Package ‘EpiReport’

July 5, 2021

Type Package
Title Epidemiological Report
Version 1.0.2
Date 2021-07-02

Description Drafting an epidemiological report in 'Microsoft Word' format for a given disease, similar to the Annual Epidemiological Reports published by the European Centre for Disease Prevention and Control. Through standalone functions, it is specifically designed to generate each disease specific output presented in these reports and includes:
- Table with the distribution of cases by Member State over the last five years;
- Seasonality plot with the distribution of cases at the European Union / European Economic Area level, by month, over the past five years;
- Trend plot with the trend and number of cases at the European Union / European Economic Area level, by month, over the past five years;
- Age and gender bar graph with the distribution of cases at the European Union / European Economic Area level.

Two types of datasets can be used:
- The default dataset of dengue 2015-2019 data;
- Any dataset specified as described in the vignette.

Depends R (>= 3.5.0)
License EUPL
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports officer, flextable, zoo, png, dplyr, tidyr, tidyselect, ggplot2
Suggests knitr (>= 1.20), rmarkdown
VignetteBuilder knitr

NeedsCompilation no
Author Lore Merdrignac [aut, ctr, cre] (Author of the package and original code),
Tommi Karki [aut, fnd],
Esther Kissling [aut, ctr],
Joana Gomes Dias [aut, fnd] (Project manager)

Maintainer Lore Merdrignac <l.merdrignac@epiconcept.fr>

Repository CRAN

Date/Publication 2021-07-05 16:20:02 UTC

R topics documented:

- AERparams .. 3
- body_replace eget_at_bkm 4
- cleanECDCTable ... 5
- cleanMeasureCode .. 6
- DENGUE2019 .. 7
- EcdcColors ... 8
- filterDisease .. 9
- getAER .. 10
- getAgeGender ... 11
- getMap .. 13
- getSeason ... 14
- getTableByMS ... 16
- getTemplate ... 17
- getTrend .. 18
- includeMap .. 20
- MSCode .. 21
- orderQuasium ... 22
- plotAge ... 23
- plotAgeGender .. 24
- plotBar .. 25
- plotBarGrouped ... 26
- plotBarGroupedH ... 28
- plotBarH .. 29
- plotPie .. 31
- plotSeasonality .. 32
- plotTS .. 33
- plotTS12MAvg .. 35
- plotTSGrouped .. 36
- previewMap ... 37
- SALM2016 ... 38
- shapeECDCFlexTable 40
- toCapTitle .. 40

Index 42
Description

A dataset describing the parameters to be used for each output of each disease report for all 53 health topics included in TESSy.

Usage

AERparams

Format

A data frame with 53 rows (corresponding to the 53 health topics) and 24 variables:

- **HealthTopic**: Disease code that should match with the health topic code from the disease-specific dataset e.g. ANTH, SALM, etc.
- **DG** (optional): Disease group e.g. FWD
- **DP** (optional): Disease programme e.g. FWD
- **Label**: Disease label to be used in the report e.g. salmonellosis, anthrax
- **FrequencyCategory** (optional): Frequency of the disease e.g. VERY RARE, NON-RARE, etc.
- **MeasurePopulation**: Type of population presented for this disease i.e. ALL or CONFIRMED cases
- **DatePublicAtlas**: Date of latest availability in the public access of the Atlas
- **TableUse**: Type of table to present in the report i.e. NO table, ASR table presenting age-standardised rates, RATE table presenting rates or COUNT table presenting the number of cases only.
- **TableRatesLabel**: Label to use in the table for rates e.g. RATE PER 100000 POPULATION
- **TableRatesNoDecimals**: Number of decimals to use when presenting rates
- **TableASRNoDecimals**: Number of decimals to use when presenting ASR
- **AgeGenderUse**: Type of age and gender bar graph to present i.e. NO graph, AG-COUNT Bar graph presenting the number of cases by age and gender, AG-RATE Bar graph presenting the rates of cases by age and gender, AG-PROP Bar graph presenting the proportion of cases by age and gender, A-RATE Bar graph presenting the rates of cases by age.
- **AgeGenderBarGraphLabel**: Label to use in the age and gender bar graph
- **AgeGenderGraphNoDecimals**: Number of decimals to use when presenting rates in the age and gender bar graph
- **TSTrendGraphUse**: Logical Y/N specifying whether to include a line graph describing the trend of the disease over the time
- **TSSeasonalityGraphUse**: Logical Y/N specifying whether to include a line graph describing the seasonality of the disease
- **TSSpecific**: Logical Y/N for specific line graph inclusion
MapNumbersUse Logical Y/N specifying whether to include the map presenting the number of cases by Member State

MapRatesUse Logical Y/N specifying whether to include the map presenting the rates of cases by Member State

MapRatesNoDecimals (optional) Number of decimals to use for presenting maps

MapASRUse Logical Y/N specifying whether to include the map presenting the age-standardised rates of cases by Member State

MapASRNoDecimals (optional) Number of decimals to use for presenting maps

Transmission Not implemented yet

TransmissionNoDecimals Not implemented yet

Replace a plot at a bookmark location

Replace a plot at a bookmark location saving it as a PNG file in a temporary folder. A bookmark will be considered as valid if enclosing words within a paragraph; i.e., a bookmark along two or more paragraphs is invalid, a bookmark set on a whole paragraph is also invalid, but bookmarking few words inside a paragraph is valid.

Usage

body_replace_gg_at_bkm(doc, gg, bookmark, width = 6, height = 3)

Arguments

doc a docx device

gg a ggplot object or any object that can be printed in grDevices::png()

bookmark bookmark id

width the width of the device in inches

height the height of the device.

Value

doc
Examples

```r
doc <- officer::read_docx(path = file.path(system.file(package = "EpiReport"),
                         "template/AER_template.docx" ))
p <- EpiReport::getTrend()
doc <- EpiReport::body_replace_gg_at_bkm(doc = doc,
                               gg = p,
                               bookmark = "TS_TREND",
                               width = 6,
                               height = 3)
```

cleanECDCTable
Cleaning the final table

Description

Cleaning the final table: identifying missing reports with '-' , replacing the Member State codes with Member State names (see correspondence table **MSCode**), identifying not reporting Member States with '. '

Usage

```r
cleanECDCTable(
  x,
  Country = EpiReport::MSCode$Country,
  GeoCode = EpiReport::MSCode$GeoCode
)
```

Arguments

- **x**
 dataframe, dataset to clean

- **Country**
 character vector, full names of the countries / Member States (e.g. Austria, Belgium, etc.) that will replace the GeoCodes included the x dataframe (Default `MSCode$Country`)

- **GeoCode**
 character vector, corresponding GeoCode of each Member State (e.g. AT, BE, etc.) to replace with the country full names (Default `MSCode$GeoCode`)

