Package ‘ExPosition’

February 19, 2015

Type Package

Title Exploratory analysis with the singular value decomposition.

Version 2.8.19

Date 2013-12-09

Author Derek Beaton, Cherise R. Chin Fatt, Herve Abdi

Maintainer Derek Beaton <exposition.software@gmail.com>

Description ExPosition is for descriptive (i.e., fixed-effects) multivariate analysis with the singular value decomposition.

License GPL-2

Depends prettyGraphs (>= 2.1.4)

BugReports http://code.google.com/p/exposition-family/issues/list

NeedsCompilation no

Repository CRAN

Date/Publication 2013-12-11 01:16:11

R topics documented:

ExPosition-package .. 3
acknowledgements .. 4
authors ... 5
bada.wine .. 5
beer.tasting.notes .. 6
beers2007 .. 6
calculateConstraints 7
caNorm .. 7
caNSupplementalElementsPreProcessing 8
chi2Dist ... 9
coffee.data ... 9
computeMW ... 10
coreCA .. 11
coreMDS ... 13
R topics documented:

- `corePCA` .. 14
- `createDefaultDesign` ... 16
- `designCheck` .. 16
- `dica.ad` .. 17
- `dica.wine` .. 18
- `ep.iris` .. 18
- `epCA` ... 19
- `epGPCA` ... 20
- `epGraphs` ... 21
- `epMCA` ... 23
- `epMDS` ... 25
- `epPCA` ... 26
- `expo.scale` .. 27
- `faces2005` .. 28
- `french.social` ... 29
- `genPDQ` .. 29
- `great.beer.tasting.1` .. 30
- `great.beer.tasting.2` .. 31
- `hellingerNorm` .. 31
- `hellingerSupplementaryColsPreProcessing` 32
- `hellingerSupplementaryRowsPreProcessing` 33
- `jlsr.2010.ad` .. 33
- `jocn.2005.fmri` ... 34
- `makeDistancesAndWeights` 34
- `makeNominalData` ... 35
- `makeRowProfiles` .. 36
- `mca.eigen.fix` ... 36
- `mca.wine` .. 38
- `mdsSupplementalElementsPreProcessing` 38
- `mdsTransform` ... 39
- `nominalCheck` .. 39
- `pause` ... 40
- `pca.wine` .. 40
- `pcaSupplementaryColsPreProcessing` 41
- `pcaSupplementaryRowsPreProcessing` 41
- `pickSVD` .. 42
- `print.epCA` ... 43
- `print.epGPCA` ... 43
- `print.epGraphs` .. 44
- `print.epMCA` .. 44
- `print.epMDS` .. 45
- `print.epPCA` .. 45
- `print.epSVD` .. 46
- `print.expoOutput` ... 46
- `rowNorms` .. 47
- `rvCoeff` ... 47
- `snps.druguse` .. 48
- `supplementalProjection` 49
Description

Exposition is defined as a comprehensive explanation of an idea. With ExPosition for R, a comprehensive explanation of your data will be provided with minimal effort.

The core of ExPosition is the singular value decomposition (SVD; see: svd). The point of ExPosition is simple: to provide the user with an overview of their data that only the SVD can provide. ExPosition includes several techniques that depend on the SVD (see below for examples and functions).

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>ExPosition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>2.8.19</td>
</tr>
<tr>
<td>Date</td>
<td>2013-12-09</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>=2.15.0), prettyGraphs (>= 2.1.4)</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.utdallas.edu/~derekbeaton/software/exposition</td>
</tr>
</tbody>
</table>

Author(s)

Questions, comments, compliments, and complaints go to Derek Beaton <exposition.software@gmail.com>

The following people are authors or contributors to ExPosition code, data, or examples: Derek Beaton, Hervé Abdi, Cherise Chin-Fatt, Joseph Dunlop, Jenny Rieck, Rachel Williams, Anjali Krishnan, and Francesca Filbey.
Acknowledgements

See Also
eppca, epgpca, epmds, epca, epmca

Examples

```r
# For more examples, see each individual function (as noted above).

# acknowledgements

acknowledgements
```

Description

`acknowledgements` returns a list of people who have contributed to ExPosition.

