Package ‘EvCombR’

April 25, 2022

Type Package
Title Evidence Combination in R
Version 0.1-4
Date 2022-04-21
Author Alexander Karlsson
Maintainer Alexander Karlsson <alexander.karlsson@his.se>
Copyright Alexander Karlsson
Description Combine pieces of evidence in the form of uncertainty representations.
License GPL (>= 3)
Imports methods, utils
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-25 10:10:09 UTC

R topics documented:

 EvCombR-package .. 2
cComb .. 3
cComb-methods .. 5
credal ... 5
credal-class ... 6
credal-methods .. 7
dComb ... 8
dComb-methods ... 9
disc ... 9
disc-methods ... 10
EvCombRLicense .. 10
extPoints .. 11
extPoints-methods .. 12
focal ... 12
focal-methods .. 13
focal<- .. 13
EvCombR-package

focal<--methods ... 14
lower ... 14
lower-methods ... 16
mass ... 16
mass-class ... 17
mass-methods ... 19
massQ-class ... 19
mComb ... 20
mComb-methods .. 21
pign ... 21
pign-methods ... 22
reIPi ... 23
reIPi-methods ... 24
space ... 24
space-methods .. 25
space<- .. 25
space<--methods .. 26
upper ... 26
upper-methods .. 27
yComb ... 28
yComb-methods ... 29
[-methods ... 29
[<--methods ... 30
[[-methods ... 31
[<--methods ... 31

Index 33

| EvCombR-package | EvCombR - Evidence Combination in R |

Description

Package for combining pieces of evidence.

Details

Implements Dempster’s, Yager’s, modified Dempster’s, Bayesian, and credal combination (based on intervals).

Author(s)

Alexander Karlsson

Maintainer: Alexander Karlsson <alexander.karlsson@his.se>
cComb

References

Arnborg, S. (2006), Robust Bayesianism: Relation to Evidence Theory, *Journal of Advances in Information Fusion*, 1, 63-74

Examples

```r
# construct a state space
stateSpace <- c("a", "b", "c")

# construct credal sets with the given state space
c1 <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)
c2 <- credal(c(0.2, 0.2, 0.2), c(0.9, 0.9, 0.9), stateSpace)

# combine the credal sets
cComb(c1, c2)

# construct mass functions
m1 <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)
m2 <- mass(list("a"=0.2, "b"=0.2, "c"=0.2, "a/b/c"=0.4), stateSpace)

# combine the mass functin by using Dempster's combination
dComb(m1, m2)

# Yager's combination operator
yComb(m1, m2)

# modified Dempster's combination using uniform prior
mComb(m1, m2)
```

cComb
Credal Combination Operator (restricted to intervals)

Description

Combine evidence in the form of credal sets (based on intervals) using the credal combination operator (also known as the robust Bayesian combination operator). The resulting credal set is approximated by using probability intervals.
cComb

Usage

cComb(x, y)

Arguments

x credal set or a list of credal sets
y credal set if x is a credal set, otherwise missing

Value

credal set

Author(s)

Alexander Karlsson

References

Arnborg, S. (2006), Robust Bayesianism: Relation to Evidence Theory, Journal of Advances in Information Fusion, 1, 63-74

See Also

dComb, yComb, mComb

Examples

construct a state space
stateSpace <- c("a", "b", "c")

construct credal sets with the given state space
C1 <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)
C2 <- credal(c(0.2, 0.2, 0.2), c(0.9, 0.9, 0.9), stateSpace)

cComb(C1, C2)
cComb(list(C1, C2))
Methods for Function `cComb`

Description

Combine credal sets (based on intervals) using the credal combination operator (also known as the robust Bayesian combination operator). For more detail see `cComb`.

Methods

```r
signature(x = "credal", y = "credal") Combine two credal sets using the credal combination operator
signature(x = "list", y = "missing") Combine a list of credal sets using the credal combination operator
```

credal

Constructor Function for Credal Sets (based on intervals)

Description

Construct a credal set based on probability intervals or a single probability function. The algorithm used for finding the extreme points corresponding to lower and upper bounds is described in De Campos et al. (1994).

