Package ‘EpiModel’

December 18, 2018

Version 1.7.2

Date 2018-12-18

Title Mathematical Modeling of Infectious Disease Dynamics

Description Tools for simulating mathematical models of infectious disease dynamics.
Epidemic model classes include deterministic compartmental models, stochastic
individual-contact models, and stochastic network models. Network models use the
robust statistical methods of exponential-family random graph models (ERGMs)
from the Statnet suite of software packages in R. Standard templates for epidemic
modeling include SI, SIR, and SIS disease types. EpiModel features
an API for extending these templates to address novel scientific research aims.

Maintainer Samuel Jenness <samuel.m. jenness@emory.edu>

License GPL-3
URL http://epimodel.org/, http://github.com/statnet/EpiModel

BugReports https://github.com/statnet/EpiModel/issues

Depends R (>=3.2), deSolve (>= 1.21), networkDynamic (>= 0.9), tergm
(>=3.5)

Imports graphics, grDevices, stats, utils, doParallel, ergm (>= 3.9),
foreach, network (>= 1.13), RColorBrewer, ape, lazyeval,
ggplot2

Suggests knitr, ndtv, rmarkdown, shiny, testthat

VignetteBuilder knitr

LinkingTo ergm

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Author Samuel Jenness [cre, aut],

Steven M. Goodreau [aut],
Martina Morris [aut],
Emily Beylerian [ctb],
Skye Bender-deMoll [ctb],

Kevin Weiss [ctb],
Shawnee Anderson [ctb]

http://epimodel.org/
http://github.com/statnet/EpiModel
https://github.com/statnet/EpiModel/issues

2 R topics documented:

Repository CRAN
Date/Publication 2018-12-18 16:40:18 UTC

R topics documented:

EpiModel-package 3
apportion_Iro e 5
as.dataframe.dem 6
as.data.frame.icm L L e e e 7
as.data.frame.netdx L. e e e 9
as.network.transmat L L L L e e e e e e e 10
as.phylo.transmat L. e 10
calc_eql 11
check_bip_degdist 13
color_tea e 14
comp_plot e e e e e 15
controlLdcm L. e 16
control.iCm L e e e e e e 17
control.net L. e e e e e e e e e e e e e e 19
dem e e e 22
dissolution_coefs e 24
edgelist_Censor e e e e 26
EPIWED . . . L 27
geom_bands L L e e e e e 28
GELLATES .+ v v i i e e e e e e e e e e e e e e 29
get_degree 29
get_formula_term_attr e e e 30
get_Network e e 31
GEL WSEALS L e e e e e e e e e 32
GEL_SIMS . . . v o e e e e e e e e e e 33
ICIN . . ot e e e e e e e 34
nitdem e e 36
INLICM L e e e e e e e e e e e e 37
INENET o o e e e e e e e e e e e e 38
InitErgmTerm.absdiffby 39
InitErgmTerm.absdiffnodemix oL 40
ISAANSMAL v o e e e e e e e e e e e e e e e e 40
MErge.dCm o e e e e 41
MErge.netSIM v v it e 42
modules.icm e e e e 44
modules.net e 45
MULALE_EPI . .« v v v v o e 47
netdx e e e 48
0 1) 50
NELSIM e e e e e e e e e e e e e e e e e 52
param.dem ... oL L. e e 54

PAramLICIN o o e e e e e e e e e 57

EpiModel-package 3

PAraAmLNet e e e e e e e e e e e e e e e 59
plotdem L e e e e 62
ploticm 64
plotnetdXo e e e e 66
plotnetsim 69
plot.transmat L e e e e e e e e e e e e e 72
summary.dcm e e e e e e e e e e e e 73
SUMMATY.ICI .« . . . v v v v e ettt e e e e e e e e e e e 74
SUMMATY.NELSIM v v v vt vttt e et e e e e e e e e e e e e e 75
runcate_SiM o o e e e e e e e e 76
update_dissolution 77
Index 79
EpiModel-package Mathematical Modeling of Infectious Disease Dynamics
Description
Package: EpiModel
Type: Package
Version: 1.7.2
Date: 2018-12-18
License: GPL-3
LazylLoad: yes
Details

The EpiModel software package provides tools for building, solving, and visualizing mathematical
models of infectious disease dynamics. These tools allow users to simulate epidemic models in
multiple frameworks for both pedagogical purposes ("base models") and novel research purposes
("extension models").

Model Classes and Infectious Disease Types

EpiModel provides functionality for three classes of epidemic models:

* Deterministic Compartmental Models: these continuous-time models are solved using or-

dinary differential equations. EpiModel allows for easy specification of sensitivity analyses to
compare multiple scenarios f the same model across different parameter values.

¢ Stochastic Individual Contact Models: a novel class of individual-based, microsimulation

models that were developed to add random variation in all components of the transmission
system, from infection to recovery to vital dynamics (arrivals and departures).

4 EpiModel-package

* Stochastic Network Models: with the underlying statistical framework of temporal expo-
nential random graph models (ERGMs) recently developed in the Statnet suite of software
in R, network models over epidemics simulate edge (e.g., partnership) formation and disso-
lution stochastically according to a specified statistical model, with disease spread across that
network.

EpiModel supports three infectious disease types to be run across all of the three classes.

* Susceptible-Infectious (SI): a two-state disease in which there is life-long infection without
recovery. HIV/AIDS is one example, although for this case it is common to model infection
stages as separate compartments.

* Susceptible-Infectious-Recovered (SIR): a three-stage disease in which one has life-long
recovery with immunity after infection. Measles is one example, but modern models for the
disease also require consideration of vaccination patterns in the population.

* Susceptible-Infectious-Susceptible (SIS): a two-stage disease in which one may transition
back and forth from the susceptible to infected states throughout life. Examples include bac-
terial sexually transmitted diseases like gonorrhea.

These basic disease types may be extended in any arbitrarily complex way to simulate specific
diseases for research questions.

Model Parameterization and Simulation

EpiModel uses three model setup functions for each model class to input the necessary parameters,
initial conditions, and control settings:

e param.dcm, param.icm, and param.net are used to input epidemic parameters for each of
the three model classes. Parameters include the rate of contacts or acts between actors, the
probability of transmission per contact, and recovery and demographic rates for models that
include those transitions.

e init.dcm, init.icm, and init.net are used to input the initial conditions for each class.
The main conditions are limited to the numbers or, if applicable, the specific agents in the
population who are infected or recovered at the simulation outset.

e control.dcm, control.icm, and control.net are used to specify the remaining control
settings for each simulation. The core controls for base model types include the disease type,
number of time steps, and number of simulations. Controls are also used to input new model
functions (for DCMs) and new model modules (for ICMs and network models) to allow the
user to simulate fully original epidemic models in EpiModel. See the documention for the
specific control functions help pages.

With the models parameterized, the functions for simulating epidemic models are:

* dcm for deterministic compartmental models.
* icm for individual contact models.
* Network models are simulated in a three-step process:

1. netest estimates the statistical model for the network structure itself (i.e., how partner-
ships form and dissolve over time given the parameterization of those processes). This

apportion_Ir 5

function is a wrapper around the ergm and stergm functions in the ergm and tergm pack-
ages. The current statistical framework for model simulation is called "egocentric infer-
ence': target statistics summarizing these formation and dissolution processes collected
from an egocentric sample of the population.

2. netdx runs diagnostics on the dynamic model fit by simulating the base network over
time to ensure the model fits the targets for formation and dissolution.

3. netsim simulates the stochastic network epidemic models, with a given network model
fit in netest. Here the function requires this model fit object along with the parameters,
initial conditions, and control settings as defined above.

References

The EpiModel website is at http://epimodel.org/, and the source code is at http://github.
com/statnet/EpiModel. Bug reports and feature requests are welcome there.

Our primary methods paper on EpiModel is published in the Journal of Statistical Software. If
you use EpiModel for any research or teaching purposes, please cite this reference:

Jenness SM, Goodreau SM and Morris M. EpiModel: An R Package for Mathematical Modeling
of Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47. doi:
10.18637/js5.v084.i108 (http://doi.org/10.18637/jss.v084.108).

We have also developed an extension package specifically for modeling HIV and related sexu-
ally transmitted infections, called EpiModelHIV and available on Github at http://github.com/
statnet/EpiModelHIV.

apportion_1lr Apportion Least-Remainder Method

Description
Apportions a vector of values given a specified frequency distribution of those values such that the
length of the output is robust to rounding and other instabilities.

Usage

apportion_lr(vector.length, values, proportions, shuffled = FALSE)

Arguments

vector.length Length for the output vector.
values Values for the output vector.
proportions Proportion distribution with one number for each value. This must sum to 1.

shuffled If TRUE, randomly shuffle the order of the vector.

http://epimodel.org/
http://github.com/statnet/EpiModel
http://github.com/statnet/EpiModel
http://doi.org/10.18637/jss.v084.i08
http://github.com/statnet/EpiModelHIV
http://github.com/statnet/EpiModelHIV

6 as.data.frame.dcm

as.data.frame.dcm Extract Model Data for Deterministic Compartmental Models

Description
This function extracts a model run from an object of class dcm into a data frame using the generic
as.data. frame function.

Usage

S3 method for class 'dcm'
as.data.frame(x, row.names = NULL, optional = FALSE, run,

>
Arguments
X An EpiModel object of class dcm.
row.names See as.data.frame.default.
optional See as.data.frame.default.
run Run number for model; used for multiple-run sensitivity models. If not speci-

fied, will output data from all runs in a stacked data frame.

See as.data.frame.default.

Details

Model output from dcm simulations are available as a data frame with this helper function. The out-
put data frame will include columns for time, the size of each compartment, the overall population
size (the sum of compartment sizes), and the size of each flow.

For models with multiple runs (i.e., varying parameters - see example below), the default with the
run parameter not specified will output all runs in a single stacked data frame.

Examples

Example 1: One-group SIS model with varying act.rate

param <- param.dcm(inf.prob = 0.2, act.rate = seq(0.05, 0.5, 0.05),
rec.rate = 1/50)

init <- init.dcm(s.num = 500, i.num = 1)

control <- control.dcm(type = "SIS"”, nsteps = 10)

mod1 <- dcm(param, init, control)

as.data.frame(mod1)

as.data.frame(modl, run

as.data.frame(mod1, run

1)
10)

Example 2: Two-group SIR model with vital dynamics

param <- param.dcm(inf.prob = .2, inf.prob.g2 = 0.1,
act.rate = 3, balance = "g1",
rec.rate = 1/50, rec.rate.g2 = 1/50,

as.data.frame.icm 7

a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/90, di.rate.g2 = 1/90,
dr.rate = 1/100, dr.rate.g2 = 1/100)
init <- init.dcm(s.num = 500, i.num = 1, r.num = 0,
s.num.g2 = 500, i.num.g2 = 1, r.num.g2 = Q)
control <- control.dcm(type = "SIR", nsteps = 10)
mod2 <- dcm(param, init, control)
as.data.frame(mod2)

as.data.frame.icm Extract Model Data for Stochastic Models

Description

This function extracts model simulations for objects of classes icm and netsim into a data frame
using the generic as.data. frame function.

Usage

S3 method for class 'icm'
as.data.frame(x, row.names = NULL, optional = FALSE,
out = "vals", sim, qval, ...)

S3 method for class 'netsim'
as.data.frame(x, row.names = NULL, optional = FALSE,

out = "vals”, sim, ...)
Arguments
X An EpiModel object of class icm or netsim.
row.names See as.data.frame.default.
optional See as.data.frame.default.
out Data output to data frame: "mean” for row means across simulations, "sd" for

row standard deviations across simulations, "qnt" for row quantiles at the level
specified in qval, or "vals” for values from individual simulations.

sim If out="vals", the simulation number to output. If not specified, then data from
all simulations will be output.

gval Quantile value required when out="gnt".

See as.data.frame.default.

Details

as.data.frame.icm

These methods work for both icm and netsim class models. The available output includes time-
specific means, standard deviations, quantiles, and simulation values (compartment and flow sizes)
from these stochastic model classes. Means, standard deviations, and quantiles are calculated by
taking the row summary (i.e., each row of data is corresponds to a time step) across all simulations

in the model output.

Examples

Stochastic ICM SIS model

param <- param.icm(inf.prob = 0.8, act.rate =

init <- init.icm(s.num
control <- control.icm(type = "SIS", nsteps

=500, i.num = 1)

nsims = 3, verbose =

mod <- icm(param, init, control)

2, rec.rate = 0.1)

10,

FALSE)

Default output all simulation runs, default to all in stacked data.frame

as

.data.frame(mod)

as.data.frame(mod, sim

=2)

Time-specific means across simulations
as.data.frame(mod, out = "mean”)

Time-specific standard

as.data.frame(mod, out = "sd")

Time-specific quantile

as
as

##
##
nw

.data.frame(mod,
.data.frame(mod,

Not run:

out
out

= "gnt", qgval = 0.25)
= "gnt", gqval = 0.75)

Stochastic SI network model

<- network.initialize(n = 100, directed
formation <- ~edges
target.stats <- 50

coef.diss <- dissolution_coefs(dissolution =

est <- netest(nw, formation, target.stats,

param <- param.net(inf.prob = 0.5)
init <- init.net(i.num

control <- control.net(type = "SI", nsteps =

= 10)

mod <- netsim(est, param, init, control)

Same data extraction

as.
as.
as.
as.
as.

as

#it

data. frame(mod)
data.frame(mod,
data.frame(mod,
data.frame(mod,
data.frame(mod,
.data.frame(mod,

End(Not run)

sim
out

out =

out
out

methods as with ICMs

:2)
= "mean”)
"sd")
= "gnt"”, qgval = 0.25)
= "gnt", qval = 0.75)

deviations across simulations

values across simulations

FALSE)

~offset(edges), duration = 20)

10, nsims = 3, verbose

coef.diss, verbose = FALSE)

FALSE)

as.data.frame.netdx 9

as.data.frame.netdx Extract Timed Edgelists netdx Objects

Description
This function extracts timed edgelists for objects of class netdx into a data frame using the generic
as.data. frame function.

Usage

S3 method for class 'netdx'
as.data.frame(x, row.names = NULL, optional = FALSE,

sim, ...)
Arguments
X An EpiModel object of class netdx.
row.names See as.data.frame.default.
optional See as.data.frame.default.
sim The simulation number to output. If not specified, then data from all simulations
will be output.
See as.data.frame.default.
Examples

Initialize and parameterize the network model

nw <- network.initialize(n = 100, directed = FALSE)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Model estimation
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the network with netdx
dx <- netdx(est, nsims = 3, nsteps = 10, keep.tedgelist = TRUE, verbose = FALSE)

Extract data from the first simulation
as.data.frame(dx, sim = 1)

Extract data from all simulations
as.data.frame(dx)

10 as.phylo.transmat

as.network.transmat Converts transmat infection tree into a network object

Description

Converts the edges of the infection tree described in the transmat object into a network object,
copying in appropriate edge attributes for *at’, ’infDur’, ’transProb’, actRate’, and finalProb’ and
constructing a vertex attribute for "at’.

Usage

S3 method for class 'transmat'

as.network(x, ...)
Arguments

X an object of class transmat to be converted into a network object

unused
as.phylo.transmat Convert transmat infection tree into a phylo object

Description

Converts the edgelist matrix in the transmat object into a phylo object by doing the required
reordering and labeling.

Usage
S3 method for class 'transmat'
as.phylo(x, collapse.singles, vertex.exit.times, ...)
Arguments
X An object of class "transmat”, the output from get_transmat.

collapse.singles
logical, DEPRECATED

vertex.exit.times
optional numeric vector providing the time of departure of vertices, to be used
to scale the lengths of branches reaching to the tips. Index position on vector
corresponds to network id. NA indicates no departure, so branch will extend to
the end of the tree.

further arguments (unused)

calc_eql 11

Details

Converts a transmat object containing information about the history of a simulated infection into
a phylo object representation suitable for plotting as a tree with plot.phylo. Each infection event
becomes a 'node’ (horizontal branch) in the resulting phylo tree, and each network vertex becomes
a ’tip’ of the tree. The infection events are labeled with the vertex id of the infector to make it
possible to trace the path of infection.

The infection timing information is included to position the phylo-nodes, with the lines to the tips
drawn to the max time value +1 (unless vertex.exit.times are passed in it effectively assumes
all vertices are active/alive until the end of the simulation).

If the transmat contains multiple infection seeds (there are multiple trees with seperate root nodes)
it will return a list of class *multiPhylo’, each element of which is a phylo object. See read. tree.

Note that in EpiModel versions <= 1.2.4, the phylo tree was constructed differently, translating
network vertices to both phylo-nodes and tips and requiring ’collapse.singles’ to prune it to an
appropriate branching structure.

