Package ‘EvolutionaryGames’

October 12, 2022

Type Package
Title Important Concepts of Evolutionary Game Theory
Version 0.1.2
Maintainer Jochen Staudacher <jochen.staudacher@hs-kempten.de>
Description Evolutionary game theory applies game theory to evolving populations in biology, see e.g. one of the books by Weibull (1994, ISBN:978-0262731218) or by Sandholm (2010, ISBN:978-0262195874) for more details. A comprehensive set of tools to illustrate the core concepts of evolutionary game theory, such as evolutionary stability or various evolutionary dynamics, for teaching and academic research is provided.
License GPL-2
Encoding UTF-8
Imports deSolve (>= 1.14), geometry (>= 0.3-6), ggplot2 (>= 2.2.1), grDevices (>= 3.2.2), interp (>= 1.0-29), MASS (>= 7.3-43), reshape2 (>= 1.0-2)
Suggests knitr, rmarkdown, rgl
RoxygenNote 7.1.2
VignetteBuilder knitr
NeedsCompilation no
Author Daniel Gebele [aut, cph], Jochen Staudacher [aut, cre, cph]
Repository CRAN
Date/Publication 2022-08-29 00:10:02 UTC

R topics documented:

- BNN ... 2
- BR ... 3
- ESS ... 4
- ESset .. 5
- ILogit ... 6
Brown-von Neumann-Nash dynamic

Description

Brown-von Neumann-Nash replicator dynamic as a type of evolutionary dynamics.

Usage

BNN(time, state, parameters)

Arguments

time

Regular sequence that represents the time sequence under which simulation takes place.

state

Numeric vector that represents the initial state.

parameters

Numeric vector that represents parameters needed by the dynamic.

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

dynamic <- BNN
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, dynamic, NULL, state, FALSE, FALSE)
BR

BR dynamic

Description

Best response dynamic as a type of evolutionary dynamics.

Usage

`BR(time, state, parameters)`

Arguments

- **time**
 Regular sequence that represents the time sequence under which simulation takes place.

- **state**
 Numeric vector that represents the initial state.

- **parameters**
 Numeric vector that represents parameters needed by the dynamic.

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

```r
dynamic <- BR
A <- matrix(c(0, -2, 1, 1, 0, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, dynamic, NULL, state, FALSE, FALSE)
```
ESS

ESS for two-player games with a maximum of three strategies

Description

Computes Evolutionary Stable Strategies of a game with two players and a maximum of three strategies.

Usage

ESS(A, strategies = c(), floats = TRUE)

Arguments

A
 Numeric matrix of size 2x2 or 3x3 representing the number of strategies of a symmetric matrix game.

strategies
 String vector of length n that names all strategies whereas n represents the number of strategies.

floats
 Logical value that handles number representation. If set to TRUE, floating-point arithmetic will be used, otherwise fractions. Default is TRUE.

Value

Numeric matrix. Each row represents an ESS.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

ESS(matrix(c(-1, 4, 0, 2), 2, byrow=TRUE), c("Hawk", "Dove"), FALSE)
ESS(matrix(c(1, 2, 0, 1, 2, 2, 0, 1), 3, byrow=TRUE))
ESSet

Evolutionarily stable set for two-player games with three strategies

Description

Computes evolutionarily stable sets of a game with two players and three strategies.

Usage

ESSet(A, strategies = c("1", "2", "3"), floats = TRUE)

Arguments

A Numeric matrix of size 3x3 representing the number of strategies of a symmetric matrix game.
strategies String vector of length 3 that names all strategies.
floats Logical value that handles number representation. If set to TRUE, floating-point arithmetic will be used, otherwise fractions. Default is TRUE.

Value

Numeric matrix. Each row represents the start and end point of a line (ESset). In addition, a plot of the ESset in the game will be created.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

Please note that the computation of evolutionarily stable sets is rather time-consuming.
Depending on your machine you might need to wait more than 10 seconds in order to run the following example.
Not run:
A <- matrix(c(-2, 5, 10/9, 0, 5/2, 10/9, -10/9, 35/9, 10/9), 3, byrow=TRUE)
strategies <- c("Hawk", "Dove", "Mixed ESS")
ESSet(A, strategies)

End(Not run)
Description

Imitative Logit dynamic as a type of evolutionary dynamics.