Usage

```r
credal(x, y, z)
```

Arguments

- `x`: lower bounds of probability intervals (in the form of a numeric vector)
- `y`: upper bounds for probability intervals or missing (i.e., upper bound of 1)
- `z`: character vector representing the state space

Value

A credal set represented by a set of extreme points.

Author(s)

Alexander Karlsson
References

Arnborg, S. (2006), Robust Bayesianism: Relation to Evidence Theory, *Journal of Advances in Information Fusion*, 1, 63-74

See Also

cComb

Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# lower and upper bounds for probability intervals
cl <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)

# single probability function (lower and upper bounds of probability intervals are equal)
c2 <- credal(c(0.1, 0.2, 0.7), c(0.1, 0.2, 0.7), stateSpace)
```

credal-class

Class "credal"

Description

Represents a credal set by a set of extreme points. For more detail see credal.

Objects from the Class

Objects can be created by credal.

Slots

extPoints: Object of class "matrix". Each row is an extreme point of the credal set.
Methods

\[
\text{signature}(x=\text{"credal"}, i=\text{"ANY"}, j=\text{"ANY"}): \text{ extract an extreme point}
\]
\[
\text{<- signature}(x=\text{"credal"}, i=\text{"ANY"}, j=\text{"ANY"}, value=\text{"ANY"}): \text{ replace and extreme point}
\]
\[
\text{cComb signature}(x=\text{"credal"}, y=\text{"credal"}): \text{ combine two credal sets}
\]
\[
\text{lower signature}(x=\text{"credal"}, \text{set}=\text{"character"}): \text{ calculate the lower bound for a specific set of states}
\]
\[
\text{lower signature}(x=\text{"credal"}, \text{set}=\text{"missing"}): \text{ calculate the lower bounds for all singleton states}
\]
\[
\text{upper signature}(x=\text{"credal"}, \text{set}=\text{"character"}): \text{ calculate the upper bound for a specific set of states}
\]
\[
\text{upper signature}(x=\text{"credal"}, \text{set}=\text{"missing"}): \text{ calculate the upper bounds for all singleton states}
\]
\[
\text{extPoints signature}(x=\text{"credal"}): \text{ access method for the slot points}
\]
\[
\text{space signature}(x=\text{"credal"}): \text{ access method for names of singleton states}
\]
\[
\text{space<- signature}(x=\text{"credal"}): \text{ replace method for names of singleton states}
\]

Author(s)

Alexander Karlsson

credal-methods

Methods for Function credal

Description

Methods for constructing a credal set. For more detail see credal.

Methods

\[
\text{signature}(x=\text{"numeric"}, y=\text{"missing"}, z=\text{"character"}) \text{ Construct a credal set based on the lower bounds of probability intervals for states (1 will be the upper bound for all probability intervals)}
\]
\[
\text{signature}(x=\text{"numeric"}, y=\text{"numeric"}, z=\text{"character"}) \text{ Construct a credal based on probability intervals for states}
\]

Author(s)

Alexander Karlsson
dComb

Dempster’s Combination Operator

Description

Combine evidence in the form of mass functions using Dempster’s combination operator.

Usage

\[dComb(x, y) \]

Arguments

- **x**: single mass function or a list of mass functions
- **y**: single mass function if \(x \) is a single mass function, otherwise missing

Value

mass function

Author(s)

Alexander Karlsson

References

See Also

yComb, mComb, cComb

Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass functions
m1 <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)
m2 <- mass(list("a"=0.2, "a/b/c"=0.8), stateSpace)

# Dempster's combination
dComb(m1, m2)
# or
dComb(list(m1, m2))
```
dComb-methods

Methods for Function dComb

Description
Combine mass functions using Dempster's combination operator. For more detail see *dComb*.

Methods

signature(x = "mass", y = "mass") Combine two mass functions using Dempster's combination operator

signature(x = "list", y = "missing") Combine a list of mass functions using Dempster's combination operator

Author(s)
Alexander Karlsson

disc

Discounting Operator

Description
Discounts a mass function.