Examples

set.seed(10)

nw <- network.initialize(n = 100, directed = FALSE)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

estl <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob

init <- init.net(i.num = 1)

control <- control.net(type = "SI", nsteps = 40, nsims = 1, verbose = FALSE,
use.pids = FALSE)

0.5)

mod1 <- netsim(estl1, param, init, control)
tm <- get_transmat(mod1)
tmPhylo <- as.phylo.transmat(tm)
plot(tmPhylo, show.node.label = TRUE,
root.edge = TRUE,
cex = 0.5)

calc_eql Calculate Equilibrium for Infection Prevalence

Description

Calculates the relative change in infection prevalence across a time series of an epidemic model to
assess equilibrium.

12

Usage

calc_eql(x, numer = "i.num", denom =

n n

num”, nsteps,

threshold = 0.001, digits = 4, invisible = FALSE)

Arguments
X
numer
denom

nsteps

threshold
digits

invisible

Details

An EpiModel object of class dcm, icm, or netsim.

Numerator for prevalence calculation.

Denominator for prevalence calculation.

calc_eql

Number of time steps at end of model simulation to calculate equilibrium as the
absolute value of the difference between the minimum prevalence value and the
maximum prevalence value over that time range.

Threshold value for determining equilibrium.

Number of digits to round for table output.

If TRUE, function will suppress output to console and return summary statistics

invisibly.

This function calculates whether equilibrium in disease prevalence, or any other fraction of two
compartments contained in an epidemic model, have reached equilibrium over a time series. Equi-
librium is calculated as the absolute value of the difference of the maximum prevalence and mini-
mum prevalence over a specified time series. That time series is specified as the final nsteps time
steps of an epidemic model. A larger nsteps specification will therefore calculate differences over
a longer time series.

Examples

Calculate equilibrium for a DCM

param <- param.dcm(inf.prob = @.2, inf.prob
balance = "gl1", rec.rate
a.rate = 1 / 100, a.rate

1
1

ds.rate.g2
di.rate.g2

.g2 = 0.1, act.rate = 0.5,
=1/ 50, rec.rate.g2 = 1 / 50,
.g2 = NA, ds.rate =1 / 100,

/ 100, di.rate =1 / 90,

/ 90)

init <- init.dcm(s.num = 500, i.num = 1,
s.num.g2 = 500, i.num.g2 = 1)

control <- control.dcm(type = "SIS"”, nsteps

x <- dcm(param, init, control)

plot(x)

Different

calc_eql(x,
calc_eql(x,
calc_eql(x,

calculation options
nsteps = 100)

nsteps = 250)

nsteps = 100, numer =
calc_eql(x, nsteps

100, numer =

threshold = 0.00001)

"i.num.g2", denom
"i.num.g2", denom

= 500, verbose = FALSE)

"num.g2")
"num.g2",

check_bip_degdist 13

check_bip_degdist Check Degree Distribution for Bipartite Target Statistics

Description

Checks for consistency in the implied network statistics of a bipartite network in which the mode
size and mode-specific degree distributions are specified.

Usage

check_bip_degdist(num.m1, num.m2, deg.dist.ml, deg.dist.m2)

Arguments
num.m1 Number of nodes in mode 1.
num.m2 Number of nodes in mode 2.
deg.dist.ml Vector with fractional degree distribution for mode 1.
deg.dist.m2 Vector with fractional degree distribution for mode 2.
Details

This function outputs the number of nodes of degree 0 to m, where m is the length of a fractional
degree distribution vector, given that vector and the size of the mode. This utility is used to check
for balance in implied degree given that fractional distribution within bipartite network simulations,
in which the degree-constrained counts must be equal across modes.

See Also

For a detailed explanation of this function, see the tutorial: EpiModel Network Utility Functions.

Examples

An imbalanced distribution

check_bip_degdist(num.m1 = 500, num.m2 = 500,
deg.dist.m2 = c(0.40, 0.55, 0.03, 0.02),
deg.dist.ml = c(0.48, 0.41, 0.08, 0.03))

A balanced distribution

check_bip_degdist(num.m1 = 500, num.m2 = 500,
deg.dist.ml = c(0.40, 0.55, 0.04, 0.01),
deg.dist.m2 = c(0.48, 0.41, 0.08, 0.03))

http://statnet.github.io/tut/NetUtils.html

14 color _tea

color_tea Creates a TEA Variable for Infection Status for ndtv Animations

Description

Creates a new color-named temporally-extended attribute (TEA) variable in a networkDynamic
object containing a disease status TEA in numeric format.

Usage

color_tea(nd, old.var = "testatus”, old.sus = "s"”, old.inf = "i",

n._n

old.rec = "r", new.var = "ndtvcol”, new.sus, new.inf, new.rec,
verbose = TRUE)

Arguments
nd An object of class networkDynamic.
old.var Old TEA variable name.
old.sus Status value for susceptible in old TEA variable.
old.inf Status value for infected in old TEA variable.
old.rec Status value for recovered in old TEA variable.
new.var New TEA variable name to be stored in networkDynamic object.
new.sus Status value for susceptible in new TEA variable.
new.inf Status value for infected in new TEA variable.
new.rec Status value for recovered in new TEA variable.
verbose Print progress to console.

Details

The ndtv package (https://cran.r-project.org/package=ndtv) produces animated visuals
for dynamic networks with evolving edge structures and nodal attributes. Nodal attribute dynamics
in ndtv movies require a temporally extended attribute (TEA) containing a standard R color for
each node at each time step. By default, the EpiModel package uses TEAs to store disease status
history in network model simulations run in netsim. But, that status TEA is in numeric format (0,
1, 2). The color_tea function transforms those numeric values of that disease status TEA into a
TEA with color values in order to visualize status changes in ndtv.

The convention in plot.netsim is to color the susceptible nodes as blue, infected nodes as red,
and recovered nodes as green. Alternate colors may be specified using the new. sus, new. inf, and
new.rec parameters, respectively.

Using the color_tea function with a netsim object requires that TEAs for disease status be used
and that the networkDynamic object be saved in the output: both tea.status and save.network
must be set to TRUE in control.net.

See Also

netsim and the ndtv package documentation.

https://cran.r-project.org/package=ndtv

comp_plot 15

comp_plot Plot Compartment Diagram for Epidemic Models

Description
Plots a compartment flow diagram for deterministic compartmental models, stochastic individual
contact models, and stochastic network models.

Usage

comp_plot(x, at, digits, ...)

S3 method for class 'dcm'
comp_plot(x, at = 1, digits =3, run =1, ...)

S3 method for class 'icm'
comp_plot(x, at = 1, digits = 3, ...)

S3 method for class 'netsim'

comp_plot(x, at = 1, digits = 3, ...)
Arguments
X An EpiModel object of class dcm, icm, or netsim.
at Time step for model statistics.
digits Number of significant digits to print.

Additional arguments passed to plot (not currently used).

run Model run number, for dem class models with multiple runs (sensitivity analy-
ses).

Details

The comp_plot function provides a visual summary of an epidemic model at a specific time step.
The information contained in comp_plot is the same as in the summary functions for a model, but
presented graphically as a compartment flow diagram.

For dcm class plots, specify the model run number if the model contains multiple runs, as in a
sensitivity analysis. For icm and netsim class plots, the run argument is not used; the plots show
the means and standard deviations across simulations at the specified time step.

These plots are currently limited to one-group and one-mode models for each of the three model
classes. That functionality may be expanded in future software releases.

16 control.dcm

Examples

Example 1: DCM SIR model with varying act.rate

param <- param.dcm(inf.prob = 0.2, act.rate = 5:7,
rec.rate = 1/3, a.rate = 1/90, ds.rate = 1/100,
di.rate = 1/35, dr.rate = 1/100)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = Q)

control <- control.dcm(type = "SIR", nsteps = 25, verbose = FALSE)

mod1 <- dcm(param, init, control)

comp_plot(mod1, at = 25, run = 3)

Example 2: ICM SIR model with 3 simulations
param <- param.icm(inf.prob = 0.2, act.rate = 3, rec.rate = 1/50,
a.rate = 1/100, ds.rate = 1/100,
di.rate = 1/90, dr.rate = 1/100)
init <- init.icm(s.num = 500, i.num = 1, r.num = @)
control <- control.icm(type = "SIR"”, nsteps = 25,
nsims = 3, verbose = FALSE)
mod2 <- icm(param, init, control)
comp_plot(mod2, at = 25, digits = 1)

control.dcm Control Settings for Deterministic Compartmental Models

Description

Sets the controls for deterministic compartmental models simulated with dcm.

Usage

control.dcm(type, nsteps, dt = 1, odemethod = "rk4", dede = FALSE,
new.mod = NULL, sens.param = TRUE, print.mod = FALSE,

verbose = FALSE, ...)
Arguments
type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected

diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

nsteps Number of time steps to solve the model over or vector of times to solve the
model over. If the number of time steps, then this must be a positive integer of
length 1.

dt Time unit for model solutions, with the default of 1. Model solutions for frac-

tional time steps may be obtained by setting this to a number between O and
1.

odemethod Ordinary differential equation (ODE) integration method, with the default of the
"Runge-Kutta 4" method (see ode for other options).

control.icm

dede

new.mod

sens.param

print.mod

verbose

Details

17

If TRUE, use the delayed differential equation solver, which allows for time-
lagged variables.

If not running an base model type, a function with a new model to be simulated
(see details).

If TRUE, evaluate arguments in parameters with length greater than 1 as sensi-
tivity analyses, with one model run per value of the parameter. If FALSE, one
model will be run with parameters of arbitrary length.

If TRUE, print the model form to the console.
If TRUE, print model progress to the console.

additional control settings passed to model.

control.dcm sets the required control settings for any deterministic compartmental models solved
with the dem function. Controls are required for both base model types and original models. For an
overview of control settings for base DCM class models, consult the Basic DCMs tutorial. For all
base models, the type argument is a necessary parameter and it has no default.

New Model Functions

The form of the model function for base models may be displayed with the print.mod argument
set to TRUE. In this case, the model will not be run. These model forms may be used as templates to
write original model functions.

These new models may be input and solved with dcm using the new.mod argument, which requires
as input a model function. Details and examples are found in the Solving New DCMs tutorial.

See Also

Use param.dcm to specify model parameters and init.dcm to specify the initial conditions. Run
the parameterized model with dcm.

control.icm

Control Settings for Stochastic Individual Contact Models

Description

Sets the controls for stochastic individual contact models simulated with icm.

Usage

control.icm(type, nsteps, nsims = 1, rec.rand = TRUE, a.rand = TRUE,
d.rand = TRUE, initialize.FUN = initialize.icm,
infection.FUN = infection.icm, recovery.FUN = recovery.icm,
departures.FUN = departures.icm, arrivals.FUN = arrivals.icm,
get_prev.FUN = get_prev.icm, verbose = FALSE, verbose.int = 0,
skip.check = FALSE, ...)

http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/NewDCMs.html

18 control.icm

Arguments

type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected
diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

nsteps Number of time steps to solve the model over. This must be a positive integer.

nsims Number of simulations to run.

rec.rand If TRUE, use a stochastic recovery model, with the number of recovered at each
time step a function of random draws from a binomial distribution with the prob-
ability equal to rec.rate. If FALSE, then a deterministic rounded count of the
expectation implied by that rate.

a.rand If TRUE, use a stochastic arrival model, with the number of arrivals at each time
step a function of random draws from a binomial distribution with the probabil-
ity equal to the governing arrival rates. If FALSE, then a deterministic rounded
count of the expectation implied by those rates.

d.rand If TRUE, use a stochastic departure model, with the number of departures at each

time step a function of random draws from a binomial distribution with the prob-
ability equal to the governing departure rates. If FALSE, then a deterministic
rounded count of the expectation implied by those rates.

initialize.FUN Module to initialize the model at the outset, with the default function of initialize.icm.
infection.FUN Module to simulate disease infection, with the default function of infection. icm.
recovery.FUN Module to simulate disease recovery, with the default function of recovery.icm.
departures.FUN Module to simulate departures or exits, with the default function of departures.icm.
arrivals.FUN Module to simulate arrivals or entries, with the default function of arrivals. icm.

get_prev.FUN Module to calculate disease prevalence at each time step, with the default func-
tion of get_prev.icm.

verbose If TRUE, print model progress to the console.

verbose.int Time step interval for printing progress to console, where O (the default) prints
completion status of entire simulation and positive integer x prints progress after
each x time steps.

skip.check If TRUE, skips the default error checking for the structure and consistency of
the parameter values, initial conditions, and control settings before running base
epidemic models. Setting this to FALSE is recommended when running models
with new modules specified.

Additional control settings passed to model.

Details

control.icm sets the required control settings for any stochastic individual contact model solved
with the icm function. Controls are required for both base model types and when passing original
process modules. For an overview of control settings for base ICM class models, consult the Basic
ICMs tutorial. For all base models, the type argument is a necessary parameter and it has no default.

http://statnet.github.io/tut/BasicICMs.html
http://statnet.github.io/tut/BasicICMs.html

control.net 19

New Modules

Base ICM models use a set of module functions that specify how the individual agents in the pop-
ulation are subjected to infection, recovery, demographics, and other processes. Core modules are
those listed in the . FUN arguments. For each module, there is a default function used in the simula-
tion. The default infection module, for example, is contained in the infection. icm function.

For original models, one may substitute replacement module functions for any of the default func-
tions. New modules may be added to the workflow at each time step by passing a module function
via the . .. argument.

See Also

Use param.icm to specify model parameters and init.icm to specify the initial conditions. Run
the parameterized model with icm.

control.net Control Settings for Stochastic Network Models

Description

Sets the controls for stochastic network models simulated with netsim.

Usage

control.net(type, nsteps, start = 1, nsims = 1, ncores = 1, depend,
rec.rand = TRUE, a.rand = TRUE, d.rand = TRUE, tea.status = TRUE,
attr.rules, epi.by, use.pids = TRUE, pid.prefix,
initialize.FUN = initialize.net, departures.FUN = departures.net,
arrivals.FUN = arrivals.net, recovery.FUN = recovery.net,
edges_correct.FUN = edges_correct, resim_nets.FUN = resim_nets,
infection.FUN = infection.net, get_prev.FUN = get_prev.net,
verbose.FUN = verbose.net, module.order = NULL, set.control.ergm,
set.control.stergm, save.nwstats = TRUE,
nwstats.formula = "formation”, delete.nodes = FALSE,
save.transmat = TRUE, save.network = TRUE, save.other,
verbose = TRUE, verbose.int = 1, skip.check = FALSE, ...)

