 15
- OutgoingContactChain, 18
- Report, 21
- ShortestPaths, 24
- show-methods, 26

*Topic **package**
- EpiContactTrace-package, 2

<table>
<thead>
<tr>
<th>topic</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts</td>
<td>11, 26</td>
</tr>
<tr>
<td>Contacts-class</td>
<td>3</td>
</tr>
<tr>
<td>ContactTrace</td>
<td>20, 24, 26</td>
</tr>
<tr>
<td>ContactTrace-class</td>
<td>5</td>
</tr>
<tr>
<td>EpiContactTrace</td>
<td></td>
</tr>
<tr>
<td>(EpiContactTrace-package)</td>
<td>2</td>
</tr>
<tr>
<td>EpiContactTrace-package</td>
<td>2</td>
</tr>
<tr>
<td>InDegree</td>
<td>5, 7, 12, 13</td>
</tr>
<tr>
<td>InDegree, Contacts-method (InDegree)</td>
<td>5</td>
</tr>
<tr>
<td>InDegree, ContactTrace-method (InDegree)</td>
<td>5</td>
</tr>
<tr>
<td>InDegree, data.frame-method (InDegree)</td>
<td>5</td>
</tr>
<tr>
<td>IngoingContactChain</td>
<td>8, 9, 12, 13</td>
</tr>
<tr>
<td>IngoingContactChain, Contacts-method (IngoingContactChain)</td>
<td>8</td>
</tr>
<tr>
<td>IngoingContactChain, ContactTrace-method (IngoingContactChain)</td>
<td>8</td>
</tr>
<tr>
<td>IngoingContactChain, data.frame-method (IngoingContactChain)</td>
<td>8</td>
</tr>
<tr>
<td>NetworkStructure</td>
<td>10, 25</td>
</tr>
<tr>
<td>NetworkStructure, Contacts-method (NetworkStructure)</td>
<td>10</td>
</tr>
<tr>
<td>NetworkStructure, ContactTrace-method (NetworkStructure)</td>
<td>10</td>
</tr>
<tr>
<td>NetworkSummary</td>
<td>7, 10, 12, 17, 19</td>
</tr>
<tr>
<td>NetworkSummary, ContactTrace-method (NetworkSummary)</td>
<td>12</td>
</tr>
<tr>
<td>NetworkSummary, data.frame-method (NetworkSummary)</td>
<td>12</td>
</tr>
<tr>
<td>OutDegree</td>
<td>12, 13, 15, 17</td>
</tr>
<tr>
<td>OutDegree, Contacts-method (OutDegree), 15</td>
<td></td>
</tr>
<tr>
<td>OutDegree, ContactTrace-method (OutDegree)</td>
<td>15</td>
</tr>
<tr>
<td>OutDegree, data.frame-method (OutDegree)</td>
<td>15</td>
</tr>
<tr>
<td>OutgoingContactChain</td>
<td>12, 13, 18, 19</td>
</tr>
<tr>
<td>OutgoingContactChain, Contacts-method (OutgoingContactChain)</td>
<td>18</td>
</tr>
<tr>
<td>OutgoingContactChain, ContactTrace-method (OutgoingContactChain)</td>
<td>18</td>
</tr>
<tr>
<td>OutgoingContactChain, data.frame-method (OutgoingContactChain)</td>
<td>18</td>
</tr>
<tr>
<td>plot (plot-methods)</td>
<td>20</td>
</tr>
<tr>
<td>plot, ContactTrace-method (plot-methods)</td>
<td>20</td>
</tr>
<tr>
<td>plot-methods</td>
<td>20</td>
</tr>
<tr>
<td>Report</td>
<td>21</td>
</tr>
<tr>
<td>Report, ContactTrace-method (Report)</td>
<td>21</td>
</tr>
<tr>
<td>Report, list-method (Report)</td>
<td>21</td>
</tr>
<tr>
<td>Report-methods (Report)</td>
<td>21</td>
</tr>
<tr>
<td>ReportObject</td>
<td>23</td>
</tr>
<tr>
<td>ShortestPaths</td>
<td>24</td>
</tr>
<tr>
<td>ShortestPaths, ContactTrace-method (ShortestPaths)</td>
<td>24</td>
</tr>
<tr>
<td>ShortestPaths, data.frame-method (ShortestPaths)</td>
<td>24</td>
</tr>
</tbody>
</table>
show, 11, 21, 24, 25
show (show-methods), 26
show, Contacts-method (show-methods), 26
show, ContactTrace-method (show-methods), 26
show-methods, 26

Trace, 6, 8, 11–13, 16, 18, 24, 25, 27
transfers, 29