Usage

disc(x,y)

Arguments

x a mass function

y degree of reliability

Value

mass function

Author(s)
Alexander Karlsson

References
Examples

```r
evCombRLicense()
```

Description

Discount an evidence structure. For more detail see `disc`.

Methods

- Signature: `signature(x = "mass", y = "numeric")`

 Discount a mass function.

License information for EvCombR

Display some license information about EvCombR.

Usage

```r
EvCombRLicense()
```

Author(s)

Alexander Karlsson

Examples

```r
EvCombRLicense()
```
extPoints

Extreme Points of a Credal Set

Description

Returns the extreme points of a credal set

Usage

extPoints(x)

Arguments

x a credal set

Value

a matrix where the extreme points are stored by row

Author(s)

Alexander Karlsson

See Also

lower, upper

Examples

state space
stateSpace <- c("a", "b", "c")

construct credal set
c <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)

obtain extrem points
eMat <- extPoints(c)
extPoints-methods Methods for Function extPoints

Description
Returns the set of extreme points of a credal set. For more detail see extPoints.

Methods
signature(x = "credal") Returns the set of extreme points

Author(s)
Alexander Karlsson

focal Focal Elements of a Mass Function

Description
Returns the set of focal elements of a mass function.

Usage
focal(x)

Arguments
x a mass function

Value
focal elements of x

Author(s)
Alexander Karlsson

References

See Also
points
Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass functions
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

# obtain focal elements
focal(m)
```

Description

Methods for function `focal`

Methods

- `signature(x = "mass")` Access function for slot focal

Note

See further `focal`

Replacement Function for Focal Elements

Description

Replaces focal elements of a mass function.

Usage

`focal(x) <- value`

Arguments

- `x` a mass function
- `value` new focal elements for the mass function

Value

mass function with focal elements replaced.
Author(s)
Alexander Karlsson

References

Examples
```r
# state space
stateSpace <- c("a", "b", "c")

# mass functions
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

# replace focal elements
focal(m) <- list("a/b"=1)
```

Description
Replacement function for focal elements. For more detail see `focal<-

Methods
- `signature(x = "mass")` Replace focal elements

lower

Description
Calculate the lower bounds for a vector of sets

Usage
`lower(x, sets)`

Arguments
- `x` credal set or mass function
- `sets` vector of sets where each set is represented by state names separated by "/". If sets are missing, lower bounds on singletons are calculated.
Value

lower bound of mass or probability for each set in the vector sets or if sets is missing lower bounds on singletons

Note

This is equivalent to belief in Dempster-Shafer theory

Author(s)

Alexander Karlsson

References

See Also

upper

Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass function
m <- mass(list("a"=0.1, "b"=0.1 ,
  "c"=0.4, "a/b/c"=0.4), stateSpace)

# credal set
c <- credal(c(0.1, 0.1, 0.1),
  c(0.8, 0.8, 0.8), stateSpace)

# calculate lower bounds
lower(m, c("a", "a/b"))
lower(c, c("a", "a/b"))

# lower bounds on singletons
lower(m)
```
Methods for Function `lower`

Description

Calculate lower bounds for a vector of sets with respect to the evidence structure. For more detail see `lower`.

Methods

- `signature(x = "credal", sets = "character")` obtain lower bounds for a vector of sets
- `signature(x = "credal", sets = "missing")` obtain lower bounds for all singleton states
- `signature(x = "mass", sets = "character")` obtain the belief, or lower bounds, for a vector of sets
- `signature(x = "mass", sets = "missing")` obtain the belief, or lower bounds, for all singleton states

Constructor Function for Mass Functions

Description

Construct a mass function based on a named list of focal elements or a `massQ-class` object. For more information, see the details section.

Usage

```r
mass(x, y)
```

Arguments

- `x` a named list of focal elements or a `massQ-class` object
- `y` a character vector representing the state space or missing if `x` is a `massQ` object.

Details

Focal elements are represented by the notation "<s1>/.../<sn>" where <s1>...<sn> are any states within the state space (see the examples below). Note that the word "ES" and the symbol "/" are reserved.