Arguments

type Disease type to be modeled, with the choice of "SI" for Susceptible-Infected
diseases, "SIR" for Susceptible-Infected-Recovered diseases, and "SIS" for
Susceptible-Infected-Susceptible diseases.

nsteps Number of time steps to simulate the model over. This must be a positive integer
that is equal to the final step of a simulation. If simulation is restarted with start
argument, this number must be at least one greater than that argument’s value.

start For dependent simulations, time point to start up simulation. For restarted sim-
ulations, this must be one greater than the final time step in the prior simulation
and must be less than the value in nsteps.

control.net

nsims The total number of disease simulations.

ncores Number of processor cores to run multiple simulations on, using the foreach
and doParallel implementations.

depend If TRUE, resimulate the network at each time step. This occurs by default with
two varieties of dependent models: if there are any vital dynamic parameters
in the model (or if non-standard arrival or departures modules are passed into
control.net), or if the network model formation formula includes the "status"
attribute.

rec.rand If TRUE, use a stochastic recovery model, with the number of recovered at each
time step a function of random draws from a binomial distribution with the prob-
ability equal to rec.rate. If FALSE, then a deterministic rounded count of the
expectation implied by that rate.

a.rand If TRUE, use a stochastic arrival model, with the number of arrivals at each time
step a function of random draws from a binomial distribution with the probabil-
ity equal to the governing arrival rates. If FALSE, then a deterministic rounded
count of the expectation implied by those rates.

d.rand If TRUE, use a stochastic departure model, with the number of departures at each
time step a function of random draws from a binomial distribution with the prob-
ability equal to the governing departure rates. If FALSE, then a deterministic
rounded count of the expectation implied by those rates.

tea.status If TRUE, use a temporally extended attribute (TEA) to store disease status. A
TEA is needed for plotting static networks at different time steps and for ani-
mating dynamic networks with evolving status. TEAs are computationally in-
efficient for large simulations and should be toggled off in those cases. This
argument automatically set to FALSE if delete.nodes=TRUE.

attr.rules A list containing the rules for setting the attributes of incoming nodes, with one
list element per attribute to be set (see details below).

epi.by A character vector of length 1 containing a nodal attribute for which subgroup
epidemic prevalences should be calculated. This nodal attribute must be con-
tained in the network model formation formula, otherwise it is ignored.

use.pids If TRUE, use persistent ids for vertices; otherwise, numeric ids will be recycled
in models with vital dynamics. For one-mode simulations, this will be a random
hexidecimal value; for bipartite simulations, it will be based on pid.prefix.

pid.prefix For bipartite network simulations with vital dynamics, a character vector of
length 2 containing the prefixes, with the default of c("F", "M").

initialize.FUN Module to initialize the model at time 1, with the default function of initialize.net.
departures.FUN Module to simulate departure or exit, with the default function of departures.net.
arrivals.FUN Module to simulate arrivals or entries, with the default function of arrivals.net.

recovery.FUN Module to simulate disease recovery, with the default function of recovery.net.
edges_correct.FUN
Module to adjust the edges coefficient in response to changes to the population
size, with the default function of edges_correct that preserves mean degree.

resim_nets.FUN Module to resimulate the network at each time step, with the default function of
resim_nets.

control.net 21

infection.FUN Module to simulate disease infection, with the default function of infection.net.

get_prev.FUN Module to calculate disease prevalence at each time step, with the default func-
tion of get_prev.net.

verbose.FUN Module to print simulation progress to screen, with the default function of verbose. net.

module.order A character vector of module names that lists modules the order in which they
should be evaluated within each time step. If NULL, the modules will be eval-
uated as follows: first any new modules supplied through ... in the order in
which they are listed, then the built-in modules in their order of the function
listing. The initialize.FUN will always be run first and the verbose.FUN
always last.

set.control.ergm
Control arguments passed to simulate.ergm. See the help file for netdx for
details and examples on specifying this parameter.

set.control.stergm
Control arguments passed to simulate.stergm. See the help file for netdx for
details and examples on specifying this parameter.

save.nwstats If TRUE, save network statistics in a data frame. The statistics to be saved are
specified in the nwstats. formula argument.

nwstats.formula
A right-hand sided ERGM formula that includes network statistics of interest,
with the default to the formation formula terms.

delete.nodes If TRUE, delete inactive nodes from the network after each time step, otherwise
deactivate them but keep them in the network object. Deleting nodes increases
computational efficiency in large network simulations.

save.transmat If TRUE, save a transmission matrix for each simulation. This object contains
one row for each transmission event (see discord_edgelist).

save.network If TRUE, save a networkDynamic object containing full edge history for each
simulation. If delete.nodes is set to TRUE, this will only contain a static net-
work with the edge configuration at the final time step of each simulation.

save.other A vector of elements on the dat master data list to save out after each simulation.
One example for base models is the attribute list, "attr", at the final time step.

verbose If TRUE, print model progress to the console.

verbose.int Time step interval for printing progress to console, where O prints completion
status of entire simulation and positive integer x prints progress after each x time
steps. The default is to print progress after each time step.

skip.check If TRUE, skips the default error checking for the structure and consistency of
the parameter values, initial conditions, and control settings before running base
epidemic models. Setting this to FALSE is recommended when running models
with new modules specified.

Additional control settings passed to model.

Details

control.net sets the required control settings for any network model solved with the netsim func-
tion. Controls are required for both base model types and when passing original process modules.

22 dcm

For an overview of control settings for base models, consult the Basic Network Models tutorial. For
all base models, the type argument is a necessary parameter and it has no default.

The attr.rules Argument

The attr.rules parameter is used to specify the rules for how nodal attribute values for incoming
nodes should be set. These rules are only necessary for models in which there are incoming nodes
(i.e., arrivals) and there is also a nodal attribute in the network model formation formula set in
netest. There are three rules available for each attribute value:

» "current'': new nodes will be assigned this attribute in proportion to the distribution of that
attribute among existing nodes at that current time step.

* "'t1'": new nodes will be assigned this attribute in proportion to the distribution of that attribute
among nodes at time 1 (that is, the proportions set in the original network for netest).

* <Value>: all new nodes will be assigned this specific value, with no variation.

For example, the rules list attr.rules = list(race = "t1", sex = "current”, status = "s")
specifies how the race, sex, and status attributes should be set for incoming nodes. By default, the
rule is "current" for all attributes except status, in which case it is "s" (that is, all incoming nodes
are susceptible).

New Modules

Base network models use a set of module functions that specify how the individual nodes in the
network are subjected to infection, recovery, demographics, and other processes. Core modules
are those listed in the .FUN arguments. For each module, there is a default function used in the
simulation. The default infection module, for example, is contained in the infection.net function.

For original models, one may substitute replacement module functions for any of the default func-
tions. New modules may be added to the workflow at each time step by passing a module function
via the ... argument. Consult the New Network Models tutorial. One may remove existing mod-
ules, such as arrivals.FUN, from the workflow by setting the parameter value for that argument to
NULL.

See Also

Use param.net to specify model parameters and init.net to specify the initial conditions. Run
the parameterized model with netsim.

dcm Deterministic Compartmental Models

Description

Solves deterministic compartmental epidemic models for infectious disease.

Usage

dcm(param, init, control)

http://statnet.github.io/tut/BasicNet.html
http://statnet.github.io/tut/NewNet.html

dcm 23

Arguments
param Model parameters, as an object of class param. dcm.
init Initial conditions, as an object of class init.dcm.
control Control settings, as an object of class control.dcm.
Details

The dcm function uses the ordinary differential equation solver in the deSolve package to model
disease as a deterministic compartmental system. The parameterization for these models follows the
standard approach in EpiModel, with epidemic parameters, initial conditions, and control settings.
A description of solving DCMs with the dem function may be found in the Basic DCMs tutorial.

The dcm function performs modeling of both base model types and original models with new
structures. Base model types include one-group and two-group models with disease types for
Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible
(SIS). New model types may be written and input into dcm following the steps outlined in the Solv-
ing New DCMs tutorial. Both base and original models require the param, init, and control
inputs.

Value

A list of class dem with the following elements:

e param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

 control: the control settings passed into the model through control, with additional controls
added as necessary.

* epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

References

Soetaert K, Petzoldt T, Setzer W. Solving Differential Equations in R: Package deSolve. Journal of
Statistical Software. 2010; 33(9): 1-25. http://www. jstatsoft.org/v33/i09/.

See Also

Extract the model results with as.data.frame.dcm. Summarize the time-specific model results
with summary.dcm. Plot the model results with plot.dcm. Plot a compartment flow diagram with
comp_plot.

Examples

Example 1: SI Model (One-Group)

Set parameters

param <- param.dcm(inf.prob = 0.2, act.rate = 0.25)
init <- init.dcm(s.num = 500, i.num = 1)

control <- control.dcm(type = "SI", nsteps = 500)

http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/NewDCMs.html
http://statnet.github.io/tut/NewDCMs.html
http://www.jstatsoft.org/v33/i09/

24 dissolution_coefs

modl <- dcm(param, init, control)
mod1
plot(mod1)

Example 2: SIR Model with Vital Dynamics (One-Group)

param <- param.dcm(inf.prob = 0.2, act.rate = 5,
rec.rate = 1/3, a.rate = 1/90, ds.rate = 1/100,
di.rate = 1/35, dr.rate = 1/100)

init <- init.dcm(s.num = 500, i.num = 1, r.num = @)

control <- control.dcm(type = "SIR", nsteps = 500)

mod2 <- dcm(param, init, control)

mod?2

plot(mod2)

Example 3: SIS Model with act.rate Sensitivity Parameter

param <- param.dcm(inf.prob = 0.2, act.rate = seq(@.1, 0.5, 0.1),
rec.rate = 1/50)

init <- init.dcm(s.num = 500, i.num = 1)

control <- control.dcm(type = "SIS", nsteps = 500)

mod3 <- dcm(param, init, control)

mod3

plot(mod3)

Example 4: SI Model with Vital Dynamics (Two-Group)

param <- param.dcm(inf.prob = 0.4, inf.prob.g2 = 0.1,
act.rate = 0.25, balance = "g1",
a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/50, di.rate.g2 = 1/50)

init <- init.dcm(s.num = 500, i.num = 1,

s.num.g2 = 500, i.num.g2 = Q)

control <- control.dcm(type = "SI", nsteps = 500)

mod4 <- dcm(param, init, control)

mod4

plot(mod4)

dissolution_coefs Dissolution Coefficients for Stochastic Network Models

Description

Calculates dissolution coefficients, given a dissolution model and average edge duration, to pass as
offsets to an ERGM/STERGM model fit in netest.

Usage

dissolution_coefs(dissolution, duration, d.rate = 0)

dissolution_coefs 25

Arguments

dissolution Right-hand sided STERGM dissolution formula (see netest). See below for

list of supported dissolution models.

duration A vector of mean edge durations in arbitrary time units.

d.rate Departure or exit rate from the population, as a single homogenous rate that

Details

applies to the entire population.

This function performs two calculations for dissolution coefficients used in a network model esti-
mated with netest:

1. Transformation: the mean duration of edges in a network are mathematically transformed to

logit coefficients.

2. Adjustment: in a dynamic network simulation in an open population (in which there are

departures), it is further necessary to adjust these coefficients for dynamic simulations; this
upward adjustment accounts for departure as a competing risk to edge dissolution.

The current dissolution models supported by this function and in network model estimation in
netest are as follows:

Value

~of fset(edges): a homogeneous dissolution model in which the edge duration is the same
for all partnerships. This requires specifying one duration value.

~offset(edges) + offset(nodematch(”<attr>")): a heterogeneous model in which the
edge duration varies by whether the nodes in the dyad have similar values of a specified at-
tribute. The duration vector should now contain two values: the first is the mean edge duration
of non-matched dyads, and the second is the duration of the matched dyads.

~offset(edges) + offset(nodemix("<attr>")): a heterogenous model that extends the
nodematch model to include non-binary attributes for homophily. The duration vector should
first contain the base value, then the values for every other possible combination in the term.

~offset(edges) + offset(nodefactor(”"<attr>")): a heterogenous model in which the
edge duration varies by a specified attribute. The duration vector should first contain the base
value, then the values for every other value of that attribute in the term.

A list of class disscoef with the following elements:

dissolution: right-hand sided STERGM dissolution formula passed in the function call.
duration: mean edge durations passed into the function.
coef.crude: mean durations transformed into logit coefficients.

coef.adj: crude coefficients adjusted for the risk of departure on edge persistence, if the
d.rate argument is supplied.

d.rate: the departure rate.

26 edgelist_censor

See Also

The theory and details of this function are explained in detail in the EpiModel Network Utility
Functions tutorial.

Examples

Homogeneous dissolution model with no departures
dissolution_coefs(dissolution = ~offset(edges), duration = 25)

Homogeneous dissolution model with departures
dissolution_coefs(dissolution = ~offset(edges), duration
d.rate = 0.001)

25,

Heterogeneous dissolution model in which same-race edges have

shorter duration compared to mixed-race edges, with no departures

dissolution_coefs(dissolution = ~offset(edges) + offset(nodematch("race")),
duration = c(20, 10))

Heterogeneous dissolution model in which same-race edges have

shorter duration compared to mixed-race edges, with departures

dissolution_coefs(dissolution = ~offset(edges) + offset(nodematch("race")),
duration = c(20, 10), d.rate = 0.001)

edgelist_censor Table of Edge Censoring

Description
Outputs a table of the number and percent of edges that are left-censored, right-censored, both-
censored, or uncensored for a networkDynamic object.

Usage

edgelist_censor(el)

Arguments
el Timed edgelist with start and end times extracted from a networkDynamic ob-
ject using the as.data. frame.networkDynamic function.
Details

Given a STERGM simulation over a specified number of time steps, the edges within that simulation
may be left-censored (started before the first step), right-censored (continued after the last step),
right and left-censored, or uncensored. The amount of censoring will increase when the average
edge duration approaches the length of the simulation.

http://statnet.github.io/tut/NetUtils.html
http://statnet.github.io/tut/NetUtils.html

epiweb 27

Examples

Initialize and parameterize network model

nw <- network.initialize(n = 100, directed = FALSE)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Model estimation
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the network and extract a timed edgelist
dx <- netdx(est, nsims = 1, nsteps = 100, keep.tedgelist = TRUE, verbose = FALSE)
el <- as.data.frame(dx)

Calculate censoring
edgelist_censor(el)

epiweb EpiModel Web

Description

Runs a web browser-based GUI of deterministic compartmental models, stochastic individual con-
tact models, and basic network models.

Usage
epiweb(class, ...)
Arguments
class Model class, with options of "dcm”, "icm"” and "net”.
Additional arguments passed to shiny: : runApp.
Details

epiweb runs a web-based GUI of one-group deterministic compartmental models, stochastic indi-
vidual contact models, and stochastic network models with user input on model type, state sizes,
and parameters. Model output may be plotted, summarized, and saved as raw data using the core
EpiModel functionality for these model classes. These applications are built using the shiny pack-
age framework.

References

RStudio. shiny: Web Application Framework for R. R package version 1.0.5. 2015. http://www.
rstudio.com/shiny/

http://www.rstudio.com/shiny/
http://www.rstudio.com/shiny/

28 geom_bands

See Also

dcm, icm, netsim

Examples
Not run:
Deterministic compartmental models
epiweb(class = "dcm")

Stochastic individual contact models
epiweb(class = "icm")

Stochastic network models
epiweb(class = "net")

End(Not run)

geom_bands ggplot2 geom for Quantile Bands

Description

Plots quantile bands given a data.frame with stochastic model results from icm or netsim.

Usage

geom_bands(mapping, lower = 0.25, upper = 0.75, alpha = 0.25, ...)
Arguments

mapping standard aesthetic mapping aes() input for ggplot2.

lower Lower quantile for the time series.

upper Upper quantile for the time series.

alpha Transparency of the ribbon fill.

Additional arguments passed to stat_summary.

Details

This is a wrapper around ggplot: : stat_summary with a ribbon geom as aesthetic output.

get_args

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.25)

init <- init.icm(s.num = 500, i.num = 1)

control <- control.icm(type = "SI", nsteps = 250, nsims = 5)
mod1 <- icm(param, init, control)

df <- as.data.frame(mod1)

df.mean <- as.data.frame(modl, out = "mean”)

library(ggplot2)
ggplot() +
geom_line(data = df, mapping = aes(time, i.num, group = sim), alpha = 0.25,
lwd = 0.25, color = "firebrick") +
geom_bands(data = df, mapping = aes(time, i.num),
lower = 0.1, upper = 0.9, fill = "firebrick”) +
geom_line(data = df.mean, mapping = aes(time, i.num)) +
theme_minimal ()

29

get_args Get Arguments from EpiModel Parameterization Functions

Description

Returns a list of argument names and values for use for parameter processing functions.

Usage

get_args(formal.args, dot.args)

Arguments
formal.args The output of formals(sys.function()).
dot.args The output of 1ist(...).
get_degree Get Individual Degree from Network or Edgelist
Description

A fast method for querying the current degree of all individuals within a network.

Usage

get_degree(x)

30 get_formula_term_attr

Arguments
X Either an object of class network or edgelist generated from a network. If x
is an edgelist, then it must contain an attribute for the total network size, n.
Details

Individual-level data on the current degree of nodes within a network is often useful for summary
statistics and modeling complex interactions between degree. Given a network class object, net,
one way to look up the current degree is to get a summary of the ERGM term, sociality, as in:
summary(net ~ sociality(base = 0)). But that is computionally inefficient for a number of
reasons. This function provide a fast method for generating the vector of degree using a query of
the edgelist. It is even faster if the parameter x is already transformed as an edgelist.

Examples

nw <- network.initialize(500, directed = FALSE)

set.seed(1)
fit <- ergm(nw ~ edges, target.stats = 250)
sim <- simulate(fit)

Slow ERGM-based method
ergm.method <- unname(summary(sim ~ sociality(base = 0)))
ergm.method

Fast tabulate method with network object
deg.net <- get_degree(sim)
deg.net

Even faster if network already transformed into an edgelist
el <- as.edgelist(sim)

deg.el <- get_degree(el)

deg.el

identical(as.integer(ergm.method), deg.net, deg.el)

get_formula_term_attr Outputs ERGM Formula Attributes into a Character Vector

Description
Given a formation formula for a network model, outputs it into a character vector of vertex attributes
to be used in netsim simulations.

Usage

get_formula_term_attr(form, nw)

get_network 31

Arguments
form an ergm model formula
nw a network object
get_network Extract networkDynamic and network Objects from Network Simula-
tions
Description

Extracts the networkDynamic object from a either a network epidemic model object generated with
netsim or a network diagnostic simulation generated with netdx, with the option to collapse the
extracted networkDynamic object down to a static network object.