Usage

`ILogit(time, state, parameters)`

Arguments

- `time`: Regular sequence that represents the time sequence under which simulation takes place.
- `state`: Numeric vector that represents the initial state.
- `parameters`: Numeric vector that represents parameters needed by the dynamic.

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Jochen Staudacher <jochen.staudacher@hs-kempten.de>

References

Examples

```r
dynamic <- ILogit
A <- matrix(c(-1, 0, 0, -1, 0, 0, -1), 3, byrow=TRUE)
state <- matrix(c(0.1, 0.2, 0.7, 0.2, 0.7, 0.1, 0.9, 0.05, 0.05), 3, 3, byrow=TRUE)
eta <- 0.7
phaseDiagram3S(A, dynamic, eta, state, TRUE, FALSE)
```
Logit

Logit dynamic

Description

Logit dynamic as a type of evolutionary dynamics.

Usage

Logit(time, state, parameters)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Regular sequence that represents the time sequence under which simulation takes place.</td>
</tr>
<tr>
<td>state</td>
<td>Numeric vector that represents the initial state.</td>
</tr>
<tr>
<td>parameters</td>
<td>Numeric vector that represents parameters needed by the dynamic.</td>
</tr>
</tbody>
</table>

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

dynamic <- Logit
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
eta <- 0.1
phaseDiagram3S(A, dynamic, eta, state, FALSE, FALSE)
MSReplicator

Maynard Smith replicator dynamic as a type of evolutionary dynamics.

Usage

MSReplicator(time, state, parameters)

Arguments

time

Regular sequence that represents the time sequence under which simulation takes place.

state

Numeric vector that represents the initial state.

parameters

Numeric vector that represents parameters needed by the dynamic.

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

dynamic <- MSReplicator
A <- matrix(c(0, -2, 1, 1, 0, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, dynamic, NULL, state, FALSE, FALSE)
Description

Plots phase diagram of a game with two players and two strategies.

Usage

```r
phaseDiagram2S(

  A,
  dynamic,
  params = NULL,
  vectorField = TRUE,
  strategies = c("1", "2")
)
```

Arguments

- **A**: Numeric matrix of size 2x2 representing the number of strategies of a symmetric matrix game.
- **dynamic**: Function representing an evolutionary dynamic.
- **params**: Numeric vector representing additional parameters for the evolutionary dynamic.
- **vectorField**: Logical value that handles vector field presentation. If set to TRUE, vector field will be shown, otherwise not. Default is TRUE.
- **strategies**: String vector of length 2 that names all strategies.

Value

None.

Author(s)

Daniel Gebele <dngebele@gmail.com>

Examples

```r
A <- matrix(c(-1, 4, 0, 2), 2, 2, byrow=TRUE)
phaseDiagram2S(A, Replicator, strategies = c("Hawk", "Dove"))
```
phaseDiagram3S

Phase Diagram for two-player games with three strategies

Description
Plots phase diagram of a game with two players and three strategies.

Usage
phaseDiagram3S(
 A,
 dynamic,
 params = NULL,
 trajectories = NULL,
 contour = FALSE,
 vectorField = FALSE,
 strategies = c("1", "2", "3")
)

Arguments

A Numeric matrix of size 3x3 representing the number of strategies of a symmetric matrix game.
dynamic Function representing an evolutionary dynamic.
params Numeric vector with additional parameters for the evolutionary dynamic.
trajectories Numeric matrix of size mx3. Each row represents the initial values for the trajectory to be examined.
contour Logical value that handles contour diagram presentation. If set to TRUE, contour diagram will be shown, otherwise not. Default is FALSE.
vectorField Logical value that handles vector field presentation. If set to TRUE, vector field will be shown, otherwise not. Default is FALSE.
strategies String vector of length 3 that names all strategies.