Value

cleaned ECDC dataframe

See Also

Global function: `getTableByMS`
Default dataset **MSCode**
cleanMeasureCode

Clean the MeasureCode variable

Description

Clean the MeasureCode variable and replace the specific codes with the generic ones (e.g. ACCUTE.AGE_GENDER.RATE will be replaced by CONFIRMED.AGE_GENDER.RATE)

Usage

cleanMeasureCode(var)

Arguments

var character string vector variable, variable to clean

Details

- ALL.COUNT will replace the following codes:
 - ALL.DOMESTIC.COUNT
 - AGELT1.COUNT
- ALL.RATE will replace the following codes:
 - ALL.DOMESTIC.AGE.RATE
- ALL.AGE.RATE will replace the following codes:
 - ALL.DOMESTIC.AGE.RATE
- ALL.AGESTANDARDISED.RATE will replace the following codes:
 - ALL.DOMESTIC.AGESTANDARDISED.RATE
- CONFIRMED.COUNT will replace the following codes:
 - ALL.LABCONFIRMED.COUNT
 - CONFIRMED.LABCONFIRMED.COUNT
 - CONFIRMED.AGELT1.COUNT
 - TYPHOID.COUNT
- CONFIRMED.RATE will replace the following codes:
 - CONFIRMED.LABCONFIRMED.RATE
 - CONFIRMED.AGELT1.RATE
 - TYPHOID.RATE
- CONFIRMED.AGESTANDARDISED.RATE will replace the following codes:
 - CONFIRMED.LABCONFIRMED.AGESTANDARDISED.RATE
- CONFIRMED.AGE_GENDER.RATE will replace the following codes:
 - CONFIRMED.LABCONFIRMED.AGE_GENDER.RATE
 - TYPHOID.AGE_GENDER.RATE
 - ACCUTE.AGE_GENDER.RATE
Value

cleaned vector variable

See Also

SALM2016

Examples

x <- EpiReport::SALM2016
x$MeasureCode <- cleanMeasureCode(x$MeasureCode)

DENGUE2019

Dataset including Dengue data for 2015-2019

Description

A dataset containing the data and indicators required to build the epidemiological report for Dengue
2019 TESSy data (default dataset used throughout EpiReport)

Usage

DENGUE2019

Format

A data frame with 44,332 rows and 11 variables:

- **HealthTopicCode**: Disease code e.g. ANTH, SALM, etc.
- **MeasureCode**: Code of the measure indicator
- **TimeUnit**: Unit of the time variable i.e. Y for yearly data or M for monthly data
- **TimeCode**: Time variable including dates in any formats available (according to the unit defined in
 TimeUnit) yearly data (e.g. 2001) or monthly data (e.g. 2001-01)
- **GeoCode**: Geographical level in coded format including country names (e.g. AT for Austria, BE for
 Belgium, BG for Bulgaria, see also the EpiReport::MSCode table, correspondence table for
 Member State labels and codes)
- **XValue**: XValue
- **XLabel**: The label associated with the x-axis in the epidemiological report (see getAgeGender() and
 plotAgeGender() bar graph for the age variable)
- **YValue**: The value associated with the y-axis in the epidemiological report (see plotAge() bar
 graph for the variable age, or getTableByMS() for the number of cases, rate or age-standardised
 rate in the table by Member States by year)
- **YLabel**: The label associated with the y-axis in the epidemiological report (see getAgeGender() and
 plotAgeGender() bar graph for the grouping variable gender)
- **ZValue**: The value associated with the stratification of XLabel and YLabel in the age and gender
 bar graph (see getAgeGender() and plotAgeGender())
- **N**: Number of cases (see getTrend() and getSeason() line graph)
See Also

The correspondence table for Member State labels and codes MSCode and the functions mentioned above: getAgeGender, plotAgeGender, plotAge, getTableByMS, getTrend and getSeason.

EcdcColors

Colour palettes following the March 2018 ECDC guidelines for presentation of surveillance data

Description

Usage

EcdcColors(col_scale = "green", n = NULL, grey_shade = NULL, hot_cols = NULL)

Arguments

col_scale

Selected colour scale, defaults to 'green'. Select from 'green', 'blue', 'red', 'grey', 'qualitative' or 'hot(cold)'

n

Number of colours from each colour scale, apart from grey, in order indicated in the guidelines. Defaults to one colour, apart from two colours for the hotcold scale, max 7-8 colours for each scale. To select grey shades, use the argument grey_shade; to select number of hot (warm) colours in the hotcold scale, use the argument hot_cols.

grey_shade

(Optional: use only for 'grey') Selected shade(s) of grey in selected order; c('light', 'mediumlight','medium','mediumdark','dark'). Overrides given number of colours (n). Defaults to 'medium'.

hot_cols

(Optional: use only for 'hotcold') Selected number of hot (warm) colours in the hotcold colour scale. Must be smaller than the total number of colours (n). Defaults to floored half of total hotcold colours.

Author(s)

Tommi Karki

Examples

Select three first green colours
EcdcColors("green", n=3)

Select two first qualitative colours
EcdcColors("qual", n=2)
Select seven red colours
EcdcColors("red", n=7)

EcdcColors("grey", grey_shade = c("mediumlight", "dark"))

Use in a graph
Dummy data
mydat <- data.frame(ID = c(seq(1,10,1)),
 Gender = c(rep(c("F", "M"),5)))
barplot(table(mydat$Gender),
 col = EcdcColors(col_scale = "qual", n=2))

Hot-cold colour scale
barplot(c(1:4),
 col = EcdcColors(col_scale = "hotcold", n = 4, hot_cols = 2))

filterDisease

Filter disease parameters

Description

Filter the table of parameters for the report on the given disease

Usage

```r
filterDisease(dis, reportParameters)
```

Arguments

- `dis` character string, disease code
- `reportParameters` dataset of parameters for the report (default AERparams)

Value

dataframe with one row (from the AERparams dataframe) corresponding to the parameters of the selected disease

See Also

AERparams

Examples

disease <- "SALM"
reportParameters <- EpiReport::AERparams
reportParameters <- filterDisease(disease, reportParameters)
getAER

Get full disease-specific epidemiological report

Description

Function to generate the ‘Microsoft Word’ epidemiological report (similar to the ECDC Annual Epidemiological Report (AER)) including all disease-specific outputs at each output-specific bookmarks exact location.
(for further information on the outputs and the corresponding bookmarks, please see the package vignette “The Epidemiological Report Package” with browseVignettes(“EpiReport”))

Usage

getaER(
 template = file.path(system.file(package = "EpiReport"), "template/AER_template.docx"),
 outputPath = getwd(),
 x = EpiReport::DENGUE2019,
 disease = "DENGUE",
 year = 2019,
 reportParameters = EpiReport::AERparams,
 MSCode = EpiReport::MSCode,
 pathPNG = system.file("maps", package = "EpiReport")
)