Usage

get_network(x, sim = 1, network = 1, collapse = FALSE, at)

Arguments
X An EpiModel object of class netsim or netdx.
sim Simulation number of extracted network.
network Network number, for netsim objects with multiple overlapping networks (ad-
vanced use, and not applicable to netdx objects).
collapse If TRUE, collapse the networkDynamic object to a static network object at a
specified time step.
at If collapse is TRUE, the time step at which the extracted network should be
collapsed.
Details

This function requires that the networkDynamic is saved during the network simulation while run-
ning either netsim or netdx. For the former, that is specified with the save.network parameter
in control.net. For the latter, that is specified with the keep.tedgelist parameter directly in
netdx.

Examples

Set up network and TERGM formiula

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss)

32 get_nwstats

Run diagnostics, saving the networkDynamic objects
dx <- netdx(est, nsteps = 10, nsims = 3, keep.tnetwork = TRUE, verbose = FALSE)

Extract the network for simulation 2 from dx object
get_network(dx, sim = 2)

Extract and collapse the network from simulation 1 at time step 5
get_network(dx, collapse = TRUE, at = 5)

Parameterize the epidemic model, and simulate it

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose = FALSE)
mod <- netsim(est, param, init, control)

Extract the network for simulation 2 from mod object
get_network(mod, sim = 2)

Extract and collapse the network from simulation 1 at time step 5
get_network(mod, collapse = TRUE, at = 5)

get_nwstats Extract Network Statistics from netsim or netdx Object

Description
Extracts a data frame of network statistics from a network epidemic model simulated with netsim
or a network diagnostics object simulated with netdx.

Usage

get_nwstats(x, sim, network = 1)

Arguments
X An EpiModel object of class netsim or netdx.
sim A vector of simulation numbers from the extracted object
network Network number, for netsim objects with multiple overlapping networks (ad-
vanced use, and not applicable to netdx objects).
Examples

Bipartite Bernoulli random graph TERGM

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

get_sims 33

est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

dx <- netdx(est, nsim = 3, nsteps = 10, verbose = FALSE,
nwstats.formula = ~edges + isolates)

get_nwstats(dx)

get_nwstats(dx, sim = 1)

SI epidemic model

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 10, nsims = 3,
nwstats.formula = ~edges + meandeg + degree(0:5),
verbose = FALSE)

mod <- netsim(est, param, init, control)

Extract the network statistics from all or sets of simulations
get_nwstats(mod)

get_nwstats(mod, sim
get_nwstats(mod, sim

2)
c(1, 3))

On the fly summary stats
summary (get_nwstats(mod))
colMeans(get_nwstats(mod))

get_sims Extract Network Simulations

Description

Subsets the entire netsim object to a subset of simulations, essentially functioning like a reverse of
merge.

Usage

get_sims(x, sims, var)

Arguments
X An object of class netsim.
sims A numeric vector of simulation numbers to retain in the output object, or "mean”
which selects the one simulation with the value of the variable specified in var
closest to the mean of var across all simulations.
var A character vector of variables to retain from x if sims is a numeric vector,

or a single variable name for selecting the average simulation from the set if
sims = "mean”.

34 icm

Examples

Network model estimation

nw <- network.initialize(n = 100, directed = FALSE)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1l <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Epidemic model

param <- param.net(inf.prob = 0.3)

init <- init.net(i.num = 10)

control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose.int = 0)
mod1 <- netsim(estl, param, init, control)

Get sim 2
sim2 <- get_sims(mod1, sims = 2)

Get sims 2 and 3 and keep only a subset of variables
sim2.small <- get_sims(modl, sims = 2:3, var = c("i.num", "si.flow"))

Extract the mean simulation for the variable i.num

sim.mean <- get_sims(mod1, sims = "mean”, var = "i.num")
icm Stochastic Individual Contact Models
Description

Simulates stochastic individual contact epidemic models for infectious disease.

Usage

icm(param, init, control)

Arguments
param Model parameters, as an object of class param.icm.
init Initial conditions, as an object of class init.icm.
control Control settings, as an object of class control.icm.
Details

Individual contact models are intended to be the stochastic microsimulation analogs to deterministic
compartmental models. ICMs simulate disease spread on individual agents in discrete time as
a function of processes with stochastic variation. The stochasticity is inherent in all transition
processes: infection, recovery, and demographics. A detailed description of these models may be
found in the Basic ICMs tutorial.

http://statnet.github.io/tut/BasicICMs.html

icm 35

The icm function performs modeling of both the base model types and original models. Base model
types include one-group and two-group models with disease types for Susceptible-Infected (SI),
Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible (SIS). Original mod-
els may be built by writing new process modules that either take the place of existing modules (for
example, disease recovery), or supplement the set of existing processes with a new one contained
in an original module.

Value
A list of class icm with the following elements:

» param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

* control: the control settings passed into the model through control, with additional controls
added as necessary.

* epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

See Also

Extract the model results with as.data.frame.icm. Summarize the time-specific model results
with summary.icm. Plot the model results with plot.icm. Plot a compartment flow diagram with
comp_plot.

Examples

Not run:

Example 1: SI Model

param <- param.icm(inf.prob = 0.2, act.rate = 0.25)

init <- init.icm(s.num = 500, i.num = 1)

control <- control.icm(type = "SI", nsteps = 500, nsims = 10)
mod1 <- icm(param, init, control)

mod1

plot(mod1)

Example 2: SIR Model

param <- param.icm(inf.prob = 0.2, act.rate = 0.25, rec.rate = 1/50)
init <- init.icm(s.num = 500, i.num = 1, r.num = @)

control <- control.icm(type = "SIR"”, nsteps = 500, nsims = 10)

mod2 <- icm(param, init, control)

mod?2

plot(mod2)

Example 3: SIS Model

param <- param.icm(inf.prob = 0.2, act.rate = 0.25, rec.rate = 1/50)
init <- init.icm(s.num = 500, i.num = 1)

control <- control.icm(type = "SIS"”, nsteps = 500, nsims = 10)

mod3 <- icm(param, init, control)

mod3

plot(mod3)

36 init.dcm

Example 4: SI Model with Vital Dynamics (Two-Group)

param <- param.icm(inf.prob = 0.4, inf.prob.g2 = 0.1,
act.rate = 0.25, balance = "g1",
a.rate = 1/100, a.rate.g2 = NA,
ds.rate = 1/100, ds.rate.g2 = 1/100,
di.rate = 1/50, di.rate.g2 = 1/50)

init <- init.icm(s.num = 500, i.num = 1,

s.num.g2 = 500, i.num.g2 = @)

control <- control.icm(type = "SI", nsteps = 500, nsims = 10)

mod4 <- icm(param, init, control)

mod4

plot(mod4)

End(Not run)

init.dcm Initial Conditions for Deterministic Compartmental Models

Description

Sets the initial conditions for deterministic compartmental models simulated with dcm.

Usage
init.dem(s.num, i.num, r.num, s.num.g2, i.num.g2, r.num.g2, ...)
Arguments
S.num Number of initial susceptible. For two-group models, this is the number of initial
group 1 susceptible.
i.num Number of initial infected. For two-group models, this is the number of initial
group 1 infected.
r.num Number of initial recovered. For two-group models, this is the number of initial
group 1 recovered. This parameter is only used for the SIR model type.
s.num.g2 Number of initial susceptible in group 2. This parameter is only used for two-
group models.
i.num.g2 Number of initial infected in group 2. This parameter is only used for two-group
models.
r.num.g?2 Number of initial recovered in group 2. This parameter is only used for two-

group SIR models.

Additional initial conditions passed to model.

init.icm 37

Details

The initial conditions for a model solved with dcm should be input into the init.dcm function. This
function handles initial conditions for both base model types and original models. For an overview
of initial conditions for base DCM class models, consult the Basic DCMs tutorial.

Original models may use the parameter names listed as arguments here, a new set of names, or a
combination of both. With new models, initial conditions must be input in the same order that the
solved derivatives from the model are output. More details on this requirement are outlined in the
Solving New DCMs tutorial.

See Also

Use param. dcm to specify model parameters and control.dcm to specify the control settings. Run
the parameterized model with dcm.

init.icm Initial Conditions for Stochastic Individual Contact Models

Description

Sets the initial conditions for stochastic individual contact models simulated with icm.

Usage
init.icm(s.num, i.num, r.num, s.num.g2, i.num.g2, r.num.g2, ...)
Arguments
s.num Number of initial susceptible. For two-group models, this is the number of initial
group 1 susceptible.
i.num Number of initial infected. For two-group models, this is the number of initial
group 1 infected.
r.num Number of initial recovered. For two-group models, this is the number of initial
group 1 recovered. This parameter is only used for the SIR model type.
s.num.g2 Number of initial susceptible in group 2. This parameter is only used for two-
group models.
i.num.g2 Number of initial infected in group 2. This parameter is only used for two-group
models.
r.num.g2 Number of initial recovered in group 2. This parameter is only used for two-
group SIR models.
Additional initial conditions passed to model.
Details

The initial conditions for a model solved with icm should be input into the init.icm function. This
function handles initial conditions for both base models and original models using new modules.
For an overview of initial conditions for base ICM class models, consult the Basic ICMs tutorial.

http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/NewDCMs.html
http://statnet.github.io/tut/BasicICMs.html

38 init.net

See Also

Use param. icm to specify model parameters and control.icm to specify the control settings. Run
the parameterized model with icm.

init.net Initial Conditions for Stochastic Network Models

Description

Sets the initial conditions for stochastic network models simulated with netsim.

Usage
init.net(i.num, r.num, i.num.m2, r.num.m2, status.vector, infTime.vector,
>
Arguments
i.num Number of initial infected. For bipartite models, this is the number of initial
mode 1 infected.
r.num Number of initial recovered. For bipartite models, this is the number of initial
mode 1 recovered. This parameter is only used for the SIR model type.
i.num.m2 Number of initial infected in mode 2. This parameter is only used for bipartite
models.
r.num.m2 Number of initial recovered in mode 2. This parameter is only used for bipartite
SIR models.

status.vector A vector of length equal to the size of the input network, containing the sta-
tus of each node. Setting status here overrides any inputs passed in the .num
arguments.

infTime.vector A vector of length equal to the size of the input network, containing the (his-
torical) time of infection for each of those nodes with a current status of "i".
Can only be used if status.vector is used, and must contain NA values for any
nodes whose status is not "i".

Additional initial conditions passed to model.

Details

The initial conditions for a model solved with netsim should be input into the init.net function.
This function handles initial conditions for both base models and new modules. For an overview
of specifying initial conditions across a variety of base network models, consult the Basic Network
Models tutorial.

See Also

Use param.net to specify model parameters and control.net to specify the control settings. Run
the parameterized model with netsim.

http://statnet.github.io/tut/BasicNet.html
http://statnet.github.io/tut/BasicNet.html

InitErgmTerm.absdiftby 39

Examples

Example of using status.vector and infTime.vector together
n <- 100

status <- sample(c(”"s"”, "i"), size = n, replace = TRUE, prob = c(0.8, 0.2))
infTime <- rep(NA, n)

infTime[which(status == "i")] <- -rgeom(sum(status == "i"), prob = 0.01) + 2

init.net(status.vector = status, infTime.vector = infTime)

InitErgmTerm. absdiffby
Definition for absdiffby ERGM Term

Description

This function defines and initialize the absdiffby ERGM term that allows for targeting age ho-

mophily by sex.
Usage
InitErgmTerm. absdiffby(nw, arglist, ...)
Arguments
nw An object of class network.
arglist A list of arguments as specified in the ergm. userterms package framework.
Additional data passed into the function as specified in the ergm.userterms
package framework.
Details

This ERGM user term was written to allow for age-based homophily in partnership formation that
is asymetric by sex. The absdiff component targets age homophily while the by component allows

that to be structed by a binary attribute such as "male", in order to enforce an offset in the average
difference.

Author(s)

Samuel M. Jenness

40 is.transmat

InitErgmTerm. absdiffnodemix
Definition for absdiffnodemix ERGM Term

Description

This function defines and initialize the absdiffnodemix ERGM term that allows for targeting age
homophily by race.

Usage
InitErgmTerm.absdiffnodemix(nw, arglist, ...)
Arguments
nw An object of class network.
arglist A list of arguments as specified in the ergm. userterms package framework.
Additional data passed into the function as specified in the ergm.userterms
package framework.
Details

This ERGM user term was written to allow for age-based homophily in partnership formation that is
heterogenous by race. The absdiff component allows targets the distribution of age mixing on that
continuous variable, and the nodemix component differentiates this for black-black, black-white,
and white-white couples.

Author(s)

Steven M. Goodreau

is.transmat Extract Transmissions Matrix from Network Epidemic Model

Description

Extracts the matrix of transmission data for each transmission event that occured within a network
epidemic model.

Usage

is.transmat(x)

get_transmat(x, sim = 1)

merge.icm 41

Arguments
X An EpiModel object of class netsim.
sim Simulation number of extracted network.
Value

A data frame with the following columns

* at: the time step at which the transmission occurred.

¢ sus: the ID number of the susceptible (newly infected) node.

e inf: the ID number of the infecting node.

* infDur: the duration of the infecting node’s disease at the time of the transmission.
* transProb: the probability of transmission per act.

 actRate: the rate of acts per unit time.

* finalProb: the final transmission probability for the transmission event.

Examples

Simulate SI epidemic on bipartite Bernoulli random graph

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 10, nsims = 3, verbose = FALSE)
mod <- netsim(est, param, init, control)

Extract the transmission matrix from simulation 2
get_transmat(mod, sim = 2)

merge.icm Merge Data across Stochastic Individual Contact Model Simulations

Description
Merges epidemiological data from two independent simulations of stochastic individual contact
models from icm.

Usage

S3 method for class 'icm'
merge(X, y, ...)

42

Arguments
X An EpiModel object of class icm.
y Another EpiModel object of class icm, with the identical model parameteriza-
tion as x.
Additional merge arguments (not used).
Details

This merge function combines the results of two independent simulations of icm class models,
simulated under separate function calls. The model parameterization between the two calls must
be exactly the same, except for the number of simulations in each call. This allows for manual

parallelization of model simulations.

This merge function does not work the same as the default merge, which allows for a combined
object where the structure differs between the input elements. Instead, the function checks that
objects are identical in model parameterization in every respect (except number of simulations) and

binds the results.

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.8)
init <- init.icm(s.num = 1000, i.num = 100)
control <- control.icm(type = "SI", nsteps = 10,

nsims = 3, verbose = FALSE)
x <- icm(param, init, control)

control <- control.icm(type = "SI", nsteps = 10,
nsims = 1, verbose = FALSE)
y <- icm(param, init, control)

z <- merge(x, y)
x$epi
y$epi
z$epi

merge.netsim Merge Model Simulations Across netsim Objects

Description

Merges epidemiological data from two independent simulations of stochastic network models from

netsim.

Usage

S3 method for class 'netsim'

merge(x, y, keep.transmat = TRUE, keep.network = TRUE,
keep.nwstats = TRUE, keep.other = TRUE, param.error = TRUE,

>

merge.netsim

merge.netsim

Arguments

X

y

keep.transmat
keep.network

keep.nwstats

keep.other

param.error

Details

43

An EpiModel object of class netsim.

Another EpiModel object of class netsim, with the identical model parameteri-
zation as X.

If TRUE, keep the transmission matrices from the original x and y elements.
If TRUE, keep the networkDynamic objects from the original x and y elements.

If TRUE, keep the network statistics (as set by the nwstats.formula parameter
in control.netsim) from the original x and y elements.

If TRUE, keep the other simulation elements (as set by the save.other parameter
in control.netsim) from the original x and y elements.

If TRUE, if x and y have different params (in param.net) or controls (passed
in control.net) an error will prevent the merge. Use FALSE to override that
check.

Additional merge arguments (not currently used).

This merge function combines the results of two independent simulations of netsim class models,
simulated under separate function calls. The model parameterization between the two calls must
be exactly the same, except for the number of simulations in each call. This allows for manual
parallelization of model simulations.

This merge function does not work the same as the default merge, which allows for a combined
object where the structure differs between the input elements. Instead, the function checks that
objects are identical in model parameterization in every respect (except number of simulations) and

binds the results.

Examples

Network model

nw <- network.initialize(n = 100, directed = FALSE)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)
est <- netest(nw, formation = ~edges, target.stats = 25,

coef.diss = coef.diss, verbose = FALSE)

Epidemic models

param <- param.net(inf.prob = 1)
init <- init.net(i.num = 1)
control <- control.net(type = "SI", nsteps = 20, nsims = 2,

save.nwstats = TRUE,
nwstats.formula = ~edges + degree(9),
verbose = FALSE)

X <- netsim(est, param, init, control)
y <- netsim(est, param, init, control)

Merging

z <- merge(x, Yy)
x$epi

y$epi

44

modules.icm

z$epi

modules.icm Modules for Stochastic Individual Contact Models

Description

Stochastic individual contact models of infectious disease simulate epidemics in which contacts
between individuals are instantaneous events in discrete time. They are intended to be the stochastic
microsimulation analogs to deterministic compartmental models.