Value
None.

Author(s)
Daniel Gebele <dngebele@gmail.com>
Examples

```r
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, Replicator, NULL, state, FALSE, FALSE)
phaseDiagram3S(A, Replicator, NULL, state, TRUE, TRUE)

# Plot two trajectories rather than only one:
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3, 0.6, 0.2, 0.2), 2, 3, byrow=TRUE)
phaseDiagram3S(A, Replicator, NULL, state, FALSE, FALSE)
```

Description

Plots phase diagram of a game with two players and four strategies.

Usage

```r
phaseDiagram4S(
  A,  
  dynamic,  
  params = NULL,  
  trajectory = NULL,  
  strategies = c("1", "2", "3", "4"),  
  noRGL = TRUE
)
```

Arguments

- **A**
 Numeric matrix of size 4x4 representing the number of strategies of a symmetric matrix game.
- **dynamic**
 Function representing an evolutionary dynamic.
- **params**
 Numeric vector with additional parameters for the evolutionary dynamic.
- **trajectory**
 Numeric vector of size 4 representing the initial value for the trajectory to be examined.
- **strategies**
 String vector of length 4 that names all strategies.
- **noRGL**
 Logical value that handles diagram rotation. If set to FALSE, diagram will be rotatable, otherwise not. Default is TRUE.

Value

None.
Author(s)
Daniel Gebele <dngebele@gmail.com>

Examples
A <- matrix(c(5, -9, 6, 8, 20, 1, 2, -18, -14, 0, 2, 20, 13, 0, 4, -13),
4, 4, byrow=TRUE)
state <- c(0.3, 0.2, 0.1, 0.4)
phaseDiagram4S(A, Replicator, NULL, state)

Replicator dynamic

Description
Replicator dynamic as a type of evolutionary dynamics.

Usage
Replicator(time, state, parameters)

Arguments
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Regular sequence that represents the time sequence under which simulation takes place.</td>
</tr>
<tr>
<td>state</td>
<td>Numeric vector that represents the initial state.</td>
</tr>
<tr>
<td>parameters</td>
<td>Numeric vector that represents parameters needed by the dynamic.</td>
</tr>
</tbody>
</table>

Value
Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)
Daniel Gebele <dngebele@gmail.com>

References

Examples
dynamic <- Replicator
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, dynamic, NULL, state, FALSE, FALSE)
Description

Smith dynamic as a type of evolutionary dynamics.

Usage

Smith(time, state, parameters)

Arguments

time Regular sequence that represents the time sequence under which simulation takes place.
state Numeric vector that represents the initial state.
parameters Numeric vector that represents parameters needed by the dynamic.

Value

Numeric list. Each component represents the rate of change depending on the dynamic.

Author(s)

Daniel Gebele <dngebele@gmail.com>

References

Examples

dynamic <- Smith
A <- matrix(c(0, -2, 1, 1, 0, -2, -2, 1, 0), 3, byrow=TRUE)
state <- matrix(c(0.4, 0.3, 0.3), 1, 3, byrow=TRUE)
phaseDiagram3S(A, dynamic, NULL, state, FALSE, FALSE)
triangle
Triangle for 2-simplex operations

Description
Generates a triangle representing the 2-simplex.

Usage
```r
triangle(labels = c("1", "2", "3"))
```

Arguments
- `labels`: String vector of length 3 that names the edges of the triangle.

Value
List of size 2 with members `coords` and `canvas`. `coords` holds edge coordinates of the 2-simplex, `canvas` a ggplot2 plot object of the 2-simplex.

Author(s)
Daniel Gebele <dngebele@gmail.com>

Examples
```r
triangle()
```
Index

BNN, 2
BR, 3

ESS, 4
ESset, 5

ILogit, 6
Logit, 7

MSReplicator, 8

phaseDiagram2S, 9
phaseDiagram3S, 10
phaseDiagram4S, 11

Replicator, 12
Smith, 13

triangle, 14