Usage

`acknowledgements()`

Value

A list of people who have contributed something beyond code to the ExPosition family of packages.

Author(s)

Derek Beaton
authors

(A truncated form of) Punctuation used by six authors (data).

Description
How six authors use 3 different types of punctuation throughout their writing.

Usage
data(authors)

Format
authorsscadata: Six authors (rows) and the frequency of three punctuations (columns). For use with epCA.
authorsmcadata: A Burt table reformatting of the scadata. For use with epMCA.

References

bada.wine
Twelve wines from 3 regions in France with 18 attributes.

Description
This data should be used for discriminant analyses or analyses where the group information is important.

Usage
data(bada.wine)

Format
bada.wine$data: Data matrix with twelve wines (rows) from 3 regions with 18 attributes (columns).
bada.wine$design: Design matrix with twelve wines (rows) with 3 regions (columns) to indicate group relationship of the data matrix.

References
beer.tasting.notes
Some of authors’ personal beer tasting notes.

Description

Tasting notes, preferences, breweries and styles of 38 different craft beers from various breweries, across various styles.

Usage

```r
data(beer.tasting.notes)
```

Format

- `beer.tasting.notes$data`: Data matrix. Tasting notes (ratings) of 38 different beers (rows) described by 16 different flavor profiles (columns).
- `beer.tasting.notes$brewery.design`: Design matrix. Source brewery of 38 different beers (rows) across 26 breweries (columns).
- `beer.tasting.notes$style.design`: Design matrix. Style of 38 different beers (rows) across 20 styles (columns) (styles as listed from Beer Advocate website).
- `beer.tasting.notes$sup.data`: Supplementary data matrix. ABV and overall preference ratings of 38 beers described by two features (ABV & overall) in original value and rounded value.

Source

Jenny Rieck and Derek Beaton laboriously “collected” these data for “experimental purposes”.

References

http://www.beeradvocate.com

beers2007
Ten assessors sort eight beers into groups.

Description

Ten assessors perform a free-sorting task to sort eight beers into groups.

Usage

```r
data(beers2007)
```

Format

- `beers2007$data`: A data matrix with 8 rows (beers) described by 10 assessors (columns).
References

calculateConstraints

Description
Calculates constraints for plotting data.

Usage
calculateConstraints(results, x_axis=1, y_axis=2, constraints=NULL)

Arguments
- results: results from ExPosition (i.e., $ExPosition.Data)
- x_axis: which component should be on the x axis?
- y_axis: which component should be on the y axis?
- constraints: if available, axis constraints for the plots (determines end points of the plots).

Value
Returns a list with the following items:

- $constraints: axis constraints for the plots (determines end points of the plots).

Author(s)
Derek Beaton

canorm

Description
Performs all steps required for CA processing (row profile approach).

Usage
canorm(X, X_dimensions, colTotal, rowTotal, grandTotal, weights = NULL, masses = NULL)
Arguments

X Data matrix
X_dimensions The dimensions of X in a vector of length 2 (rows, columns). See dim
colTotal Vector of column sums.
rowTotal Vector of row sums.
grandTotal Grand total of X
weights Optional weights to include for the columns.
masses Optional masses to include for the rows.

Value

rowCenter The barycenter of X.
masses Masses to be used for the GSVD.
weights Weights to be used for the GSVD.
rowProfiles The row profiles of X.
deviations Deviations of row profiles from rowCenter.

Author(s)
Derek Beaton

casupplementalelementspreprocessing Correspondence Analysis preprocessing.

Description
CA preprocessing for data. Can be performed on rows or columns of your data. This is a row-profile normalization.

Usage
casupplementalelementspreprocessing(SUP.DATA)

Arguments
SUP.DATA Data that will be supplemental. Row profile normalization is used. For supplemental rows use t(SUP.DATA).

Value
returns a matrix that is preprocessed for supplemental projections.
chi2Dist

Author(s)
Derek Beaton

See Also
- mdsSupplementalElementsPreProcessing
- pcaSupplementaryColsPreProcessing
- pcaSupplementaryRowsPreProcessing
- hellingerSupplementaryColsPreProcessing
- hellingerSupplementaryRowsPreProcessing
- supplementaryCols
- supplementaryRows
- supplementalProjection
- rowNorms

chi2Dist
Chi-square Distance computation

Description
Perform a chi-square distance. Primarily used for epMDS.