Arguments

template doc (see ‘officer’ package), the empty 'Word' document template in which to include the table and plots disease-specific outputs. Default value is the empty template included in the package. See getTemplate().

outputPath character string, the full path where to generate the epidemiological report 'Word' output. Default value is the current working directory getwd().

x dataframe, raw disease-specific dataset (see specification of the dataset in the package vignette with browseVignettes(“EpiReport”))(default DENGUE2019)

disease character string, disease code (default "DENGUE"). Please make sure the disease code is included in the disease-specific dataset x in the HealthTopicCode variable.

year numeric, year to produce the report for (default 2019). Please make sure the year is included in the disease-specific dataset x in the TimeCode variable.

reportParameters dataframe, dataset including the required parameters for the report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
getAgeGender

MSCode dataframe, correspondence table of GeoCode names and codes (default MSCode) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))

pathPNG character string, the full path to the folder containing the maps (in PNG) to include in the final report

Value
A ‘Word’ document

See Also
Default template: getTemplate
Default datasets: MSCode AERparams SALM2016 DENGUE2019
Disease-specific outputs: getTableByMS getSeason getTrend getMap getAgeGender

Examples

Not run:
--- Generating the AER report using the default Dengue dataset
getAER()
End(Not run)

Not run:
--- Or using external data (example below)
ZIKV2016 <- read.table("data/ZIKV2016.csv", sep = ",", header = TRUE, stringsAsFactors = FALSE)
output <- "C:/EpiReport/doc/"
pathMap <- "C:/EpiReport/maps/"
getAER(disease = "ZIKV", year = 2016, x = ZIKV2016, outputPath = output, pathPNG = pathMap)
End(Not run)

getAgeGender

Get disease-specific age and gender bar graph

Description
Function returning the age and gender bar graph that will be included in the epidemiological report at the bookmark location 'BARGPH_AEGENDER' of the template report.
The bar graph presents the distribution of cases at EU/EEA level using either:

- AG-COUNT: The number of cases by age and gender
- AG-RATE: The rate per 100 000 cases by age and gender
- AG-PROP: The proportion of cases by age and gender
• A-RATE: The rate per 100 000 cases by age only

The choice of the type of bar graph is set in the report parameters table AERparams. (see ECDC reports https://www.ecdc.europa.eu/en/all-topics-z/surveillance-and-disease-data/annual-epidemiological-reports-aers)

Usage

getAgeGender(
 x = EpiReport::DENGUE2019,
 disease = "DENGUE",
 year = 2019,
 reportParameters = EpiReport::AERparams,
 geoCode = "EU_EEA31",
 index = 1,
 doc
)

Arguments

 x dataframe, raw disease-specific dataset (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport")) (default DENGUE2019)
 disease character string, disease code (default "DENGUE"). Please make sure the disease code is included in the disease-specific dataset x in the HealthTopicCode variable.
 year numeric, year to produce the graph for (default 2019). Please make sure the year is included in the disease-specific dataset x in the TimeCode variable.
 reportParameters dataframe, dataset including the required parameters for the graph and report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
 geoCode character string, GeoCode to run the analysis on (default "EU_EEA31")
 index integer, figure number
 doc 'Word' document (see 'officer' package) in which to add the graph at the bookmark location. If doc is missing, getAgeGender returns the ggplot2 object.

Value

'Word' doc or a ggplot2 object

See Also

Global function for the full epidemiological report: getAER
Required Packages: ggplot2 officer
Internal functions: plotBarGrouped (use of plotAgeGender discouraged) plotBar (use of plotAge discouraged) EcdcColors
Default datasets: AERparams
Examples

--- Plot using the default dataset
getAgeGender()

--- Plot using external dataset
--- Please see examples in the vignette
browseVignettes(package = "EpiReport")

getMap

Get disease-specific map: distribution of cases by Member State

Description

Function returning the disease-specific PNG map previously created and stored in a specific folder (see pathPNG argument) and that will be included in the epidemiological report at the bookmark location of the template report, depending of the type of map. Three type of maps can be included in the report:

- Bookmark 'MAP_NB': Distribution of cases by country. An additional caption will be included at the location of the bookmark 'MAP_NB_CAPTION'.
- Bookmark 'MAP_RATE': Distribution of cases per 100 000 population by country. An additional caption will be included at the location of the bookmark 'MAP_RATE_CAPTION'.
- Bookmark 'MAP_ASR': Distribution of cases using age-strandardised rates per 100 000 population by country. An additional caption will be included at the location of the bookmark 'MAP_ASR_CAPTION'.

Usage

gemap(
 disease = "DENGUE",
 year = 2019,
 reportParameters = EpiReport::AERparams,
 index = 1,
 pathPNG = system.file("maps", package = "EpiReport"),
 doc
)

Arguments

disease character string, disease code (default "DENGUE").
year numeric, year to produce the map for (default 2019).
getSeason

getSeason

Get disease-specific seasonality graph: distribution of cases by month

Description

Function returning the plot describing the seasonality of the disease that will be included in the epidemiological report at the bookmark location 'TS_SEASON' of the template report.

The graph includes the distribution of cases at EU/EEA level, by month, over the past five years, with:

- The number of cases by month in the reference year (green solid line)
- The mean number of cases by month in the four previous years (grey dashed line)
- The minimum number of cases by month in the four previous years (grey area)
- The maximum number of cases by month in the four previous years (grey area)

getSeason

Usage

getSeason(
 x = EpiReport::DENGUE2019,
 disease = "DENGUE",
 year = 2019,
 reportParameters = EpiReport::AERparams,
 MSCode = EpiReport::MSCode,
 index = 1,
 doc
)

Arguments

x dataframe, raw disease-specific dataset (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport")) (default DENGUE2019)

disease character string, disease code (default "DENGUE"). Please make sure the disease code is included in the disease-specific dataset x in the HealthTopicCode variable.

year numeric, year to produce the graph for (default 2019). Please make sure the year is included in the disease-specific dataset x in the TimeCode variable.

reportParameters dataframe, dataset including the required parameters for the graph and report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))

MSCode dataframe, correspondence table of GeoCode names and codes (default MSCode) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))

index integer, figure number

doc 'Word' document (see 'officer' package) in which to add the graph at the bookmark location. If doc is missing, getSeason returns the ggplot2 object.

Value

'Word' doc or a ggplot2 object

See Also

Global function for the full epidemiological report: getAER
Required Packages: ggpplot2 officer
Internal functions: plotSeasonality
Default datasets: AERparams MSCode

Examples

--- Plot using the default dataset
getSeason()

--- Plot using external dataset
--- Please see examples in the vignette
browseVignettes(package = "EpiReport")

getTableByMS

Get disease-specific table: distribution of cases by Member State (GeoCode)

Description

Function returning the table (`flextable`) that will be included in the epidemiological report at the bookmark location 'TABLE1' of the template report. An additional caption will be included at the location of the bookmark 'TABLE1_CAPTION'.