Value

mass function
Author(s)

Alexander Karlsson

References

See Also

dComb, mComb, yComb

Examples

```r
# state space
stateSpace <- c(“a”, “b”, “c”)

# construct mass functions
m1 <- mass(list(“a”=0.1, “b”=0.1, “c”=0.4, “a/b/c”=0.4), stateSpace)
m2 <- mass(list(“a”=0.1, “b”=0.1, “c”=0.1, “a/b”=0.1, “a/c”=0.1, “b/c”=0.1, “a/b/c”=0.4), stateSpace)

# apply Yager’s combination operator, m12 will be a massQ-object
m12Q <- yComb(m1,m2)

# construct a mass function from an massQ-object
m12 <- mass(m12Q)
```

Description

Represents a mass function by a list of focal elements and corresponding mass. For more detail see `mass`.

Objects from the Class

Objects can be created by `credal`.

Slots

- focal: a list of focal elements represented by statenames seperated by "/
- space: the state space represented by a character vector
Methods

```r
[s signature(x = "mass", i = "character", j = "missing"): extract focal elements

```[ signature(x = "mass", i = "character", j = "missing"): extract a single focal element

```r
[< signature(x="mass",i="character",j="missing",value="ANY"): replace focal elements

```[< signature(x="mass",i="character",j="missing",value="ANY"): replace a single focal element

dComb signature(x = "mass", y = "mass"): combine two mass functions by Dempster's combination

focal signature(x = "mass"): access focal elements

focal<- signature(x = "mass"): replace focal elements

lower signature(x = "mass", set = "character"): calculate the lower bounds for some focal element

lower signature(x = "mass", set = "missing"): calculate the lower bounds for singletons

mComb signature(x = "mass", y = "mass", z = "function"): combine two mass functions by modified Dempster's combination using a prior distribution z

mComb signature(x = "mass", y = "mass", z = "missing"): combine two mass functions by modified Dempster's combination using a uniform prior distribution z

pign signature(x = "mass"): calculate the pignistic transformation for single states

relPl signature(x = "mass"): calculate the relative plausibility for single states

space signature(x = "mass"): access the state space (frame of discernment)

space<- signature(x = "mass"): replace the state space (frame of discernment)

upper signature(x = "mass", set = "character"): calculate the upper bound for some focal element

upper signature(x = "mass", set = "character"): calculate the upper bounds for singletons

yComb signature(x = "mass", y = "mass"): combine two mass functions using Yager's rule

disc signature(x = "mass", y = "numeric"): discount mass function

Author(s)

Alexander Karlsson

References

Methods for Function `mass`

Description

Methods for constructing a mass function. For more detail see `mass`.

Methods

- `signature(x = "list", y = "character")` Construct a mass functions by a named list of focal elements and a given state space.
- `signature(x = "massQ", y = "missing")` Construct a mass function from a `massQ-class` object.

Author(s)

Alexander Karlsson

Class `"massQ"`

Description

Class that maintains information about the mass on the empty set. The class is used for Yager's combination operator.

Objects from the Class

A `massQ`-object is obtained as a result of Yager's combination operator `yComb`.

Slots

- `qEmpty`: mass on the empty set with respect to the previous combination
- `focal`: a list of focal elements represented by statenames seperated by "/"
- `space`: the state space represented by a character vector

Extends

Class `"mass"`, directly.

Methods

All methods inherited from `mass-class` and in addition:

- `mass` signature(x = "massQ", y = "missing"): convert the `massQ`-object to a `mass`-object
Description

Combine evidence in the form of mass functions using modified Dempster’s combination operator.

Usage

\[m\text{Comb}(x, y, z) \]

Arguments

- **x**: single mass function or a list of mass functions
- **y**: single mass function if \(x\) is a single mass function, a prior distribution or missing if \(x\) is a list
- **z**: prior distribution if \(x\) and \(y\) are mass functions, otherwise missing

Details

The prior distribution is provided in the form of a list where the names are equivalent to the state space. See the examples.