The icm function handles both the simulation tasks. Within this function are a series of modules
that initialize the simulation and then simulate new infections, recoveries, and vital dynamics at
each time step. A module also handles the basic bookkeeping calculations for disease prevalence.

Writing original ICMs will require modifying the existing modules or adding new modules to the
workflow in icm. The existing modules may be used as a template for replacement or new modules.

This help page presents a brief overview of the module functions in the order in which they are
used within icm, in order to help guide users in writing their own module functions. These module
functions are not shown on the help index since they are not called directly by the end-user. To
understand these functions in more detail, review the separate help pages listed below.

Initialization Module

Di

This function sets up agent attributes, like disease status, on the network at the starting time step
of disease simulation, ¢;. For multiple-simulation function calls, these are reset at the beginning of
each simulation.

e initialize.icm: sets which agents are initially infected, through the initial conditions passed
ininit.icm.

sease Status Modification Modules

The main disease simulation occurs at each time step given the current state of the population at
that step. Infection of agents is simulated as a function of disease parameters and population com-
position. Recovery of agents is likewise simulated with respect to infected nodes. These functions
also analyze the flows for summary measures such as disease incidence.

e infection.icm: randomly draws an edgelist given the parameters, subsets the list for dis-
cordant pairs, and simulates transmission on those discordant pairs through a series of draws
from a binomial distribution.

* recovery.icm: simulates recovery from infection either to a lifelong immune state (for SIR
models) or back to the susceptible state (for SIS models), as a function of the recovery rate
specified in the rec.rate parameter. The recovery rate may vary for two-group models.

modules.net 45

Demographic Modules

Vital dynamics such as arrival and departure processes are simulated at each time step to update
entries into and exits from the population. These are used in open-population ICMs.

* departures.icm: randomly simulates departures or exits for agents given the departure rate
specified in the disease-state and group-specific departure parameters in param.icm. This
involves deactivating agents from the population, but their historical data is preserved in the
simulation.

e arrivals.icm: randomly simulates new arrivals into the population given the current popula-
tion size and the arrival rate parameters. This involves adding new agents into the population.
Bookkeeping Module

Simulations require bookkeeping at each time step to calculate the summary epidemiological statis-
tics used in the model output analysis.

* get_prev.icm: calculates the number in each disease state (susceptible, infected, recovered)
at each time step for those active agents in the population.

modules.net Modules for Stochastic Network Models

Description

Stochastic network models of infectious disease in EpiModel require statistical modeling of net-
works, simulation of those networks forward through time, and simulation of epidemic dynamics
on top of those evolving networks. The netsim function handles both the network and epidemic
simulation tasks. Within this function are a series of modules that initialize the simulation and then
simulate new infections, recoveries, and demographics on the network. Modules also handle the
resimulation of the network and some bookkeeping calculations for disease prevalence.

Writing original network models that expand upon our "base" model set will require modifying the
existing modules or adding new modules to the workflow in netsim. The existing modules may be
used as a template for replacement or new modules.

This help page provides an orientation to these module functions, in the order in which they are
used within netsim, to help guide users in writing their own functions. These module functions are
not shown on the help index since they are not called directly by the end-user. To understand these
functions in more detail, review the separate help pages listed below.

Initialization Module

This function sets up nodal attributes, like disease status, on the network at the starting time step
of disease simulation, ¢;. For multiple-simulation function calls, these are reset at the beginning of
each individual simulation.

e initialize.net: sets up the master data structure used in the simulation, initializes which
nodes are infected (via the initial conditions passed in init.net), and simulates a first time
step of the networks given the network model fit from netest.

46 modules.net

Disease Status Modification Modules

The main disease simulation occurs at each time step given the current state of the network at
that step. Infection of nodes is simulated as a function of attributes of the nodes and the edges.
Recovery of nodes is likewise simulated as a function of nodal attributes of those infected nodes.
These functions also calculate summary flow measures such as disease incidence.

* infection.net: simulates disease transmission given an edgelist of discordant partnerships
by calculating the relevant transmission and act rates for each edge, and then updating the
nodal attributes and summary statistics.

* recovery.net: simulates recovery from infection either to a lifelong immune state (for SIR
models) or back to the susceptible state (for SIS models), as a function of the recovery rate
parameters specified in param.net.

Demographic Modules

Demographics such as arrival and departure processes are simulated at each time step to update
entries into and exits from the network. These are used in dependent network models, in which the
network is resimulated at each time step to account for the nodal changes affecting the edges.

* departures.net: randomly simulates departure for nodes given their disease status (suscep-
tible, infected, recovered), and their mode-specific departure rates specified in param.net. de-
partures involve deactivating nodes, which are then deleted from the network if delete.nodes=TRUE
is set in control.net.

* arrivals.net: randomly simulates new arrivals into the network given the current population
size and the arrival rate specified in the a.rate parameters. This involves adding new nodes
into the network.

Network Resimulation Module

In dependent network models, the network object is resimulated at each time step to account for
changes in the size of the network (changed through entries and exits), and the disease status of the
nodes.

* edges_correct: adjusts the edges coefficient of a network model to account for changes in
the population size due to entries and exits. The default behavior is to preserve the mean
degree (average number of edges per person) in response to change population sizes.

* resim_nets: resimulates the network object one time step forward given the set of formation
and dissolution coefficients estimated in netest. This function also deletes the inactive nodes
if the delete.nodes control is set to TRUE.

Bookkeeping Module

Network simulations require bookkeeping at each time step to calculate the summary epidemiolog-
ical statistics used in the model output analysis.

* get_prev.net: calculates the number in each disease state (susceptible, infected, recovered)
at each time step for those active nodes in the network. If the epi.by control is used, it
calculates these statistics by a set of specified nodal attributes.

* verbose.net: summarizes the current state of the simulation and prints this to the console.

mutate_epi 47

mutate_epi Add New Epidemiology Variables

Description

Inspired by dplyr::mutate, mutate_epi adds new variables to the epidemiological and related
variables within simulated model objects of any class in EpiModel.

Usage
mutate_epi(x, ...)
Arguments
X An EpiModel object of class dcm, icm, or netsim.
Name-value pairs of expressions (see examples below).
Examples

DCM example

param <- param.dcm(inf.prob = 0.2, act.rate = 0.25)
init <- init.dcm(s.num = 500, i.num = 1)

control <- control.dcm(type = "SI", nsteps = 500)
mod1 <- dcm(param, init, control)

mod1 <- mutate_epi(modl, prev = i.num/num)
plot(modl, y = "prev")

Network model example

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
estl <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 1, i.num.m2 = @)

control <- control.net(type = "SI", nsteps = 10, nsims = 3,
verbose = FALSE)

modl <- netsim(estl, param, init, control)

mod1

Add the prevalences to the dataset
mod1 <- mutate_epi(modl, i.prev = i.num / num,
i.prev.m2 = i.num.m2 / num.m2)
plot(modl, y = c("i.prev”, "i.prev.m2"), gnts = 0.5, legend = TRUE)

Add incidence rate per 100 person years (assume time step = 1 week)
mod1 <- mutate_epi(modl, ir10@ = 5200*(si.flow + si.flow.m2) /
(s.num + s.num.m2))

48

netdx

as.data.frame(mod1)
as.data.frame(modl, out = "mean")

netdx

Dynamic Network Model Diagnostics

Description

Runs dynamic diagnostics on an ERGM/STERGM estimated through netest.

Usage

netdx(x, nsims = 1, dynamic = TRUE, nsteps,
nwstats.formula = "formation”, set.control.ergm, set.control.stergm,
sequential = TRUE, keep.tedgelist = FALSE, keep.tnetwork = FALSE,
verbose = TRUE, ncores = 1)

Arguments

X
nsims

dynamic

nsteps

nwstats.formula

An EpiModel object of class netest.
Number of simulations to run.

If TRUE, runs dynamic diagnostics. If FALSE and the netest object was fit with
the Edges Dissolution approximation method, simulates from the static ERGM
fit.

Number of time steps per simulation (dynamic simulations only).

A right-hand sided ERGM formula with the network statistics of interest. The
default is the formation formula of the network model contained in x.

set.control.ergm

Control arguments passed to simulate.ergm (see details).

set.control.stergm

sequential

keep.tedgelist

keep.tnetwork

verbose

ncores

Control arguments passed to simulate.stergm (see details).

For static diagnostics (dynamic=FALSE): if FALSE, each of the nsims simulated
Markov chains begins at the initial network; If TRUE, the end of one simulation
is used as the start of the next.

If TRUE, keep the timed edgelist generated from the dynamic simulations. Re-
turned in the form of a list of matrices, with one entry per simulation. Accessible
at $edgelist.

If TRUE, keep the full networkDynamic objects from the dynamic simulations.
Returned in the form of a list of nD objects, with one entry per simulation.
Accessible at $network.

Print progress to the console.

Number of processor cores to run multiple simulations on, using the foreach
and doParallel implementations.

netdx 49

Details

The netdx function handles dynamic network diagnostics for network models fit with the netest
function. Given the fitted model, netdx simulates a specified number of dynamic networks for
a specified number of time steps per simulation. The network statistics in nwstats.formula are
saved for each time step. Summary statistics for the formation model terms, as well as dissolution
model and relational duration statistics, are then calculated and can be accessed when printing or
plotting the netdx object.

Control Arguments

Models fit with the full STERGM method in netest (setting edapprox argument to FALSE) re-

quire only a call to simulate.stergm. Control parameters for those simulations may be set using
set.control.stergmin netdx. The parameters should be input through the control.simulate.stergm()
function, with the available parameters listed in the control.simulate.stergm help page in the

tergm package.

Models fit with the ERGM method with the edges dissolution approximation (setting edapprox

to TRUE) require a call first to simulate.ergm for simulating an initial network, and second to
simulate.network for simulating that static network forward through time. Control parameters

may be set for both processes in netdx. For the first, the parameters should be input through the
control.simulate.ergm() function, with the available parameters listed in the control.simulate.ergm

help page in the ergm package. For the second, parameters should be input through the control.simulate.network()
function, with the available parameters listed in the control.simulate.network help page in the

tergm package. An example is shown below.

See Also

Plot these model diagnostics with plot.netdx.

Examples

Not run:

Network initialization and model parameterization

nw <- network.initialize(100@, directed = FALSE)

formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 25)

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Static diagnostics on the ERGM fit

dx1 <- netdx(est, nsims = 1e4, dynamic = FALSE,
nwstats.formula = ~edges + meandeg + concurrent)

dx1

plot(dx1, method = "b", stats = c("edges", "concurrent”))

Dynamic diagnostics on the STERGM approximation

dx2 <- netdx(est, nsims = 5, nsteps = 500,
nwstats.formula = ~edges + meandeg + concurrent,
set.control.ergm = control.simulate.ergm(MCMC.burnin = 1e6))

50

dx2

netest

plot(dx2, stats = c("edges”, "meandeg"), plots.joined = FALSE)
plot(dx2, type = "duration™)

plot(dx2, type = "dissolution”, gnts.col = "orange2")
plot(dx2, type = "dissolution”, method = "b", col = "bisque")

End(Not run)

netest

Dynamic Network Model Estimation

Description

Estimates statistical network models using the exponential random graph modeling (ERGM) frame-
work with extensions for dynamic/temporal models (STERGM).

Usage

netest(nw, f
coef.form
set.contro

Arguments

nw

formation

target.stats

coef.diss

constraints

coef.form

edapprox

set.control.

set.control.

verbose

ormation, target.stats, coef.diss, constraints,
= NULL, edapprox = TRUE, set.control.ergm,
1.stergm, verbose = FALSE)

An object of class network.

Right-hand sided STERGM formation formula in the form ~edges + ...,
where ... are additional network statistics.

Vector of target statistics for the formation model, with one number for each
network statistic in the model.

An object of class disscoef output from the dissolution_coef's function.

Right-hand sided formula specifying constraints for the modeled network, in the
form ~. .., where . .. are constraint terms. By default, no constraints are set.

Vector of coefficients for the offset terms in the formation formula.

If TRUE, use the indirect edges dissolution approximation method for the dy-
namic model fit, otherwise use the more time-intensive full STERGM estimation
(see details).

ergm
Control arguments passed to simulate.ergm (see details).

stergm
Control arguments passed to simulate.stergm (see details).

Print model fitting progress to console.

netest 51

Details

netest is a wrapper function for the ergm and stergm functions that estimate static and dynamic
network models, respectively. Network model estimation is the first step in simulating a stochastic
network epidemic model in EpiModel. The output from netest is a necessary input for running the
epidemic simulations in netsim. With a fitted network model, one should always first proceed to
model diagnostics, available through the netdx function, to check model fit. A detailed description
of fitting these models, along with examples, may be found in the Basic Network Models tutorial.

Edges Dissolution Approximation

The edges dissolution approximation method is described in Carnegie et al. This approximation
requires that the dissolution coefficients are known, that the formation model is being fit to cross-
sectional data conditional on those dissolution coefficients, and that the terms in the dissolution
model are a subset of those in the formation model. Under certain additional conditions, the for-
mation coefficients of a STERGM model are approximately equal to the coefficients of that same
model fit to the observed cross-sectional data as an ERGM, minus the corresponding coefficients
in the dissolution model. The approximation thus estimates this ERGM (which is typically much
faster than estimating a STERGM) and subtracts the dissolution coefficients.

The conditions under which this approximation best hold are when there are few relational changes
from one time step to another; i.e. when either average relational durations are long, or density
is low, or both. Conveniently, these are the same conditions under which STERGM estimation is
slowest. Note that the same approximation is also used to obtain starting values for the STERGM
estimate when the latter is being conducted. The estimation does not allow for calculation of stan-
dard errors, p-values, or likelihood for the formation model; thus, this approach is of most use when
the main goal of estimation is to drive dynamic network simulations rather than to conduct inference
on the formation model. The user is strongly encouraged to examine the behavior of the resulting
simulations to confirm that the approximation is adequate for their purposes. For an example, see
the vignette for the package tergm.

Control Arguments

The ergm and stergm functions allow control settings for the model fitting process. When fitting
a STERGM directly (setting edapprox to FALSE), control parameters may be passed to the stergm
function with the set.control.stergm argument in netest. The controls should be input through
the control.stergm() function, with the available parameters listed in the control.stergm help
page in the tergm package.

When fitting a STERGM indirectly (setting edapprox to TRUE), control settings may be passed to
the ergm function using set.control.ergm in netest. The controls should be input through the
control.ergm() function, with the available parameters listed in the control.ergm help page in
the ergm package. An example is below.

References

Krivitsky PN, Handcock MS. "A separable model for dynamic networks." JRSS(B). 2014; 76.1:29-
46.

Carnegie NB, Krivitsky PN, Hunter DR, Goodreau SM. An approximation method for improving
dynamic network model fitting. Journal of Computational and Graphical Statistics. 2014; 24(2):
502-519.

http://statnet.github.io/tut/BasicNet.html

52 netsim

Jenness SM, Goodreau SM and Morris M. EpiModel: An R Package for Mathematical Modeling
of Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47.

See Also

Use netdx to diagnose the fitted network model, and netsim to simulate epidemic spread over a
simulated dynamic network consistent with the model fit.

Examples

Initialize a network of 100 nodes
nw <- network.initialize(n = 100, directed = FALSE)

Set formation formula
formation <- ~edges + concurrent

Set target statistics for formation
target.stats <- c(50, 25)

Obtain the offset coefficients
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 10)

Estimate the STERGM using the edges dissolution approximation
est <- netest(nw, formation, target.stats, coef.diss,
set.control.ergm = control.ergm(MCMC.burnin = 1e5,
MCMC.interval = 1000))
est

To estimate the STERGM directly, use edapprox = FALSE
est2 <- netest(nw, formation, target.stats, coef.diss, edapprox = FALSE)

netsim Stochastic Network Models

Description

Simulates stochastic network epidemic models for infectious disease.

Usage

netsim(x, param, init, control)

Arguments
X Fitted network model object, as an object of class netest. Alternatively, if
restarting a previous simulation, may be an object of class netsim.
param Model parameters, as an object of class param.net.
init Initial conditions, as an object of class init.net.

control Control settings, as an object of class control.net.

netsim 53

Details

Stochastic network models explicitly represent phenomena within and across edges (pairs of nodes
that remain connected) over time. This enables edges to have duration, allowing for repeated
transmission-related acts within the same dyad, specification of edge formation and dissolution
rates, control over the temporal sequencing of multiple edges, and specification of network-level
features. A detailed description of these models, along with examples, is found in the Basic Net-
work Models tutorial.