Usage

```
getTableByMS(
  x = EpiReport::DENGUE2019,
  disease = "DENGUE",
  year = 2019,
  reportParameters = EpiReport::AERparams,
  MSCode = EpiReport::MSCode,
  index = 1,
  doc
)
```

Arguments

- **x**: dataframe, raw disease-specific dataset (see specification of the dataset in the package vignette with `browseVignettes(package = "EpiReport")`) (default `DENGUE2019`)
- **disease**: character string, disease code (default "DENGUE"). Please make sure the disease code is included in the disease-specific dataset `x` in the `HealthTopicCode` variable.
- **year**: numeric, year to produce the table for (default 2019). Please make sure the year is included in the disease-specific dataset `x` in the `TimeCode` variable.
- **reportParameters**: dataframe, dataset including the required parameters for the report production (default `AERparams`) (see specification of the dataset in the package vignette with `browseVignettes(package = "EpiReport")`)
getTemplate

MSCode dataframe, correspondence table of GeoCode names and codes (default MSCode) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))

index integer, figure number

doc 'Word' document (see officer package) in which to add the table at the bookmark location. If doc is missing, getTable returns the flextable table object.

Details

The current version of the 'EpiReport' package includes three types of table (see detailed specification of the tables in the package vignette with browseVignettes(package = "EpiReport")):

 • COUNT - Table presenting the number of cases by Member State (GeoCode) over a 5-year period;
 • RATE - Table presenting the number of cases and rates by Member State (GeoCode) over a 5-year period;
 • ASR - Table presenting the number of cases and rates by Member State (GeoCode) over a 5-year period, including age-standardised rates for the most recent year.

Value

'Word' doc or flextable object (see 'flextable' package)

See Also

Global function for the full epidemiological report: getAER
Required Packages: flextable officer
Internal functions: shapeECDCFlexTable cleanECDCTable
Default datasets: AERparams MSCode

Examples

--- Draft the table using the default Dengue dataset
getableByMS()

getTemplate Get epidemiological report (empty) template

Description

Function to export the generic 'Microsoft Word' empty template (included in the 'EpiReport' package) used to produce the epidemiological report similar to the ECDC Annual Epidemiological Report (AER). The modified version of the template can then be used to produce the final epidemiological report using getAER(template = 'NewTemplate.docx',...)

(see the package vignette 'The Epidemiological Report Package' with browseVignettes("EpiReport"))

getTrend

Usage

cgetTemplate(output_path)

Arguments

output_path character string, the full path where to create the 'Word' output. Default location will be the current working directory (default getwd())

Value

A 'Word' document

See Also

ggetAER

Examples

Not run:
--- Export the template in the default folder: working directory
ggetTemplate()

--- Or specify the full path
ggetTemplate(output_path = getwd())

End(Not run)

getTrend

Get disease-specific trend plot: trend and number of cases by month

Description

Function returning the plot describing the trend of the disease over time that will be included in the epidemiological report at the bookmark location 'TS_TREND' on the template report.

The graph includes the number of cases at EU/EEA level, by month, over the past five years, with:

- The number of cases by month over the 5-year period (grey solid line)
- The 12-month moving average of the number of cases by month (green solid line)

getTrend

Usage

getTrend(
 x = EpiReport::DENGUE2019,
 disease = "DENGUE",
 year = 2019,
 reportParameters = EpiReport::AERparams,
 MSCode = EpiReport::MSCode,
 index = 1,
 doc
)

Arguments

x dataframe, raw disease-specific dataset (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport")) (default DENGUE2019)
disease character string, disease code (default "DENGUE"). Please make sure the disease code is included in the disease-specific dataset x in the HealthTopicCode variable.
year numeric, year to produce the graph for (default 2019). Please make sure the year is included in the disease-specific dataset x in the TimeCode variable.
reportParameters dataframe, dataset including the required parameters for the graph and report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
MSCode dataframe, correspondence table of GeoCode names and codes (default MSCode) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
index integer, figure number
doc 'Word' document (see officer package) in which to add the graph at the bookmark location. If doc is missing, getTrend returns the ggplot2 object.

Value

'Word' doc or a ggplot2 preview

See Also

Global function for the full epidemiological report: getAER
Required Packages: ggplot2 officer
Internal functions: plotTS12MAvg
Default datasets: AERparams MSCode

Examples

--- Plot using the default dataset
getTrend()

--- Plot using external dataset
--- Please see examples in the vignette
browseVignettes(package = "EpiReport")

includeMap

Including PNG map in the 'Microsoft Word' template

Description

Function including the disease-specific PNG map in the 'Word' document at the specific bookmark location.

Usage

includeMap(
 disease,
 year,
 reportParameters,
 index,
 pathPNG,
 doc,
 pop,
 namePNGsuffix,
 unit,
 mapBookmark,
 captionBookmark
)

Arguments

disease character string, disease code (default "DENGE").
year numeric, year to produce the graph for (default 2019).
reportParameters dataframe, dataset including the required parameters for the graph and report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
index integer, figure number
pathPNG character string, full path to the folder containing the maps in PNG (default 'maps' folder included in the package system.file("maps",package = "EpiReport"))
doc 'Word' document (see 'officer' package) in which to add the maps at the bookmark location
pop character string, label of the type of population to use in the caption (e.g. confirmed)
namePNGsuffix: character string, suffix of the PNG file name of the map (i.e. "COUNT", "RATE" or "AGEMENTURED").

unit: character string, label of the unit used in the caption (e.g. "per 100 000 population").

mapBookmark: character string, label of the bookmark where to add the map in the 'Word' document.

captionBookmark: character string, label of the bookmark where to add the caption in the 'Word' document.

Value

'Word' doc

See Also

Global function: getMap

<table>
<thead>
<tr>
<th>MSCode</th>
<th>Dataset correspondence table between country names and country code</th>
</tr>
</thead>
</table>

Description

Dataframe providing the correspondence table of the geographical code GeoCode used in the disease dataset, and the geographical label Country to use throughout the report. Additional information on the EU/EEA affiliation is also available in column EUEEA.

Usage

MSCode

Format

A data frame with 32 rows and 3 variables:

Country: Full name of the country / Member State e.g. Austria, Belgium, etc.

TheCountry: Full name of the country / Member State including 'the' article for NL and UK e.g. Austria, Belgium, the Netherlands, the United Kingdom etc.

GeoCode: Associated code (see GeoCode variable on the SALM2016 internal dataset) e.g. AT, BE, BG, etc.