Usage

```r
chi2Dist(X)
```

Arguments

- `X`
 Compute chi-square distances between row items.

Value

- `D`
 Distance matrix for epMDS analysis.
- `MW`
 A list of masses and weights. Weights not used in MDS.

Author(s)
Hervé Abdi

coffee.data
Small data set on flavor perception and preferences for coffee.

Description
One coffee from Oak Cliff roasters (Dallas, TX) was used in this experiment. Honduran source with a medium roast. The coffee was brewed in two ways and served in two ways (i.e., a 2x2 design). Two batches each of coffee were brewed at 180 degrees (Hot) Farenheit or at room temperature (Cold). One of each was served cold or heated back up to 180 degrees (Hot).

Usage

```r
data(coffee.data)
```
Format

coffee.data$preferences: Ten participants indicated if they liked a particular serving or not.
coffee.data$ratings: Ten participants indicated on a scale of 0-2 the presence of particular flavors.
In an array format.

Details

Flavor profiles measured: Salty, Spice Cabinet, Sweet, Bittery, and Nutty.

description

Computes masses and weights for epGPCA.

Usage

computeMW(DATA, masses = NULL, weights = NULL)

Arguments

DATA original data; will be used to compute masses and weights if none are provided.
masses a vector or (diagonal) matrix of masses for the row items. If NULL (default), masses are computed as 1/# of rows
weights a vector or (diagonal) matrix of weights for the column items. If NULL (default), weights are computed as 1/# of columns

Value

Returns a list with the following items:

M a diagonal matrix of masses (if too large, a vector is returned).
W a diagonal matrix of weights (if too large, a vector is returned).

Author(s)

Derek Beaton

See Also

epGPCA
Description

coreCA performs the core of correspondence analysis (CA), multiple correspondence analysis (MCA) and related techniques.

Usage

coreCA(dataL, masses = NULL, weights = NULL, hellinger = FALSE, symmetric = TRUE, decomp.approach = 'svd', k = 0)

Arguments

DATA original data to decompose and analyze via the singular value decomposition.
masses a vector or diagonal matrix with masses for the rows (observations). If NULL, one is created or the plain SVD is used.
weights a vector or diagonal matrix with weights for the columns (measures). If NULL, one is created or the plain SVD is used.
hellinger a boolean. If FALSE (default), Chi-square distance will be used. If TRUE, Hellinger distance will be used.
symmetric a boolean. If TRUE (default) symmetric factor scores for rows and columns are computed. If FALSE, the simplex (column-based) will be returned.
decomp.approach string. A switch for different decompositions (typically for speed). See pickSV.
k number of components to return (this is not a rotation, just an a priori selection of how much data should be returned).

Details

This function should not be used directly. Please use epCA or epMCA unless you plan on writing extensions to ExPosition. Any extensions wherein CA is the primary analysis should use coreCA.

Value

Returns a large list of items which are also returned in epCA and epMCA (the help files for those functions will refer to this as well).
All items with a letter followed by an i are for the I rows of a DATA matrix. All items with a letter followed by an j are for the J rows of a DATA matrix.

fi factor scores for the row items.
di square distances of the row items.
ci contributions (to the variance) of the row items.
ri cosines of the row items.
fj factor scores for the column items.
dj square distances of the column items.
cj contributions (to the variance) of the column items.
rj cosines of the column items.
t the percent of explained variance per component (tau).
eigs the eigenvalues from the decomposition.
pdq the set of left singular vectors (pdq$p) for the rows, singular values (pdq$Dv and pdq$Dd), and the set of right singular vectors (pdq$q) for the columns.
M a column-vector or diagonal matrix of masses (for the rows)
W a column-vector or diagonal matrix of weights (for the columns)
c a centering vector (for the columns).
X the final matrix that was decomposed (includes scaling, centering, masses, etc...).
hellinger a boolean. TRUE if Hellinger distance was used.
symmetric a boolean. FALSE if asymmetric factor scores should be computed.