The netsim function performs modeling of both the base model types and original models. Base
model types include one-mode and bipartite models with disease types for Susceptible-Infected
(SI), Susceptible-Infected-Recovered (SIR), and Susceptible-Infected-Susceptible (SIS).

Original models may be parameterized by writing new process modules that either take the place
of existing modules (for example, disease recovery), or supplement the set of existing processes
with a new one contained in a new module. This functionality is documented in the Solving New
Network Models tutorial. The list of modules within netsim available for modification is listed in
modules.net.

Value
A list of class netsim with the following elements:
e param: the epidemic parameters passed into the model through param, with additional pa-
rameters added as necessary.

* control: the control settings passed into the model through control, with additional controls
added as necessary.

* epi: a list of data frames, one for each epidemiological output from the model. Outputs for
base models always include the size of each compartment, as well as flows in, out of, and
between compartments.

* stats: alist containing two sublists, nwstats for any network statistics saved in the simulation,
and transmat for the transmission matrix saved in the simulation. See control.net and the
Tutorial for further details.

* network: a list of networkDynamic objects (or network objects if delete.nodes was set to
TRUE), one for each model simulation.

References
Jenness SM, Goodreau SM and Morris M. EpiModel: An R Package for Mathematical Modeling
of Infectious Disease over Networks. Journal of Statistical Software. 2018; 84(8): 1-47.

See Also
Extract the model results with as.data. frame.netsim. Summarize the time-specific model results
with summary.netsim. Plot the model results with plot.netsim.

Examples

Not run:
Example 1: Independent SI Model

http://statnet.github.io/tut/BasicNet.html
http://statnet.github.io/tut/BasicNet.html
http://statnet.github.io/tut/NewNet.html
http://statnet.github.io/tut/NewNet.html

param.dcm

Network model estimation

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)
est1l <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Epidemic model

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 100, nsims = 5, verbose.int = 0)
mod1 <- netsim(estl, param, init, control)

Print, plot, and summarize the results
mod1

plot(mod1)

summary(mod1, at = 50)

Example 2: Dependent SIR Model

Recalculate dissolution coefficient with departure rate

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20,
d.rate = 0.0021)

Reestimate the model with new coefficient
est2 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Reset parameters to include demographic rates

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15,
rec.rate = 0.02, rec.rate.m2 = 0.02,
a.rate = 0.002, a.rate.m2 = NA,
ds.rate = 0.001, ds.rate.m2 = 0.001,
di.rate = 0.001, di.rate.m2 = 0.001,
dr.rate = 0.001, dr.rate.m2 = 0.001)

init <- init.net(i.num = 10, i.num.m2 = 10,

r.num = @, r.num.m2 = Q)
control <- control.net(type = "SIR", nsteps = 100, nsims = 5)

Simulate the model with new network fit
mod2 <- netsim(est2, param, init, control)

Print, plot, and summarize the results
mod?2

plot(mod2)

summary(mod2, at = 100)

End(Not run)

param.dcm Epidemic Parameters for Deterministic Compartmental Models

param.dcm

Description

55

Sets the epidemic parameters for deterministic compartmental models simulated with dcm.

Usage

param.dcm(inf.prob, inter.eff, inter.start, act.rate, rec.rate, a.rate,
ds.rate, di.rate, dr.rate, inf.prob.g2, act.rate.g2, rec.rate.g2,

a.rate.g2, ds.rate.g2, di.rate.g2, dr.rate.g2, balance, ...)
Arguments
inf.prob Probability of infection per transmissible act between a susceptible and an in-

inter.eff

inter.start

act.rate

rec.rate

a.rate

ds.rate

di.rate

dr.rate

inf.prob.g2

act.rate.g2

fected person. In two-group models, this is the probability of infection for the
group 1 members.

Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if the inter.eff is defined
but this parameter is not.

Average number of transmissible acts per person per unit time. For two-group
models, this is the number of acts per group 1 persons per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models). The recovery rate is the reciprocal of the disease duration. For two-
group models, this is the recovery rate for group 1 persons only. This parameter
is only used for SIR and SIS models.

Arrival or entry rate. For one-group models, the arrival rate is the rate of new
arrivals per person per unit time. For two-group models, the arrival rate may be
parameterized as a rate per group 1 person time (with group 1 persons represent-
ing females), and with the a. rate.g2 rate set as described below.

Departure or exit rate for susceptible. For two-group models, it is the rate for
the group 1 susceptible only.

Departure or exit rate for infected. For two-group models, it is the rate for the
group 1 infected only.

Departure or exit rate for recovered. For two-group models, it is the rate for the
group 1 recovered only. This parameter is only used for SIR models.

Probability of infection per transmissible act between a susceptible group 2 per-
son and an infected group 1 person. It is the probability of infection to group 2
members.

Average number of transmissible acts per group 2 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

56

param.dcm

rec.rate.g? Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for group 2 persons. This parameter is only used for two-group SIR
and SIS models.

a.rate.g2 Arrival or entry rate for group 2. This may either be specified numerically as
the rate of new arrivals per group 2 persons per unit time, or as NA in which case
the group 1 rate, a.rate, governs the group 2 rate. The latter is used when, for
example, the first group is conceptualized as female, and the female population
size determines the arrival rate. Such arrivals are evenly allocated between the

two groups.
ds.rate.g2 Departure or exit rate for group 2 susceptible.
di.rate.g2 Departure or exit rate for group 2 infected.
dr.rate.g2 Departure or exit rate for group 2 recovered. This parameter is only used for SIR

model types.

balance For two-group models, balance the act.rate to the rate set for group 1 (with
balance="g1") or group 2 (with balance="g2"). See details.

Additional arguments passed to model.

Details

param.dcm sets the epidemic parameters for deterministic compartmental models solved with the
dcm function. The models may use the base types, for which these parameters are used, or original
model specifications for which these parameters may be used (but not necessarily). A detailed
description of DCM parameterization for base models is found in the Basic DCMs tutorial.

For base models, the model specification will be selected as a function of the model parameters en-
tered here and the control settings in control.dcm. One-group and two-group models are available,
where the former assumes a homogenous mixing in the population and the latter assumes a purely
heterogenous mixing between two distinct partitions in the population (e.g., men and women).
Specifying any group two parameters (those with a .g2) implies the simulation of a two-group
model. All the parameters for a desired model type must be specified, even if they are zero.

Act Balancing

In two-group models, a balance between the number of acts for group 1 members and those for
group 2 members must be maintained. With purely heterogenous mixing, the product of one group
size and act rate must equal the product of the other group size and act rate: Ny = Naas, where
N; is the group size and «; the group-specific act rates at time ¢t. The balance parameter here
specifies which group’s act rate should control the others with respect to balancing. See the Basic
DCMs tutorial for further details.

Sensitivity Analyses

dcm has been designed to easily run DCM sensitivity analyses, where a series of models varying
one or more of the model parameters is run. This is possible by setting any parameter as a vector of
length greater than one. See both the example below and the Basic DCMs tutorial.

http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/BasicDCMs.html

param.icm

New Model Types

57

To build original model specifications outside of the base models, start by consulting the Solving
New DCMs with EpiModel tutorial. Briefly, an original model may use either the existing model
parameters named here, an original set of parameters, or a combination of both. The . .. argument
allows the user to pass an arbitrary set of new model parameters into param.dcm. Whereas there are
strict checks for base models that the model parameters are valid, parameter validity is the user’s
responsibility with these original models.

See Also

Use init.dcm to specify the initial conditions and control.dcm to specify the control settings.
Run the parameterized model with dcm.

param.icm

Epidemic Parameters for Stochastic Individual Contact Models

Description

Sets the epidemic parameters for stochastic individual contact models simulated with icm.

Usage

param.icm(inf.prob, inter.eff, inter.start, act.rate, rec.rate, a.rate,
ds.rate, di.rate, dr.rate, inf.prob.g2, act.rate.g2, rec.rate.g2,

a.rate.g2, ds.rate.g2, di.rate.g2, dr.rate.g2, balance, ...)
Arguments
inf.prob Probability of infection per transmissible act between a susceptible and an in-

inter.eff

inter.start

act.rate

rec.rate

fected person. In two-group models, this is the probability of infection for the
group 1 members.

Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if the inter.eff is defined
but this parameter is not.

Average number of transmissible acts per person per unit time. For two-group
models, this is the number of acts per group 1 persons per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models). The recovery rate is the reciprocal of the disease duration. For two-
group models, this is the recovery rate for group 1 persons only. This parameter
is only used for SIR and SIS models.

http://statnet.github.io/tut/NewDCMs.html
http://statnet.github.io/tut/NewDCMs.html

58

a.rate

ds.rate

di.rate

dr.rate

inf.prob.g2

act.rate.g?2

rec.rate.g2

a.rate.g?

ds.rate.g2
di.rate.g2
dr.rate.g?

balance

Details

param.icm

Arrival or entry rate. For one-group models, the arrival rate is the rate of new
arrivals per person per unit time. For two-group models, the arrival rate may be
parameterized as a rate per group 1 person time (with group 1 persons represent-
ing females), and with the a.rate. g2 rate set as described below.

Departure or exit rate for susceptible. For two-group models, it is the rate for
the group 1 susceptible only.

Departure or exit rate for infected. For two-group models, it is the rate for the
group 1 infected only.

Departure or exit rate for recovered. For two-group models, it is the rate for the
group 1 recovered only. This parameter is only used for SIR models.

Probability of infection per transmissible act between a susceptible group 2 per-
son and an infected group 1 person. It is the probability of infection to group 2
members.

Average number of transmissible acts per group 2 person per unit time; a balance
between the acts in groups 1 and 2 is necessary, and set using the balance
parameter (see details).

Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for group 2 persons. This parameter is only used for two-group SIR
and SIS models.

Arrival or entry rate for group 2. This may either be specified numerically as
the rate of new arrivals per group 2 persons per unit time, or as NA in which case
the group 1 rate, a.rate, governs the group 2 rate. The latter is used when, for
example, the first group is conceptualized as female, and the female population
size determines the arrival rate. Such arrivals are evenly allocated between the
two groups.

Departure or exit rate for group 2 susceptible.
Departure or exit rate for group 2 infected.

Departure or exit rate for group 2 recovered. This parameter is only used for SIR
model types.

For two-group models, balance the act.rate to the rate set for group 1 (with
balance="g1") or group 2 (with balance="g2"). See details.

Additional arguments passed to model.

param.icm sets the epidemic parameters for the stochastic individual contact models simulated
with the icm function. Models may use the base types, for which these parameters are used, or new
process modules which may use these parameters (but not necessarily). A detailed description of
ICM parameterization for base models is found in the Basic ICMs tutorial.

For base models, the model specification will be chosen as a result of the model parameters entered
here and the control settings in control.icm. One-group and two-group models are available,
where the former assumes a homogenous mixing in the population and the latter assumes a purely
heterogenous mixing between two distinct partitions in the population (e.g., men and women).
Specifying any group two parameters (those with a .g2) implies the simulation of a two-group
model. All the parameters for a desired model type must be specified, even if they are zero.

http://statnet.github.io/tut/BasicICMs.html

param.net 59

Act Balancing

In two-group models, a balance between the number of acts for group 1 members and those for
group 2 members must be maintained. With purely heterogenous mixing, the product of one group
size and act rate must equal the product of the other group size and act rate: Ny = Naao, where
N; is the group size and «; the group-specific act rates at time ¢t. The balance parameter here
specifies which group’s act rate should control the others with respect to balancing. See the Basic
DCMs tutorial.

New Modules

To build original models outside of the base models, new process modules may be constructed to
replace the existing modules or to supplement the existing set. These are passed into the control
settings in control.icm. New modules may use either the existing model parameters named here,
an original set of parameters, or a combination of both. The . . . allows the user to pass an arbitrary
set of original model parameters into param.icm. Whereas there are strict checks with default
modules for parameter validity, these checks are the user’s responsibility with new modules.

See Also

Use init.icm to specify the initial conditions and control.icm to specify the control settings.
Run the parameterized model with icm.

param.net Epidemic Parameters for Stochastic Network Models

Description

Sets the epidemic parameters for stochastic network models simulated with netsim.

Usage

param.net(inf.prob, inter.eff, inter.start, act.rate, rec.rate, a.rate,
ds.rate, di.rate, dr.rate, inf.prob.m2, rec.rate.m2, a.rate.m2,

ds.rate.m2, di.rate.m2, dr.rate.m2, ...)
Arguments
inf.prob Probability of infection per transmissible act between a susceptible and an in-

fected person. In bipartite models, this is the probability of infection to the
mode 1 nodes. This may also be a vector of probabilities, with each element
corresponding to the probability in that time step of infection (see Time-Varying
Parameters below).

inter.eff Efficacy of an intervention which affects the per-act probability of infection.
Efficacy is defined as 1 - the relative hazard of infection given exposure to the
intervention, compared to no exposure.

http://statnet.github.io/tut/BasicDCMs.html
http://statnet.github.io/tut/BasicDCMs.html

60

inter.start

act.rate

rec.rate

a.rate

ds.rate

di.rate

dr.rate

inf.prob.m2

rec.rate.m2

a.rate.m2

ds.rate.m2
di.rate.m2

dr.rate.m2

Details

param.net

Time step at which the intervention starts, between 1 and the number of time
steps specified in the model. This will default to 1 if the inter.eff is defined
but this parameter is not.

Average number of transmissible acts per partnership per unit time (see act.rate
Parameter below). This may also be a vector of rates, with each element corre-
sponding to the rate in in that time step of infection (see Time-Varying Parame-
ters below).

Average rate of recovery with immunity (in SIR models) or re-susceptibility
(in SIS models). The recovery rate is the reciprocal of the disease duration.
For bipartite models, this is the recovery rate for mode 1 persons only. This
parameter is only used for SIR and SIS models. This may also be a vector of
rates, with each element corresponding to the rate in that time step of infection
(see Time-Varying Parameters below).

Arrival or entry rate. For one-mode models, the arrival rate is the rate of new
arrivals per person per unit time. For bipartite models, the arrival rate may be pa-
rameterized as a rate per mode 1 person time (with mode 1 persons representing
females), and with the a.rate. g2 rate set as described below.

Departure or exit rate for susceptible. For bipartite models, it is the rate for the
mode 1 susceptible only.

Departure or exit rate for infected. For bipartite models, it is the rate for the
mode 1 infected only.

Departure or exit rate for recovered. For bipartite models, it is the rate for the
mode 1 recovered only. This parameter is only used for SIR models.

Probability of transmission given a transmissible act between a susceptible mode
2 person and an infected mode 1 person. It is the probability of transmission to
mode 2 members.

Average rate of recovery with immunity (in SIR models) or re-susceptibility (in
SIS models) for mode 2 persons. This parameter is only used for bipartite SIR
and SIS models.

Arrival or entry rate for mode 2. This may either be specified numerically as
the rate of new arrivals per mode 2 persons per unit time, or as NA in which case
the mode 1 rate, a.rate, governs the mode 2 rate. The latter is used when, for
example, the first mode is conceptualized as female, and the female population
size determines the arrival rate. Such arrivalss are evenly allocated between the
two modes.

Departure or exit rate for mode 2 susceptible.
Departure or exit rate for mode 2 infected.

Departure or exit rate for mode 2 recovered. This parameter is only used for SIR
model types.

Additional arguments passed to model.

param.net sets the epidemic parameters for the stochastic network models simulated with the
netsim function. Models may use the base types, for which these parameters are used, or new

param.net 61

process modules which may use these parameters (but not necessarily). A detailed description of
network model parameterization for base models is found in the Basic Network Models tutorial.

For base models, the model specification will be chosen as a result of the model parameters entered
here and the control settings in control.net. One-mode and two-mode models are available, where
the the latter assumes a heterogenous mixing between two distinct partitions in the population (e.g.,
men and women). Specifying any bipartite parameters (those with a .m2) implies the simulation of
a bipartite model. All the parameters for a desired model type must be specified, even if they are
Zero.

The act.rate Parameter

A key difference between these network models and DCM/ICM classes is the treatment of trans-
mission events. With DCM and ICM, contacts or partnerships are mathematically instantaneous
events: they have no duration in time, and thus no changes may occur within them over time. In
contrast, network models allow for partnership durations defined by the dynamic network model,
summarized in the model dissolution coefficients calculated in dissolution_coefs. Therefore,
the act.rate parameter has a different interpretation here, where it is the number of transmissible
acts per partnership per unit time.