EUEEA: For each Member State, variable specifying in the country is part of the EU or EEA.

See Also

SALM2016
Description

A function to order 'quasinumerical' (i.e. categorical with values such as "15-30" or "<18") integer vectors into increasing order. Currently handles away the following non-numerical characters "-", ">", "<", "\geq", "\leq", "\pm".

Usage

orderQuasinum(x)

Arguments

x character vector with 'quasinumerical' values

Author(s)

Tommi Karki

See Also

Used in getAgeGender and plotAgeGender / plotAge

Examples

age1 <- c("<1", "1-15", "16-25", ">65", "26-65")
age2 <- c("0-4", "5-10", ">65", "25-64", "11-25")
age3 <- c("5-10", ">65", "25-64", "11-25", "<=4")
age4 <- c("\geq65", "<18", "18-64")
age5 <- c("5-10", "+65", "25-64", "11-25", "0-4")

age1
orderQuasinum(age1)
age2
orderQuasinum(age2)
age3
orderQuasinum(age3)
age4
orderQuasinum(age4)
age5
orderQuasinum(age5)
Description

(Discouraged function. Please use `plotBarGrouped()` instead.)

Usage

```r
plotAge(
  .data,
  xvar = "XLabel",
  yvar = "YValue",
  fill_color1 = "#65B32E",
  ytitle = "Rate"
)
```

Arguments

- `.data`: dataframe containing the variables to plot
- `xvar`: character string, name of the variable to plot on the x-axis in quotes (default "XLabel")
- `yvar`: character string, name of the variable to plot on the y-axis in quotes (default "YValue")
- `fill_color1`: character string, hexadecimal colour to use in the graph; (default to ECDC green
 "#65B32E", see `EcdcColors(col_scale = "qual", n = 1)
- `ytitle`: character string, y-axis title; (default "Rate").

Details

This function draws a bar graph by age group (or possibly other grouping).

The bar graph presents the distribution of cases at EU/EEA level using the rate per 100 000 cases by age.

Expects aggregated data.

See Also

- Global function: `getAgeGender`
- Internal function: `EcdcColors`
- Required Packages: `ggplot2`

Examples

```r
# --- Create dummy data
mydat <- data.frame(AgeGroup = c("0-25", "26-65", "65+")
                      , NumberOfCases = c(54,32,41))
```
--- Plot the dummy data
plotAge(mydat,
 xvar = "AgeGroup",
 yvar = "NumberOfCases",
 ytitle = "Number of cases")

plotAgeGender
Age and Gender bar graph

Description

(Discouraged function. Please use `plotBarGrouped()` instead.)

Usage

```r
plotAgeGender(
  .data,  
  xvar = "XLabel",
  yvar = "ZValue",
  group = "YLabel",
  fill_color1 = "#65B32E",
  fill_color2 = "#7CBDC4",
  ytitle = "Rate"
)
```

Arguments

- `.data`: dataframe containing the variables to plot
- `xvar`: character string, name of the variable to plot on the x-axis in quotes (default "XLabel")
- `yvar`: character string, name of the variable to plot on the y-axis in quotes (default "ZValue")
- `group`: character string, name of the grouping variable in quotes, e.g. gender. (default "YLabel")
- `fill_color1`: character string, hexadecimal colour to use in the graph for bar 1; (default to ECDC green "#65B32E", see `EcdcColors(col_scale = "qual", n = 2)"
- `fill_color2`: character string, hexadecimal colour to use in the graph for bar 2; (default to ECDC blue "#7CBDC4", see `EcdcColors(col_scale = "qual", n = 2)"
- `ytitle`: character string, y-axis title; (default "Rate").
plotBar

Bar graph

Details

This function draws a bar graph of the distribution of cases by age group and gender (or possibly other grouping).

The bar graph presents the distribution of cases at EU/EEA level using either:

- **AG-COUNT**: The number of cases by age and gender
- **AG-RATE**: The rate per 100 000 cases by age and gender
- **AG-PROP**: The proportion of cases by age and gender

Expects aggregated data.

See Also

Global function: `getAgeGender`
Internal function: `EcdcColors`
Required Packages: `ggplot2`

Examples

```r
# --- Create dummy data
mydat <- data.frame(Gender=c("F", "F", "M", "M"),
                     AgeGroup = c("0-65", "65+", "0-65", "65+"),
                     NumberOfCases = c(54,43,32,41))

# --- Plot the dummy data
plotAgeGender(mydat,
              xvar = "AgeGroup",
              yvar = "NumberOfCases",
              group = "Gender",
              ytitle = "Number of cases")
```

Description

This function draws a bar graph of the values of variable `Yvar` with the categorical variable `Xvar` on the x-axis.

Expects aggregated data.

Usage

```r
plotBar(
  .data,
  xvar = "XLabel",
  xlab = "",
  yvar = "YValue",
```
plotBarGrouped

ylabel = "",
fill_color = EcdcColors(col_scale = "qual", n = 1)
)

Arguments
.data dataframe containing the variables to plot
xvar character string, name of the variable to plot on the x-axis in quotes (default "XLabel")
xlabel character string, label of the x axis
yvar character string, name of the variable to plot on the y-axis in quotes (default "YValue")
ylabel character string, label of the y axis
fill_color character string, hexadecimal colour to use in the graph; (default to ECDC green "#65B32E", see EcdcColors(col_scale = "qual", n = 1))

See Also
Global function: getAgeGender
Internal function: EcdcColors
Required Packages: ggplot2

Examples

```r
# --- Create dummy data
mydat <- data.frame(AgeGroup = c("0-25", "26-65", "65+"),  
                     NumberOfCases = c(54,32,41))

# --- Plot the dummy data
plotBar(mydat,  
        xvar = "AgeGroup",  
        xlabel = "Age",  
        yvar = "NumberofCases",  
        ylabel = "Number of cases")
```

plotBarGrouped

Description
This function draws a vertical grouped bar graph of the values of variable 'Yvar' with the categorical variable 'Xvar' on the x-axis and grouped by 'Group' categorical variable.
Expects aggregated data.
plotBarGrouped

Usage

plotBarGrouped(
 .data,
 xvar = "XLabel",
 xlabel = "",
 yvar = "ZValue",
 ylabel = "",
 group = "YLabel",
 fill_color = EcdcColors(col_scale = "qual", n = length(unique(.data[[group]]))),
 position = "dodge"
)

Arguments

.data dataframe containing the variables to plot
xvar character string, name of the variable to plot on the x-axis in quotes (default "XLabel")
xlabel character string, label of the x axis
yvar character string, name of the variable to plot on the y-axis in quotes (default "ZValue")
ylabel character string, label of the y axis
group character string, name of the grouping variable in quotes, e.g. gender. (default "YLabel").
fill_color vector of character strings, hexadecimal colour to use in the graph for bars; the vector should contain the number categories in "group" variable. (default to ECDC blue "#7CBDC4" and ECDC green "#65B32E", see EcdcColors(col_scale = "qual", n = 2))
position character string, position of the bars, either "dodge" or "stack" (default "dodge", see geom_bar(position = ...)).