Value

mass function

Author(s)

Alexander Karlsson

References

See Also

dComb, yComb, cComb
Examples

state space
stateSpace <- c("a", "b", "c")

mass functions
m1 <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)
m2 <- mass(list("a"=0.2, "a/b/c"=0.8), stateSpace)

modified Dempster's combination using the uniform prior
mComb(m1, m2)
or
mComb(list(m1, m2))

modified Dempster's combination using a specific prior
mComb(m1, m2, list("a"=0.1, "b"=0.1, "c"=0.8))
or
mComb(list(m1, m2), list("a"=0.1, "b"=0.1, "c"=0.8))

mComb-methods

Methods for Function mComb

Description

Combine mass functions using modified Dempster's combination operator. For more detail see mComb.

Methods

signature(x = "mass", y = "mass", z = "list") Combine two mass functions using modified Dempster's combination operator and a prior

signature(x = "mass", y = "mass", z = "missing") Combine two mass functions using modified Dempster's combination operator and the uniform prior

signature(x = "list", y = "list", z = "missing") Combine a list of mass functions using modified Dempster's combination operator and a prior

signature(x = "list", y = "missing", z = "missing") Combine a list of mass functions using modified Dempster's combination operator and the uniform prior

pign

Pignistic Transformation

Description

The pignistic transformation transforms a mass function into a probability function.
Usage
pign(x)

Arguments
x a mass function

Value
a singleton credal set

Author(s)
Alexander Karlsson

References

See Also
relPl

Examples

```
# state space
stateSpace <- c("a", "b", "c")

# mass function
m <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)

# obtain a singleton credal set
c <- pign(m)
```

Description
The pignistic transformation transforms a mass function to a probability function. For more detail see `pign`

Methods
signature(x = "mass") Apply the pignistic transformation on a mass function
Description

The relative plausibility transform transform a mass function to a probability function.

Usage

relPl(x)

Arguments

x a mass function

Value

a singleton credal set

Author(s)

Alexander Karlsson

References

See Also

pign

Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass function
m <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)

# obtain a singleton credal set
c <- relPl(m)
```
Description

The relative plausability transform transforms a mass function to probability function. For more detail see `relP1`

Methods

signature(x = "mass") Apply the relative plausability transform on a mass function

space

State Space of and Evidence Structure

Description

This functions returns the state space of an evidence structure.

Usage

space(x)

Arguments

x mass function or credal set

Value

a character vector with the names within the state space

Author(s)

Alexander Karlsson

Examples

state space
stateSpace <- c("a", "b", "c")

construct mass function
m <- mass(list("a"=0.1, "b"=0.1 , "c"=0.4, "a/b/c"=0.4), stateSpace)

obtain state space
space(m)
Methods for Function `space`

Description

Returns the state space for an evidence structure. For more detail see `space`.

Methods

`signature(x = "credal")` Returns the state space for a credal set

`signature(x = "mass")` Returns the state space for a mass function

Replacement Function for State Space

Description

Replace the names of the state space

Usage

```
space(x) <- value
```

Arguments

- `x` mass function or credal set
- `value` new state space given as a character vector

Value

new mass function or credal set with the state space replaced

Author(s)

Alexander Karlsson

See Also

`focal<-`
Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# construct mass function
m <- mass(list("a"=0.1, "b"=0.1 , "c"=0.4, "a/b/c"=0.4), stateSpace)

# replace state space
space(m) <- c("d", "e", "f")
```

Methods

space<--methods Methods for Function space<-

Description

Replace the state space of an evidence structure. For more details see space.

Methods

signature(x = "credal") Replace state space of a credal set
signature(x = "mass") Replace the state space of a mass function

upper Upper Bounds Based on Evidence Structure

Description

Calculate the upper bounds for a vector of sets

Usage

`upper(x, sets)`

Arguments

- `x` credal set or mass function
- `sets` vector of sets where each set is represented by state names separated by "/". If sets are missing, upper bounds on singletons are calculated.