Time-Varying Parameters

The inf.prob, act.rate, rec.rate arguments (and their .m2 companions) may be specified as
time-varying parameters by passing in a vector of probabilities or rates, respectively. The value
in each position on the vector then corresponds to the probability or rate at that discrete time step
for the infected partner. For example, an inf.prob of c(0.5, 0.5, 0.1) would simulate a 0.5
transmission probability for the first two time steps of a person’s infection, followed by a 0.1 for
the third time step. If the infected person has not recovered or exited the population by the fourth
time step, the third element in the vector will carry forward until one of those events occurs or the
simulation ends. For further examples, see the NME tutorial, Time-Varying Biology & Behavior.

New Modules

To build original models outside of the base models, new process modules may be constructed to
replace the existing modules or to supplement the existing set. These are passed into the control
settings in control.net. New modules may use either the existing model parameters named here,
an original set of parameters, or a combination of both. The . .. allows the user to pass an arbitrary
set of original model parameters into param.net. Whereas there are strict checks with default
modules for parameter validity, these checks are the user’s responsibility with new modules.

See Also

Use init.net to specify the initial conditions and control.net to specify the control settings.
Run the parameterized model with netsim.

http://statnet.github.io/tut/BasicNet.html
https://statnet.github.io/nme/d3-s6.html

62 plot.dcm

plot.dcm Plot Data from a Deterministic Compartmental Epidemic Model

Description

Plots epidemiological data from a deterministic compartment epidemic model solved with dcm.

Usage

S3 method for class 'dcm'
plot(x, y, popfrac = FALSE, run, col, lwd, lty,
alpha = 0.9, legend, leg.name, leg.cex = 0.8, axs = "r",

grid = FALSE, add = FALSE, ...)
Arguments

X An EpiModel object of class dcm.

y Output compartments or flows from dcm object to plot.

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

run Run number to plot, for models with multiple runs (default is run 1).

col Color for lines, either specified as a single color in a standard R color format, or
alternatively as a color palette from RColorBrewer (see details).

lwd Line width for output lines.

1ty Line type for output lines.

alpha Transparency level for lines, where 0 = transparent and 1 = opaque (see transco).

legend Type of legend to plot. Values are "n" for no legend, "full" for full legend, and
"lim" for limited legend (see details).

leg.name Character string to use for legend, with the default determined automatically
based on the y input.

leg.cex Legend scale size.

axs Plot axis type (see par for details), with default of "r".

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

Additional arguments to pass to main plot window (see plot.default).

Details

This function plots epidemiological outcomes from a deterministic compartmental model solved
with dem. Depending on the number of model runs (sensitivity analyses) and number of groups, the
default plot is the fractional proportion of each compartment in the model over time. The specific
compartments or flows to plot may be set using the y parameter, and in multiple run models the
specific run may also be specified.

plot.dcm 63

The popfrac Argument

Compartment prevalences are the size of a compartment over some denominator. To plot the raw
numbers from any compartment, use popfrac=FALSE; this is the default. The popfrac parameter
calculates and plots the denominators of all specified compartments using these rules: 1) for one-
group models, the prevalence of any compartment is the compartment size divided by the total
population size; 2) for two-group models, the prevalence of any compartment is the compartment
size divided by the group size.

Color Palettes

Since dcm supports multiple run sensitivity models, plotting the results of such models uses a com-
plex color scheme for distinguishing runs. This is accomplished using the RColorBrewer color
palettes, which include a range of linked colors using named palettes. For plot.dcm, one may ei-
ther specify a brewer color palette listed in brewer.pal. info, or, alternatively, a vector of standard
R colors (named, hexidecimal, or positive integers; see col2rgb).

Plot Legends

There are three automatic legend types available, and the legend is added by default for plots. To
turn off the legend, use legend="n". To plot a legend with values for every line in a sensitivity
analysis, use legend="full”. With models with many runs, this may be visually overwhelming.
In those cases, use legend="1im" to plot a legend limited to the highest and lowest values of the
varying parameter in the model. In cases where the default legend names are not helpful, one may
override those names with the 1eg.name argument.

See Also

dcm, brewer .pal.info

Examples

Deterministic SIR model with varying act rate

param <- param.dcm(inf.prob = 0.2, act.rate = 1:10,
rec.rate = 1/3, a.rate = 0.011, ds.rate = 0.01,
di.rate = 0.03, dr.rate = 0.01)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = Q)

control <- control.dcm(type = "SIR"”, nsteps = 100, dt = 0.25)

mod <- dcm(param, init, control)

Plot disease prevalence by default
plot(mod)

Plot prevalence of susceptibles
plot(mod, y = "s.num”, popfrac = TRUE, col = "Greys")

Plot number of susceptibles
plot(mod, y = "s.num”, popfrac = FALSE, col = "Greys"”, grid = TRUE)

Plot multiple runs of multiple compartments together
plot(mod, y = c(”"s.num”, "i.num"),

64

plot.icm

run = 5, xlim = c(@, 50), grid = TRUE)
plot(mod, y = c¢("s.num", "i.num"),
run = 10, 1ty = 2, legend = "n", add = TRUE)

plot.icm

Plot Data from a Stochastic Individual Contact Epidemic Model

Description

Plots epidemiological data from a stochastic individual contact model simulated with icm.

Usage

S3 method for class 'icm'

plot(x, y, popfrac = FALSE, sim.lines = FALSE, sims,
sim.col, sim.lwd, sim.alpha, mean.line = TRUE, mean.smooth = TRUE,
mean.col, mean.lwd = 2, mean.lty = 1, gnts = 0.5, gnts.col,
gnts.alpha, gnts.smooth = TRUE, legend, leg.cex = 0.8, axs = "r",

n_n

grid = FALSE, add = FALSE, ...)
Arguments

X An EpiModel model object of class netsim.

y Output compartments or flows from icm object to plot.

popfrac If TRUE, plot prevalence of values rather than numbers (see details).

sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group
models but not for two-group models.

sims If type="epi” or "formation”, a vector of simulation numbers to plot. If
type="network", a single simulation number for network plot, or else "min"
to plot the simulation number with the lowest disease prevalence, "max” for the
simulation with the highest disease prevalence, or "mean” for the simulation
with the prevalance closest to the mean across simulations at the specified time
step.

sim.col Vector of any standard R color format for simulation lines.

sim.lwd Line width for simulation lines.

sim.alpha Transparency level for simulation lines, where O = transparent and 1 = opaque
(see transco).

mean.line If TRUE, plot mean of simulations across time.

mean. smooth
mean.col
mean. lwd

mean.lty

If TRUE, use a lowess smoother on the mean line.
Vector of any standard R color format for mean lines.
Line width for mean lines.

Line type for mean lines.

plot.icm 65

gnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

gnts.col Vector of any standard R color format for polygons.

gnts.alpha Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see transco).

gnts.smooth If TRUE, use a lowess smoother on quantile polygons.

legend If TRUE, plot default legend.

leg.cex Legend scale size.

axs Plot axis type (see par for details), with default to "r".

grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

add If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

additional arguments to pass.

See Also

icm

Examples

Example 1: Plotting multiple compartment values from SIR model
param <- param.icm(inf.prob = 0.5, act.rate = 0.5, rec.rate = 0.02)
init <- init.icm(s.num = 500, i.num = 1, r.num = @)
control <- control.icm(type = "SIR", nsteps = 100,

nsims = 3, verbose = FALSE)
mod <- icm(param, init, control)
plot(mod, grid = TRUE)

Example 2: Plot only infected with specific output from SI model
param <- param.icm(inf.prob = 0.25, act.rate = 0.25)
init <- init.icm(s.num = 500, i.num = 10)
control <- control.icm(type = "SI", nsteps = 100,
nsims = 3, verbose = FALSE)
mod2 <- icm(param, init, control)

Plot prevalence
plot(mod2, y = "i.num"”, mean.line = FALSE, sim.lines = TRUE)

Plot incidence

par(mfrow = c(1, 2))

plot(mod2, y = "si.flow", mean.smooth = TRUE, grid = TRUE)
plot(mod2, y = "si.flow”, gnts.smooth = FALSE, gnts = 1)

66

plot.netdx

plot.netdx

Plot Dynamic Network Model Diagnostics

Description

Plots dynamic network model diagnostics calculated in netdx.

Usage

S3 method for class 'netdx'

plot(x, type = "formation”, method = "1"”, sims, stats,
sim.lines, sim.col, sim.lwd, mean.line = TRUE, mean.smooth = TRUE,
mean.col, mean.lwd = 2, mean.lty = 1, gnts = 0.5, gnts.col,
gnts.alpha, gnts.smooth = TRUE, targ.line = TRUE, targ.col,
targ.lwd = 2, targ.lty = 2, plots.joined, legend, grid = FALSE,

.2

Arguments

X

type

method

sims

stats

sim.lines

sim.col
sim.lwd
mean.line
mean. smooth
mean.col
mean. lwd

mean.lty

An EpiModel object of class netdx.

Plot type, with options of "formation” for network model formation statis-
tics, "duration” for dissolution model statistics for average edge duration, or
"dissolution” for dissolution model statistics for proportion of ties dissolved
per time step.

Plot method, with options of "1" for line plots and "b" for boxplots.

If type="epi” or "formation”, a vector of simulation numbers to plot. If
type="network", a single simulation number for network plot, or else "min"
to plot the simulation number with the lowest disease prevalence, "max” for the
simulation with the highest disease prevalence, or "mean” for the simulation
with the prevalance closest to the mean across simulations at the specified time
step.

Network statistics to plot, among those specified in the call to netdx, with the
default to plot all statistics contained in the object.

If TRUE, plot individual simulation lines. Default is to plot lines for one-group
models but not for two-group models.

Vector of any standard R color format for simulation lines.
Line width for simulation lines.

If TRUE, plot mean of simulations across time.

If TRUE, use a lowess smoother on the mean line.

Vector of any standard R color format for mean lines.
Line width for mean lines.

Line type for mean lines.

plot.netdx 67

gnts If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

gnts.col Vector of any standard R color format for polygons.

gnts.alpha Transparency level for quantile polygons, where O = transparent and 1 = opaque
(see transco).

gnts.smooth If TRUE, use a lowess smoother on quantile polygons.

targ.line If TRUE, plot target or expected value line for the statistic of interest.

targ.col Vector of standard R colors for target statistic lines, with default colors based on
RColorBrewer color palettes.

targ.lwd Line width for the line showing the target statistic values.

targ.1lty Line type for the line showing the target statistic values.

plots.joined If TRUE and type="formation”, combine all target statistics in one plot, versus
one plot per target statistic if FALSE.

legend If TRUE, plot default legend.
grid If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

additional arguments to pass.

Details

The plot function for netdx objects will generate plots of two types of model diagnostic statistics
that run as part of the diagnostic tools within that function. The formation plot shows the summary
statistics requested in nwstats. formula, where the default includes those statistics in the network
model formation formula specified in the original call to netest.

The duration plot shows the average age of existing edges at each time step, up until the maximum
time step requested. This is calculated with the edgelist_meanage function. The age is used as an
estimator of the average duration of edges in the equilibrium state.

The dissolution plot shows the proportion of the extant ties that are dissolved at each time step,
up until the maximum time step requested. Typically, the proportion of ties that are dissolved is the
reciprocal of the mean relational duration. This plot thus contains similar information to that in the
duration plot, but should reach its expected value more quickly, since it is not subject to censoring.

The plots. joined argument will control whether the statistics in the formation plot are joined in
one plot or plotted separately. The default is based on the number of network statistics requested.
The layout of the separate plots within the larger plot window is also based on the number of
statistics.

See Also

netdx

Examples

Not run:
Network initialization and model parameterization
nw <- network.initialize(100, directed = FALSE)

plot.netdx

nw <- set.vertex.attribute(nw, "sex"”, rbinom(100, 1, 0.5))

formation <- ~edges + nodematch("sex")

target.stats <- c(50, 40)

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 50)

Estimate the model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Static diagnostics
dx1 <- netdx(est, nsims = 1e4, dynamic = FALSE,
nwstats.formula = ~edges + meandeg + concurrent +
nodefactor(”sex"”, base = @) +
nodematch("sex"))
dx1

Plot diagnostics

plot(dx1)

plot(dx1, stats = c("edges”, "concurrent”), mean.col = "black”,
sim.lines = TRUE, plots.joined = FALSE)

plot(dx1, stats = "edges"”, method = "b",
col = "seagreen3”, grid = TRUE)

Dynamic diagnostics
dx2 <- netdx(est, nsims = 10, nsteps = 500,
nwstats.formula = ~edges + meandeg + concurrent +
nodefactor(”sex", base = @) +
nodematch("”sex"))
dx2

Formation statistics plots, joined and separate
plot(dx2, grid = TRUE)
plot(dx2, type = "formation”, plots.joined = TRUE)
plot(dx2, type = "formation”, sims = 1, plots.joined = TRUE,
gnts = FALSE, sim.lines = TRUE, mean.line = FALSE)
plot(dx2, type = "formation", plots.joined = FALSE,
stats = c("edges”, "concurrent”), grid = TRUE)

plot(dx2, method
plot(dx2, method

"b", col = "bisque"”, grid = TRUE)
"b", stats = "meandeg"”, col = "dodgerblue")

Duration statistics plot

plot(dx2, type = "duration”, mean.col = "black”, grid = TRUE)

plot(dx2, type = "duration”, sims = 10, mean.line = FALSE, sim.line = TRUE,
sim.col = "steelblue”, sim.lwd = 3, targ.lty = 1, targ.lwd = 0.5)

Dissolution statistics plot
plot(dx2, type = "dissolution”, mean.col = "black”, grid = TRUE)
plot(dx2, type = "dissolution”, method = "b", col "pink1™)

End(Not run)

plot.netsim 69

plot.netsim Plot Data from a Stochastic Network Epidemic Model

Description

Plots epidemiological and network data from a stochastic network model simulated with netsim.

Usage

S3 method for class 'netsim'

plot(x, type = "epi", y, popfrac = FALSE,
sim.lines = FALSE, sims, sim.col, sim.lwd, sim.alpha,
mean.line = TRUE, mean.smooth = TRUE, mean.col, mean.lwd = 2,
mean.lty = 1, gnts = 0.5, gnts.col, gnts.alpha, gnts.smooth = TRUE,
legend, leg.cex = 0.8, axs = "r", grid = FALSE, add = FALSE,
network = 1, at = 1, col.status = FALSE, shp.bip = NULL, stats,
targ.line = TRUE, targ.col, targ.lwd = 2, targ.lty = 2,

plots.joined, ...)
Arguments
X An EpiModel model object of class netsim.
type Type of plot: "epi” for epidemic model results, "network” for a static network
plot (plot.network), or "formation"” for network formation statistics.
y Output compartments or flows from icm object to plot.
popfrac If TRUE, plot prevalence of values rather than numbers (see details).
sim.lines If TRUE, plot individual simulation lines. Default is to plot lines for one-group

models but not for two-group models.

sims If type="epi” or "formation”, a vector of simulation numbers to plot. If
type="network", a single simulation number for network plot, or else "min"
to plot the simulation number with the lowest disease prevalence, "max” for the
simulation with the highest disease prevalence, or "mean” for the simulation

with the prevalance closest to the mean across simulations at the specified time

step.

sim.col Vector of any standard R color format for simulation lines.

sim.lwd Line width for simulation lines.

sim.alpha Transparency level for simulation lines, where O = transparent and 1 = opaque
(see transco).

mean.line If TRUE, plot mean of simulations across time.

mean. smooth If TRUE, use a lowess smoother on the mean line.

mean.col Vector of any standard R color format for mean lines.

mean. lwd Line width for mean lines.

mean.lty Line type for mean lines.

70

gnts

gnts.col

gnts.alpha

gnts.smooth
legend
leg.cex

axs

grid

add

network

at

col.status

shp.bip

stats

targ.line

targ.col

targ.lwd
targ.lty

plots. joined

Details

plot.netsim

If numeric, plot polygon of simulation quantiles based on the range implied by
the argument (see details). If FALSE, suppress polygon from plot.

Vector of any standard R color format for polygons.

Transparency level for quantile polygons, where 0 = transparent and 1 = opaque
(see transco).

If TRUE, use a lowess smoother on quantile polygons.
If TRUE, plot default legend.

Legend scale size.

Plot axis type (see par for details), with default to "r".

If TRUE, a grid is added to the background of plot (see grid for details), with
default of nx by ny.

If TRUE, new plot window is not called and lines are added to existing plot win-
dow.

Network number, for simulations with multiple networks representing the pop-
ulation.

If type="network", time step for network graph.

If TRUE and type="network”, automatic disease status colors (blue = suscepti-
ble, red = infected, green = recovered).

If type="network" and a bipartite simulation, shapes for the mode 2 vertices,
with acceptable inputs of "triangle" and "square". Mode 1 vertices will be cir-
cles.