See Also

Global function: getAgeGender
Internal function: EcdcColors
Required Packages: ggplot2

Examples

--- Create dummy data
mydat <- data.frame(Gender=c("F", "F", "M", "M"),
 AgeGroup = c("0-65", "65+", "0-65", "65+") ,
 NumberOfCases = c(30, 35, 70, 65))

--- Plot the dummy data
plotBarGrouped(mydat,
 xvar = "AgeGroup",
 xlabel = "Age"
yvar = "NumberOfCases",
ylabel = "Number of cases",
group = "Gender")

-- Create dummy data
mydat <- data.frame(VaccStatus = rep(c("Unvaccinated", "1 dose", "2 doses", "3 doses"), 3),
 AgeGroup = rep(c("<1", "1-4", "5-9") , each = 4),
 Proportion = c(90, 10, 0, 0,
 30, 50, 20, 0,
 10, 25, 35, 30))

mydat$VaccStatus <- factor(mydat$VaccStatus,
 levels = c("Unvaccinated", "1 dose", "2 doses", "3 doses"))

plotBarGrouped(mydat,
 xvar = "AgeGroup",
 xlabel = "Age (years)",
 yvar = "Proportion",
 ylabel = "Proportion of cases %",
 group = "VaccStatus",
 position = "stack")

plotBarGroupedH

Horizontal grouped bar graph

Description

This function draws an horizontal bar graph of the values of variable 'Yvar' with the categorical
variable 'Xvar' on the x-axis.

Expects aggregated data.

Usage

plotBarGroupedH(
 .data,
 xvar = "",
 xlabel = "",
 yvar = "",
 ylabel = "",
 group = "",
 fill_color = EcdcColors(col_scale = "qual", n = length(unique(.data[[group]]))),
 log10_scale = FALSE)

Arguments

.data dataframe containing the variables to plot
xvar character string, name of the categorical variable to plot on the x-axis in quotes
plotBarH

Horizontal bar graph

Description

This function draws an horizontal bar graph of the values of variable 'Yvar' with the categorical variable 'Xvar' on the x-axis.

Expects aggregated data.

Usage

plotBarH(
 .data,
 xvar = "",
 xlabel = "",
 yvar = "",
 ylabel = "",
 fill_color = EcdcColors(col_scale = "qual", n = 1),
 log10_scale = FALSE,
 group = "Gender"
)
Arguments

.data data frame containing the variables to plot

xvar character string, name of the categorical variable to plot on the x-axis in quotes

xlabel character string, label of the x axis

yvar character string, name of the numerical variable to plot on the y-axis in quotes

ylabel character string, label of the y axis

fill_color character string, hexadecimal colour to use in the graph; (default to ECDC green
"#65B32E", see EcdcColors(col_scale = "qual", n = 1))

log10_scale boolean, TRUE if y-axis should be log scale (default FALSE, see ggplot2::scale_y_log10)

xlabel_black (optional) character string, value of the categorical variable for which the bar should be black

See Also

Internal function: EcdcColors

Required Packages: ggplot2

Examples

--- Create dummy data
mfratio <- data.frame(Country = sample(EpiReport::MSCode$Country, 28),
 Ratio = runif(28, min = 0, max = 28))

--- Plot the dummy data
plotBarH(mfratio,
 xvar = "Country",
 xlabel = "",
 yvar = "Ratio",
 ylabel = "Male-to-Female ratio",
 log10_scale = FALSE)

plotBarH(mfratio,
 xvar = "Country",
 xlabel = "",
 yvar = "Ratio",
 ylabel = "Male-to-Female ratio",
 log10_scale = TRUE,
 xlabel_black = "EU-EEA")
plotPie

Pie chart

Description
This function draws a pie chart of the values of variable 'Xvar' with the labels from the categorical variable 'Labels'.
Expects aggregated data.

Usage

```r
plotPie(
  .data, 
  xvar = "",
  labels = "",
  fill_colors = EcdcColors(col_scale = "qual", n = nrow(.data))
)
```

Arguments

- `.data` dataframe containing the variables to plot
- `xvar` character string, name of the numerical variable to plot in quotes
- `labels` character string, name of the character variable including the corresponding labels
- `fill_colors` vector of character strings, hexadecimal colours to use for each labels in the piechart; the vector should contain the exact number of categories defined in "labels" variable. (default to ECDC colors, see `EcdcColors(col_scale = "qual", n = nrow(.data))`)

See Also

Internal function: `EcdcColors`
Required Packages: `ggplot2`

Examples

```r
# --- Create dummy data
piechart <- data.frame(Labels = c("Heterosexual females", 
                               "Heterosexual males", 
                               "MSM", 
                               "Unknown"),
                      Values = c(1633,2937,15342,2854))

# --- Plot the dummy data
plotPie(piechart,
        xvar = "Values",
        labels = "Labels")
```
Description

This function draws a line graph describing the seasonality of the selected disease over the past 5 years.
The graph includes the distribution of cases, by month, over the past five years, with:

- **yvar**: The number of cases by month in the reference year (green solid line)
- **mean4years**: The mean number of cases by month in the four previous years (grey dashed line)
- **min4years**: The minimum number of cases by month in the four previous years (grey area)
- **max4years**: The maximum number of cases by month in the four previous years (grey area)

Expects aggregated data and pre-calculated min, max and mean figures.

Usage

```r
plotSeasonality(
  .data, 
  xvar = "TimeCode", 
  yvar = "N", 
  min4years = "Min4Years", 
  max4years = "Max4Years", 
  mean4years = "Mean4Years", 
  year = 2016
)
```

Arguments

- **.data** dataframe containing the variables to plot
- **xvar** character string, name of the time variable on the x-axis in quotes (default "TimeCode")
- **yvar** character string, name of the variable to plot on the y-axis in quotes (default "N"), number of cases by month in the reference year (green solid line)
- **min4years** character string, name of the variable to plot in quotes including the minimum number of cases by month over the past 4 years (default "Min4Years")
- **max4years** character string, name of the variable to plot in quotes including the maximum number of cases by month over the past 4 years (default "Max4Years")
- **mean4years** character string, name of the variable to plot in quotes including the mean of the number of cases by month over the past 4 years (default "Mean4Years")
- **year** numeric, year to produce the graph for (default 2016).
plotTS

See Also

Global function: `getSeason`
Required Packages: `ggplot2`

Examples

```r
# --- Plot using external dataset

# Create a dummy dataset
test <- data.frame(Time = as.Date(paste0("2019-",c(1:12), "-01")),
    N = sample(c(5000:7000), 12),
    mean = sample(c(4000:5000), 12),
    low = sample(c(3000:4000), 12),
    high = sample(c(5000:6000), 12))

# Plot the dummy data
plotSeasonality(test,
    xvar = "Time",
    yvar = "N",
    min4years = "low",
    max4years = "high",
    mean4years = "mean",
    year = 2019)

# --- Please see examples in the vignette
browseVignettes(package = "EpiReport")

# --- Plot using the default dataset
getSeason()
```

plotTS
Time series plot

Description

This function draws a time series of the values of variable 'Yvar' with the time variable 'Xvar' on the x-axis.
Expects aggregated data.