Value

upper bound of mass or probability for each set in the vector sets or if sets is missing upper bounds on singletons
Note
This is equivalent to Belief in Dempster-Shafer theory

Author(s)
Alexander Karlsson

References

See Also
upper

Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass function
m <- mass(list("a"=0.1, "b"=0.1 ,
              "c"=0.4, "a/b/c"=0.4), stateSpace)

# credal set
c <- credal(c(0.1, 0.1, 0.1),
             c(0.8, 0.8, 0.8), stateSpace)

# calculate upper bounds
upper(m, c("a", "a/b"))
upper(c, c("a", "a/b"))

# upper bounds on singletons
upper(m)
```

upper-methods

Methods for Function upper

Description
Calculate lower bounds for a vector of sets with respect to the evidence structure. For more detail see upper
Methods

signature(x = "credal", sets = "character") obtain upper bounds for a vector of sets
signature(x = "credal", sets = "missing") obtain upper bounds for all singletons
signature(x = "mass", sets = "character") obtain the plausability, or upper bounds, for a vector of sets
signature(x = "mass", sets = "missing") obtain the plausability, or upper bounds, for all singletons

yComb (Yager’s Combination Operator)

Description

Combine evidence in the form of mass functions using Yager’s combination operator.

Usage

yComb(x, y)

Arguments

x single mass function or a list of mass functions
y single mass function if x is a single mass function, otherwise missing

Value

mass function (massQ-class)

Note

Yager’s combination operator is quasi-associative and therefore we need to keep track of the mass on the empty set by using the class massQ.

Author(s)

Alexander Karlsson

References

See Also

dComb, mComb, cComb
Examples

```r
# state space
stateSpace <- c("a", "b", "c")

# mass functions
m1 <- mass(list("a"=0.1, "a/b/c"=0.9), stateSpace)
m2 <- mass(list("b"=0.2, "a/b/c"=0.8), stateSpace)

# Yager's combination
yComb(m1, m2)
# or
yComb(list(m1, m2))
```

Description

Combine mass functions using Yager’s combination operator. For more detail see `yComb`.

Methods

- `signature(x = "mass", y = "mass")` Combine two mass functions using Yager’s combination operator
- `signature(x = "list", y = "missing")` Combine a list of mass functions using Yager’s combination operator

Description

Extract part of evidence structure `[`

Methods

- `signature(x = "credal", i = "ANY", j="ANY", value="ANY")` Extract probabilities
- `signature(x = "mass", i = "character", j="missing", value="ANY")` Extract focal element(s)

Author(s)

Alexander Karlsson
Examples

construct a state space
stateSpace <- c("a", "b", "c")

construct credal sets with the given state space
c <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)

extract first and second extreme point
c[1:2,]

mass functions
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

extract focal elements
m[c("a","a/b/c")]

Description

Replace part of an evidence structure

Methods

signature(x="credal", i="ANY", j="ANY", value="ANY") Replace probabilities
signature(x="mass", i="character", j="missing", value="ANY") Replace focal element(s)

Author(s)

Alexander Karlsson

Examples

construct a state space
stateSpace <- c("a", "b", "c")

construct credal sets with the given state space
c <- credal(c(0.1, 0.1, 0.1), c(0.8, 0.8, 0.8), stateSpace)

replace first and second extreme point
c[1:2,] <- rbind(c(0.1, 0.1, 0.8), c(0.2, 0.2, 0.6))

mass function
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

switch mass on focal elements "b" and "a/b/c"
temp <- m["b"]
m["b"] <- m["a/b/c"]
\texttt{m["a/b/c"] <- temp}

Methods

Description

Methods for function \texttt{[\[}

Methods

\texttt{signature(x="mass", i="character", j="missing")} Extract a single focal element from the list of focal elements

Author(s)

Alexander Karlsson

Examples

```r
# construct a state space
stateSpace <- c("a", "b", "c")

# mass functions
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

# extract focal element
m[["a"]]```

---

\texttt{m["a/b/c"] <- temp}

### Methods

**Description**

Replace part of an evidence structure

**Methods**

\texttt{signature(x="mass", i="character", j="missing", value="ANY")} Replace focal element(s)