If type="formation”, network statistics to plot, among those specified in nwstats. formula

of control.net, with the default to plot all statistics.
If TRUE, plot target or expected value line for the statistic of interest.

Vector of standard R colors for target statistic lines, with default colors based on
RColorBrewer color palettes.

Line width for the line showing the target statistic values.
Line type for the line showing the target statistic values.

If TRUE and type="formation”, combine all target statistics in one plot, versus
one plot per target statistic if FALSE.

additional arguments to pass.

This plot function can produce three types of plots with a stochastic network model simulated

through netsim:

1. type="epi": epidemic model results (e.g., disease prevalence and incidence) may be plotted.

2. type="network": a static network plot will be generated. A static network plot of a dynamic
network is a cross-sectional extraction of that dynamic network at a specific time point. This
plotting function wraps the plot.network function in the network package. Consult the help
page for plot.network for all of the plotting parameters. In addition, four plotting parameters
specific to netsim plots are available: sim, at, col.status, and shp.bip.

plot.netsim 71

3. type="formation"”: summary network statistics related to the network model formation are
plotted. These plots are similar to the formation plots for netdx objects. When running
a netsim simulation, one must specify there that save.nwstats=TRUE; the plot here will
then show the network statistics requested explicitly in nwstats.formula, or will use the
formation formula set in netest otherwise.

When type="epi”, this plotting function will extract the epidemiological output from a model
object of class netsim and plot the time series data of disease prevalence and other results. The
summary statistics that the function calculates and plots are individual simulation lines, means of
the individual simulation lines, and quantiles of those individual simulation lines. The mean line,
toggled on with mean.line=TRUE is calculated as the row mean across simulations at each time
step.

Compartment prevalences are the size of a compartment over some denominator. To plot the raw
numbers from any compartment, use popfrac=FALSE; this is the default for any plots of flows.
The popfrac parameter calculates and plots the denominators of all specified compartments using
these rules: 1) for one-group models, the prevalence of any compartment is the compartment size
divided by the total population size; 2) for two-group models, the prevalence of any compartment
is the compartment size divided by the group population size. For any prevalences that are not
automatically calculated, the mutate_epi may be used to add new variables to the netsim object
to plot or analyze.

The quantiles show the range of outcome values within a certain specified quantile range. By
default, the interquartile range is shown: that is the middle 50% of the data. This is specified by
gnts=0.5. To show the middle 95% of the data, specify qnts=0.95. To toggle off the polygons
where they are plotted by default, specify gnts=FALSE.

When type="network", this function will plot cross sections of the simulated networks at specified
time steps. Because it is only possible to plot one time step from one simulation at a time, it is
necessary to enter these in the at and sims parameters. To aide in visualizing representative and
extreme simulations at specific time steps, the sims parameter may be set to "mean” to plot the
simulation in which the disease prevalence is closest to the average across all simulations, "min” to
plot the simulation in which the prevalence is lowest, and "max" to plot the simulation in which the
prevalence is highest.

See Also

plot.network, mutate_epi

Examples

Independent SI Model

Initialize network and set network model parameters

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the network model
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Simulate the epidemic model

72 plot.transmat

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)
init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 20, nsims = 3,
verbose = FALSE, save.nwstats = TRUE,
nwstats.formula = ~edges + meandeg + concurrent)

mod <- netsim(est, param, init, control)

Plot epidemic trajectory

plot(mod)

plot(mod, type = "epi”, grid = TRUE)

plot(mod, type = "epi”, popfrac = TRUE)

plot(mod, type = "epi”, y = "si.flow"”, gnts = 1, ylim = c(0, 4))

Plot static networks
par(mar = c(0,90,0,0))
plot(mod, type = "network”)

Automatic coloring of infected nodes as red
par(mfrow = c(1, 2), mar = c(0, @, 2, 0))

plot(mod, type = "network”, main = "Min Prev | Time 50",
col.status = TRUE, at = 20, sims = "min")
plot(mod, type = "network”, main = "Max Prev | Time 50",

col.status = TRUE, at = 20, sims = "max")

Automatic shape by mode number (circle = mode 1)

par(mar = c(0,0,0,0))

plot(mod, type = "network"”, at = 20, col.status = TRUE, shp.bip = "square")
plot(mod, type = "network”, at = 20, col.status = TRUE, shp.bip = "triangle")

Plot formation statistics

par(mfrow = c(1,1), mar = c¢(3,3,1,1), mgp = c(2,1,0))
plot(mod, type = "formation", grid = TRUE)

plot(mod, type = "formation”, plots.joined = FALSE)
plot(mod, type = "formation”, sims = 2:3)

plot(mod, type = "formation", plots.joined = FALSE,

stats = c("edges"”, "concurrent”))
plot(mod, type = "formation”, stats = "meandeg”,
mean.lwd = 1, gnts.col = "seagreen”, mean.col = "black")
plot.transmat Plot transmat infection tree in one of several styles
Description

Plots the infection tree described in a transmat object in one of several styles: phylogenetic tree,
an un-rooted network, a hierarchical tree, or a transmissionTimeline.

summary.dem 73

Usage

S3 method for class 'transmat'
plot(x, style = c("phylo”, "network",

"transmissionTimeline"”), ...)
Arguments
X A transmat object to be plotted
style Character name of plot style. One of "phylo", "network", or "transmissionTime-
line"

Additional plot arguments to be passed to lower-level plot functions (plot.network,
plot.phylo, etc)
Details

The phylo plot requires the ape package. The ndtv::transmissionTimeline requires that the
ndtv package is installed. All of the options are essentially wrappers to other plot calls with some
appropriate preset arguments.

See Also

plot.network,plot.phylo

summary . dcm Summary Model Statistics

Description

Extracts and prints model statistics solved with dcm.

Usage
S3 method for class 'dcm'
summary(object, at, run = 1, digits = 3, ...)
Arguments
object An EpiModel object of class dcm.
at Time step for model statistics.
run Model run number, for dem class models with multiple runs (sensitivity analy-
ses).
digits Number of significant digits to print.

Additional summary function arguments (not used).

74 summary.icm

Details

Summary statistics for the main epidemiological outcomes (state and transition size and prevalence)
from an dem model. Time-specific summary measures are provided, so it is necessary to input a time
of interest. For multiple-run models (sensitivity analyses), input a model run number. See examples
below.

See Also

dcm

Examples

Deterministic SIR model with varying act.rate

param <- param.dcm(inf.prob = 0.2, act.rate = 2:4, rec.rate = 1/3,
a.rate = 0.011, ds.rate = 0.01,
di.rate = 0.03, dr.rate = 0.01)

init <- init.dcm(s.num = 1000, i.num = 1, r.num = Q)

control <- control.dcm(type = "SIR", nsteps = 50)

mod <- dcm(param, init, control)

summary(mod, at = 25, run = 1)

summary(mod, at = 25, run = 3)
summary(mod, at = 26, run = 3)
summary.icm Summary Model Statistics

Description

Extracts and prints model statistics simulated with icm.

Usage
S3 method for class 'icm'
summary(object, at, digits = 3, ...)
Arguments
object An EpiModel object of class icm.
at Time step for model statistics.
digits Number of significant digits to print.

Additional summary function arguments.

Details

Summary statistics for the main epidemiological outcomes (state and transition size and prevalence)
from an icm model. Time-specific summary measures are provided, so it is necessary to input a time
of interest.

summary.netsim 75

See Also

icm

Examples

Stochastic ICM SI model with 3 simulations

param <- param.icm(inf.prob = 0.2, act.rate = 1)

init <- init.icm(s.num = 500, i.num = 1)

control <- control.icm(type = "SI", nsteps = 50,
nsims = 5, verbose = FALSE)

mod <- icm(param, init, control)

summary(mod, at = 25)

summary(mod, at = 50)

summary.netsim Summary Model Statistics

Description

Extracts and prints model statistics simulated with netsim.

Usage
S3 method for class 'netsim’
summary(object, at, digits = 3, ...)
Arguments
object An EpiModel object of class netsim.
at Time step for model statistics.
digits Number of significant digits to print.

Additional summary function arguments.

Details

Summary statistics for the main epidemiological outcomes (state and transition size and prevalence)
from an netsim model. Time-specific summary measures are provided, so it is necessary to input a
time of interest.

See Also

netsim

76 truncate_sim

Examples

Not run:

Independent SI Model

Initialize network and set network model parameters

nw <- network.initialize(n = 100, bipartite = 50, directed = FALSE)
formation <- ~edges

target.stats <- 50

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 20)

Estimate the ERGM models (see help for netest)
est1l <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)

Parameters, initial conditions, and controls for model

param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.15)

init <- init.net(i.num = 10, i.num.m2 = 10)

control <- control.net(type = "SI", nsteps = 100, nsims = 5, verbose.int = 0)

Run the model simulation
mod <- netsim(estl, param, init, control)

summary(mod, at = 1)
summary(mod, at = 50)
summary(mod, at = 100)

End(Not run)

truncate_sim Truncate Simulation Time Series

Description
Left-truncates a simulation epidemiological summary statistics and network statistics at a specified
time step.

Usage

truncate_sim(x, at)

Arguments

X Object of class netsim or icm.

at Time step at which to left-truncate the time series.
Details

This function would be used when running a follow-up simulation from time steps b to c after a
burnin period from time a to b, where the final time window of interest for data analysis is b to ¢
only.

update_dissolution 77

Examples

param <- param.icm(inf.prob = 0.2, act.rate = 0.25)

init <- init.icm(s.num = 500, i.num = 1)

control <- control.icm(type = "SI", nsteps = 200, nsims = 1)
mod1 <- icm(param, init, control)

df <- as.data.frame(mod1)

print(df)

plot(mod1)

mod1$control$nsteps

mod2 <- truncate_sim(mod1, at = 150)
df2 <- as.data.frame(mod2)
print(df2)

plot(mod2)

mod2$control$nsteps

update_dissolution Adjust Dissolution Component of Network Model Fit

Description

Adjusts the dissolution component of an dynamic ERGM fit using the netest function with the
edges dissolution approximation method.

Usage

update_dissolution(old.netest, new.coef.diss)

Arguments

old.netest An object of class netest, from the netest function.

new.coef.diss An object of class disscoef, from the dissolution_coef's function.

Details

Fitting an ERGM is a computationally intensive process when the model includes dyadic depen-
dent terms. With the edges dissolution approximation method of Carnegie et al, the coefficients for
a temporal ERGM are approximated by fitting a static ERGM and adjusting the formation coeffi-
cients to account for edge dissolution. This function provides a very efficient method to adjust the
coefficients of that model when one wants to use a different dissolution model; a typical use case
may be to fit several different models with different average edge durations as targets. The example
below exhibits that case.

78

Examples

Not run:
nw <- network.initialize(1000, directed = FALSE)

Two dissolutions: an average duration of 300 versus 200
diss.300 <- dissolution_coefs(~offset(edges), 300, 0.001)
diss.200 <- dissolution_coefs(~offset(edges), 200, 0.001)

Fit the two reference models

est300 <- netest(nw = nw,
formation = ~edges,
target.stats = c(500),
coef.diss = diss.300)

est200 <- netest(nw = nw,
formation = ~edges,
target.stats = c(500),
coef.diss = diss.200)

Alternatively, update the 300 model with the 200 coefficients
est200.compare <- update_dissolution(est300, diss.200)

identical (est200@$coef.form, est200.compare$coef.form)

End(Not run)

update_dissolution

Index

*Topic GUI comp_plot, 15
epiweb, 27 geom_bands, 28

*Topic colorUtils plot.dcm, 62
color_tea, 14 plot.icm, 64

plot.netdx, 66
plot.netsim, 69

+Topic extract
as.data.frame.dcm, 6
as.data.frame.icm, 7
as.data.frame.netdx, 9
get_network, 31

apportion_lr,5
arrivals.icm, 18,45
get_nwstats, 32 arrivals.net, 20, 46
get_sims, 33 as.data.frame.dcm, 6, 23
is.transmat, 40 as.data.frame.default, 6, 7, 9
as.data.frame.icm, 7, 35
as.data.frame.netdx, 9
as.data.frame.netsim, 53
as.data.frame.netsim
(as.data.frame.icm), 7
as.network. transmat, 10

merge.icm, 41

merge.netsim, 42

summary.dcm, 73

summary.icm, 74

summary.netsim, 75
*Topic model

dem, 22 as.phylo.transmat, 10
icm, 34 .
netest, 50 brewer.pal.info, 63
hEt51135% calc_eql, 11

*Topic netUtils check_bip_degdist, 13
check_bip_degdist, 13 col2rgb, 63

dissolution_coefs, 24

edgelist_censor, 26
+Topic package

EpiModel-package, 3

color_tea, 14
comp_plot, 15, 23, 35
control.dcm, 4, 16, 23, 37, 56, 57
control.ergm, 51

+Topic parameterization control.icm, 4, 17, 34, 38, 58, 59
control.dcm, 16 control.net, 4, 14, 19, 31, 38, 46, 53, 61, 70
control.icm, 17 control.simulate.ergm, 49
control.net, 19 control.simulate.network, 49
init.dcm, 36 control.simulate.stergm, 49
init.icm, 37 control.stergm, 51
init.net, 38
param.dcm, 54 dem, 4, 6, 16, 17,22, 28, 37, 56, 57, 62, 63, 74

param.icm, 57 departures.icm, 18,45

param.net, 59
+Topic plot

79

departures.net, 20, 46
discord_edgelist, 21

80

dissolution_coefs, 24, 50, 61,77

edgelist_censor, 26
edgelist_meanage, 67
edges_correct, 20, 46
EpiModel (EpiModel-package), 3
EpiModel-package, 3
epiweb, 27

geom_bands, 28
get_args, 29
get_degree, 29
get_formula_term_attr, 30
get_network, 31
get_nwstats, 32
get_prev.icm, 18, 45
get_prev.net, 21, 46
get_sims, 33
get_transmat, 10
get_transmat (is.transmat), 40
grid, 62, 65,67, 70

icm, 4, 17-19, 28, 34, 37, 38, 42, 44, 58, 59,

65,75
infection.icm, 18, 19, 44
infection.net, 21, 22, 46
init.dcm, 4, 17, 23,36, 57
init.icm, 4, 19, 34, 37, 44, 59
init.net, 4, 22, 38,45, 61
InitErgmTerm. absdiffby, 39
InitErgmTerm.absdiffnodemix, 40
initialize.icm, I8, 44
initialize.net, 20, 45
is.transmat, 40

merge.icm, 41
merge.netsim, 42
modules.icm, 44
modules.net, 45, 53
mutate_epi, 47, 71

netdx, 5, 21, 31, 32,48, 51, 52, 66, 67
netest, 4, 5, 22, 25, 45, 46, 50, 67, 77
netsim, 5, 14, 19, 21, 22, 28, 31, 32, 38, 41,

43,45,51, 52,52, 59-61, 70,75
network, /0

ode, 16

par, 62, 65, 70

INDEX

param.dcm, 4, 17,23, 37, 54
param.icm, 4, 19, 34, 38, 45, 57
param.net, 4, 22, 38, 46, 59
phylo, 11

plot.dcm, 23, 62
plot.default, 62
plot.icm, 35, 64
plot.netdx, 49, 66
plot.netsim, 14, 53, 69
plot.network, 70, 71, 73
plot.phylo, 11,73
plot.transmat, 72

RColorBrewer, 62, 63
read. tree, 11
recovery.icm, 18, 44
recovery.net, 20, 46
resim_nets, 20, 46

summary.dcm, 23, 73
summary.icm, 35, 74
summary.netsim, 53,75

transco, 62, 64, 65, 67, 69, 70
transmat, 10, 11,72, 73
transmat (is.transmat), 40
truncate_sim, 76

update_dissolution, 77

verbose.net, 21, 46

	EpiModel-package
	apportion_lr
	as.data.frame.dcm
	as.data.frame.icm
	as.data.frame.netdx
	as.network.transmat
	as.phylo.transmat
	calc_eql
	check_bip_degdist
	color_tea
	comp_plot
	control.dcm
	control.icm
	control.net
	dcm
	dissolution_coefs
	edgelist_censor
	epiweb
	geom_bands
	get_args
	get_degree
	get_formula_term_attr
	get_network
	get_nwstats
	get_sims
	icm
	init.dcm
	init.icm
	init.net
	InitErgmTerm.absdiffby
	InitErgmTerm.absdiffnodemix
	is.transmat
	merge.icm
	merge.netsim
	modules.icm
	modules.net
	mutate_epi
	netdx
	netest
	netsim
	param.dcm
	param.icm
	param.net
	plot.dcm
	plot.icm
	plot.netdx
	plot.netsim
	plot.transmat
	summary.dcm
	summary.icm
	summary.netsim
	truncate_sim
	update_dissolution
	Index