Usage

```r
plotTS(
    .data,  
    xvar = "",  
    xlabel = "",  
    yvar = "",  
```
Arguments

.data dataframe containing the variables to plot

xvar character string, name of the time variable (expects date format) to plot on the x-axis in quotes

xlabel character string, label of the x axis

yvar character string, name of the numerical variable to plot on the y-axis in quotes

ylabel character string, label of the y axis

fill_color character string, hexadecimal colour to use in the graph; (default to ECDC green "#65B32E", see EcdcColors(col_scale = "qual", n = 1)

log10_scale boolean, TRUE if y-axis should be log scale (default FALSE, see ggplot2::scale_y_log10)

xvar_format character string, time format to use to plot the x-axis ("%Y" for yearly labels or "%b %Y" for monthly labels)

xvar_breaks character string, time unit to use to plot the x-axis between breaks ("1 year" or "1 month", see ggplot2::scale_x_date(date_breaks = ...))

See Also

Internal function: EcdcColors
Required Packages: ggplot2

Examples

--- Create dummy data
mydat <- data.frame(TimeCode = seq(as.Date("2008/1/1"), as.Date("2017/1/1"), "years"), YValue = sample(1:500/10, 10))

--- Plot the dummy data
plotTS(mydat, xvar = "TimeCode", xlabel = "Year", yvar = "YValue", ylabel = "Rate per 100 000 population", log10_scale = FALSE, xvar_format = "%Y", xvar_breaks = "1 year")
Description
This function draws a line graph describing the trend of the selected disease over the past 5 years. The graph includes the trend and number of cases at EU/EEA level, by month, over the past five years, with:

- yvar: The number of cases by month over the 5-year period (grey solid line)
- movAverage: The 12-month moving average of the number of cases by month (green solid line)

Expects aggregated data and pre-calculated 12-month moving average.

Usage
plotTS12MAvg(.data, xvar = "TimeCode", yvar = "N", movAverage = "MAV")

Arguments
- .data: dataframe containing the variables to plot
- xvar: character string, name of the time variable to plot on the x-axis in quotes (default "TimeCode")
- yvar: character string, name of the variable to plot on the y-axis in quotes (default "N"), number of cases by month over the 5-year period (grey solid line)
- movAverage: character string, name of the variable to plot in quotes including the moving average per each time unit (default "MAV")

See Also
Global function: getTrend
Required Packages: ggplot2

Examples

--- Plot using external dataset

Create a dummy dataset
test <- data.frame(Time = as.Date(paste0("2019-",c(1:12), "-01")),
 N = sample(c(4000:6000), 12),
 mean = sample(c(4000:5000), 12))

Plot the dummy data
plotTS12MAvg(test,
 xvar = "Time",
 yvar = "N")
plotTSGrouped

Multiple time series plot

Description

This function draws a time series of the values of variable 'Yvar' with the time variable 'Xvar' on the x-axis. The categorical variable that specify the group of the observations for which there will be one time series each.

Expects aggregated data.

Usage

\[
\text{plotTSGrouped}(\\
\quad .\text{data}, \\
\quad \text{xvar} = \"\", \\
\quad \text{xlabel} = \"\", \\
\quad \text{yvar} = \"\", \\
\quad \text{ylabel} = \"\", \\
\quad \text{group} = \"\", \\
\quad \text{fill_color} = \text{EcdcColors}(\text{col_scale} = \"\text{qual}\", \text{n} = \text{length}(\text{unique}(\text{.data}[[\text{group}]]))), \\
\quad \text{log10_scale} = \text{FALSE}, \\
\quad \text{xvar_format} = \"\%Y\", \\
\quad \text{xvar_breaks} = \"1\ year\")
\]

Arguments

- **.data** dataframe containing the variables to plot
- **xvar** character string, name of the time variable (expects date format) to plot on the x-axis in quotes
- **xlabel** character string, label of the x axis
- **yvar** character string, name of the numerical variable to plot on the y-axis in quotes
- **ylabel** character string, label of the y axis
- **group** character string, name of the grouping variable in quotes, e.g. gender.
- **fill_color** character string, hexadecimal colour to use in the graph; (default to ECDC green
 "#65B32E", see \text{EcdcColors}(\text{col_scale} = \"\text{qual}\", \text{n} = \text{length}(\text{unique}(\text{.data}[[\text{group}]]))))
- **log10_scale** boolean, TRUE if y-axis should be log scale (default FALSE, see \text{ggplot2}\text{::scale_y_log10})
- **xvar_format** character string, time format to use to plot the x-axis ("\%Y" for yearly labels or "\%b \%Y" for monthly labels)
- **xvar_breaks** character string, time unit to use to plot the x-axis between breaks ("1 year" or "1 month", see \text{ggplot2}\text{::scale_x_date}(\text{date_breaks} = \ldots))
See Also

Internal function: **EcdcColors**
Required Packages: **ggplot2**

Examples

```r
# --- Create dummy data
mydat <- data.frame(TimeCode = seq(as.Date("2008/1/1"), as.Date("2017/1/1"), "years"),
                      YValue = sample(1:79/10, 20),
                      YLabel = rep(c("Acute", "Chronic"), each = 10))
# --- Plot the dummy data
plotTSGrouped(mydat,
              xvar = "TimeCode",
              xlabel = "Year",
              yvar = "YValue",
              ylabel = "Rate per 100 000 population",
              group = "YLabel",
              log10_scale = TRUE,
              xvar_format = "%Y",
              xvar_breaks = "1 year")

# --- Create dummy data
mydat <- data.frame(TimeCode = rep(seq(as.Date("2008/1/1"), as.Date("2017/1/1"), "years"), 5),
                      YValue = c(sample(1:50/10, 10),
                                sample(1:100/10, 10),
                                sample(1:300/10, 10),
                                sample(1:400/10, 10),
                                sample(1:500/10, 10)),
                      YLabel = rep(c("United Kingdom",
                                    "France",
                                    "Spain",
                                    "Netherlands",
                                    "Belgium"), each = 10))
# --- Plot the dummy data
plotTSGrouped(mydat,
              xvar = "TimeCode",
              xlabel = "Year",
              yvar = "YValue",
              ylabel = "Rate per 100 000 population",
              group = "YLabel",
              log10_scale = FALSE,
              xvar_format = "%Y",
              xvar_breaks = "1 year")

```

```
previewMap  
Previewing the PNG map
```
Description

Function previewing the disease-specific PNG map

Usage

previewMap(disease, year, reportParameters, pathPNG, namePNGsuffix)

Arguments

disease character string, disease code (default "DENGUE").
year numeric, year to produce the graph for (default 2019).
reportParameters dataframe, dataset including the required parameters for the graph and report production (default AERparams) (see specification of the dataset in the package vignette with browseVignettes(package = "EpiReport"))
pathPNG character string, full path to the folder containing the maps in PNG (default 'maps' folder included in the package system.file("maps",package = "EpiReport"))
namePNGsuffix character string, suffix of the PNG file name of the map (i.e. "COUNT", "RATE" or "AGESTANDARDISED").