**Author(s)**

Alexander Karlsson
Examples

# construct a state space
stateSpace <- c("a", "b", "c")

# mass function
m <- mass(list("a"=0.1, "b"=0.1, "c"=0.4, "a/b/c"=0.4), stateSpace)

# obtain value only
m[["a"]]

Index

* classes
  credal-class, 6
  mass-class, 17

* methods
  [-methods, 29
  [<-methods, 30
  [<-methods, 31
  [[<-methods, 31
  cComb-methods, 5
  credal-methods, 7
  dComb-methods, 9
  disc-methods, 10
  focal-methods, 13
  focal<-methods, 14
  lower-methods, 16
  mass-methods, 19
  mComb-methods, 21
  pign-methods, 22
  relPl-methods, 24
  space-methods, 25
  space<-methods, 26
  upper-methods, 27
  yComb-methods, 29

* package
  EvCombR-package, 2
  [,credal,ANY,ANY-method ([<-methods), 29
  [,mass,character,missing-method
   ([<-methods), 29
  [-methods, 29
  [<-<method, 30
  [<-<credal,ANY,ANY-method
   ([<-<methods), 30
  [<-<mass,character,missing-method
   ([<-<methods), 30
  [[<mass,character,missing-method
   ([[[<-methods), 31
  [[<-methods, 31
  [[<-<methods, 31
  [[<-<mass,character,missing-method

  cComb, 3, 5, 6, 8, 20, 28
  cComb,credal,credal-method
   (cComb-methods), 5
  cComb,list,missing-method
   (cComb-methods), 5
  cComb-methods, 5
  credal, 5, 6, 7, 17
  credal,matrix,character,missing-method
   (credal-methods), 7
  credal,numeric,missing,character-method
   (credal-methods), 7
  credal,numeric,numeric,character-method
   (credal-methods), 7
  credal-class, 6
  credal-methods, 7

  dComb, 4, 8, 9, 17, 20, 28
  dComb,list,missing-method
   (dComb-methods), 9
  dComb,mass,mass-method (dComb-methods),
   9
  dComb-methods, 9
  disc, 9, 10
  disc,numeric,numeric-method
   (disc-methods), 10
  disc-methods, 10

  EvCombR (EvCombR-package), 2
  EvCombR-package, 2
  EvCombRLicense, 10
  extPoints, 11, 12
  extPoints,credal-method
   (extPoints-methods), 12
  extPoints-methods, 12

  focal, 12, 13
  focal,mass-method (focal-methods), 13
  focal-methods, 13
INDEX

focal<-, 13
focal<--methods, 14
focal<-,mass,list-method (focal<--methods), 14

lower, 11, 14, 16
lower,credal,character-method (lower-methods), 16
lower,credal,missing-method (lower-methods), 16
lower,mass,character-method (lower-methods), 16
lower,mass,missing-method (lower-methods), 16
lower-methods, 16

mass, 16, 17, 19
mass,list,character-method (mass-methods), 19
mass,massQ,missing-method (mass-methods), 19
mass-class, 17
mass-methods, 19
massQ-class, 19
mComb, 4, 8, 17, 20, 21, 28
mComb,list,list,missing-method (mComb-methods), 21
mComb,list,missing,missing-method (mComb-methods), 21
mComb,mass,mass,list-method (mComb-methods), 21
mComb,mass,mass,missing-method (mComb-methods), 21
mComb-methods, 21

pign, 21, 22, 23
pign,mass-method (pign-methods), 22
pign-methods, 22
points, 12

relPl, 22, 23, 24
relPl,mass-method (relPl-methods), 24
relPl-methods, 24

space, 24, 25, 26
space,credal-method (space-methods), 25
space,mass-method (space-methods), 25
space-methods, 25
space<-, 25
space<--methods, 26
space<-,credal,character-method (space<--methods), 26
space<-,mass,character-method (space<--methods), 26

upper, 11, 15, 26, 27
upper,credal,character-method (upper-methods), 27
upper,credal,missing-method (upper-methods), 27
upper,mass,character-method (upper-methods), 27
upper,mass,missing-method (upper-methods), 27
upper-methods, 27

yComb, 4, 8, 17, 19, 20, 28, 29
yComb,list,missing-method (yComb-methods), 29
yComb,mass,mass-method (yComb-methods), 29
yComb-methods, 29