Value

Preview

See Also

Global function: getMap

SALM2016

Dataset including Salmonellosis data for 2012-2016

Description

A dataset containing the data and indicators required to build the epidemiological report for Salmonellosis 2016 TESSy data (default dataset used throughout EpiReport)

Usage

SALM2016
Format

A data frame with 60,775 rows and 18 variables:

- **HealthTopicCode**: Disease code e.g. ANTH, SALM, etc.
- **MeasureLabel**: Optional label of the measure indicator
- **MeasurePopulation**: Population targeted by the measure indicator
- **MeasureCode**: Code of the measure indicator
- **MeasureId**: Optional measure indicator ID
- **MeasureType**: Optional type of measure indicator
- **TimeUnit**: Unit of the time variable, i.e. Y for yearly data or M for monthly data
- **GeoLevel**: Optional geographical level e.g. 1, 2, etc.
- **TimeCode**: Time variable including dates in any formats available (according to the unit defined in **TimeUnit**), yearly data (e.g. 2001) or monthly data (e.g. 2001-01)
- **GeoCode**: Geographical level in coded format including country names (e.g. AT for Austria, BE for Belgium, BG for Bulgaria, see also the EpiReport::MSCode table, correspondence table for Member State labels and codes)
- **XValue**: Optional xValue
- **XLabel**: The label associated with the x-axis in the epidemiological report (see getAgeGender() and plotAgeGender() bar graph for the age variable)
- **YValue**: The value associated with the y-axis in the epidemiological report (see plotAge() bar graph for the variable age, or getTableByMS() for the number of cases, rate or age-standardised rate in the table by Member States by year)
- **YLabel**: The label associated with the y-axis in the epidemiological report (see getAgeGender() and plotAgeGender() bar graph for the grouping variable gender)
- **ZValue**: The value associated with the stratification of XLabel and YLabel in the age and gender bar graph (see getAgeGender() and plotAgeGender())
- **N**: Number of cases (see getTrend() and getSeason() line graph)
- **NMissing**: Optional
- **NLowerResolution**: Optional

See Also

The correspondence table for Member State labels and codes **MSCode** and the functions mentioned above: getAgeGender, plotAgeGender, plotAge, getTableByMS, getTrend and getSeason.
shapeECDCFlexTable *Shaping the final table (layout, title, color, font)*

Description

Shaping the final table including titles, adding background color, specifying font name and size.

Usage

```r
shapeECDCFlexTable(ft, headers, fsize, fname, maincolor, lastbold)
```

Arguments

- `ft` flextable (see 'flextable' package), table to shape into ECDC table layout
- `headers` dataframe including the multiple headers to add to the flextable object. Please note that the column `col_keys` should contain the names of the flextable object (i.e. `col_key = names(x)`), accordingly to `set_header_df`.
- `fsize` numeric, font to use (Default 7)
- `fname` character, font name (Default "Tahoma")
- `maincolor` character string, hexadecimal code for the header background color (Default EcdcColors(col_scale = "green",n=1))
- `lastbold` boolean, last row in bold (Default TRUE), usually used when the last row includes totals (EU/EEA totals)

Value

flextable object (see flextable package)

See Also

Global function: `getTableByMS`
Required package `flextable`

toCapTitle *Capitalise first letter*

Description

Capitalise the first letter of a character string in order to use it as title

Usage

```r
toCapTitle(str)
```
toCapTitle

Arguments

str character string to capitalise as a title

Value

character string

Examples

my_title <- "number of salmonellosis cases by age group"
toCapTitle(my_title)
Index

* age
 plotAge, 23
 plotAgeGender, 24
 plotBar, 25

* bargraph
 plotAge, 23
 plotAgeGender, 24
 plotBar, 25
 plotBarGrouped, 26
 plotBarGroupedH, 28
 plotBarH, 29

* colourscales
 EcdcColors, 8

* datasets
 AERparams, 3
 DENGUE2019, 7
 MSCode, 21
 SALM2016, 38

* dengue
 DENGUE2019, 7

* gender
 plotAgeGender, 24

* order
 orderQuasinum, 22

* pie
 plotPie, 31

* salmonellosis
 SALM2016, 38

* seasonality
 plotSeasonality, 32

* timeseries
 plotTS, 33
 plotTSGrouped, 36

* trend
 plotTS12MAvg, 35

AERparams, 3, 9, 11, 12, 14, 15, 17, 19

body_replace_gg_at_bkm, 4

cleanECDCTable, 5, 17
cleanMeasureCode, 6

DENGUE2019, 7, 11

EcdcColors, 8, 12, 23, 25–27, 29–31, 34, 37

filterDisease, 9

flextable, 17, 40

getaer, 10, 12, 14, 15, 17–19

getAgeGender, 8, 11, 12, 14, 15, 23, 25–27, 39

getMap, 11, 13, 21, 38

getSeason, 8, 11, 14, 15, 39

getTableByMS, 5, 8, 11, 16, 39, 40

getTemplate, 11, 17

getTrend, 8, 11, 14, 18, 35, 39

getTS, 12, 15, 19, 23, 25–27, 29–31, 33–35, 37

includeMap, 14, 20

MSCode, 5, 8, 11, 15, 17, 19, 21, 39

officer, 12, 14, 15, 17, 19

orderQuasinum, 22

plotAge, 8, 22, 23, 39

plotAgeGender, 8, 22, 24, 39

plotBar, 12, 25

plotBarGrouped, 12, 26

plotBarGroupedH, 28

plotBarH, 29

plotPie, 31

plotSeasonality, 15, 32

plotTS, 33

plotTS12MAvg, 19, 35

plotTSGrouped, 36

previewMap, 14, 37

SALM2016, 7, 11, 21, 38
INDEX

set_header_df, 40
shapeECDCFlexTable, 17, 40
toCapTitle, 40