Author(s)
Derek Beaton and Hervé Abdi.

References

See Also
epCA, epMCA
coreMDS

Description

coreMDS performs metric multidimensional scaling (MDS).

Usage

coreMDS(DATA, masses = NULL, decomp.approach = 'svd', k = 0)

Arguments

DATA original data to decompose and analyze via the singular value decomposition.
masses a vector or diagonal matrix with masses for the rows (observations). If NULL, one is created.
decomp.approach string. A switch for different decompositions (typically for speed). See pickSVD.
k number of components to return (this is not a rotation, just an a priori selection of how much data should be returned).

Details

epMDS should not be used directly unless you plan on writing extensions to ExPosition. See epMDS

Value

Returns a large list of items which are also returned in epMDS. All items with a letter followed by an i are for the I rows of a DATA matrix. All items with a letter followed by an j are for the J rows of a DATA matrix.

fi factor scores for the row items.
di square distances of the row items.
ci contributions (to the variance) of the row items.
ri cosines of the row items.
masses a column-vector or diagonal matrix of masses (for the rows)
t the percent of explained variance per component (tau).
eigs the eigenvalues from the decomposition.
pdq the set of left singular vectors (pdq$p) for the rows, singular values (pdq$Dv and pdq$Dd), and the set of right singular vectors (pdq$q) for the columns.
x the final matrix that was decomposed (includes scaling, centering, masses, etc...).
corePCA

Author(s)
Derek Beaton and Hervé Abdi.

References

See Also
epMDS

corePCA
corePCA

Description
corePCA performs the core of principal components analysis (PCA), generalized PCA (GPCA), multidimensional scaling (MDS), and related techniques.

Usage
corePCA(DATA, M = NULL, W = NULL, decomp.approach = 'svd', k = 0)

Arguments

DATA
original data to decompose and analyze via the singular value decomposition.

M
a vector or diagonal matrix with masses for the rows (observations). If NULL, one is created or the plain SVD is used.

W
a vector or diagonal matrix with weights for the columns (measures). If NULL, one is created or the plain SVD is used.

decomp.approach
string. A switch for different decompositions (typically for speed). See pickSVD.

k
number of components to return (this is not a rotation, just an a priori selection of how much data should be returned).

Details
This function should not be used directly. Please use epPCA or epGPCA unless you plan on writing extensions to ExPosition.
Value

Returns a large list of items which are also returned in `epPCA` and `epGPCA` (the help files for those functions will refer to this as well).
All items with a letter followed by an i are for the I rows of a DATA matrix. All items with a letter followed by an j are for the J rows of a DATA matrix.

\begin{itemize}
 \item \texttt{fi} \quad factor scores for the row items.
 \item \texttt{di} \quad square distances of the row items.
 \item \texttt{ci} \quad contributions (to the variance) of the row items.
 \item \texttt{ri} \quad cosines of the row items.
 \item \texttt{fj} \quad factor scores for the column items.
 \item \texttt{dj} \quad square distances of the column items.
 \item \texttt{cj} \quad contributions (to the variance) of the column items.
 \item \texttt{rj} \quad cosines of the column items.
 \item \texttt{t} \quad the percent of explained variance per component (tau).
 \item \texttt{eigs} \quad the eigenvalues from the decomposition.
 \item \texttt{pdq} \quad the set of left singular vectors (pdqp) for the rows, singular values (pdqDv and pdqDd), and the set of right singular vectors (pdqq) for the columns.
 \item \texttt{x} \quad the final matrix that was decomposed (includes scaling, centering, masses, etc...).
\end{itemize}

Author(s)

Derek Beaton and Hervé Abdi.

References

See Also

`epPCA`, `epGPCA`
createDefaultDesign

Description

Creates a default design matrix, wherein all observations (i.e., row items) are in the same group.

Usage

createDefaultDesign(DATA)

Arguments

- **DATA**: original data that requires a design matrix

Value

- **DESIGN**: a column-vector matrix to indicate that all observations are in the same group.

Author(s)

Derek Beaton

designCheck

Description

Checks and/or creates a dummy-coded design matrix.

Usage

designCheck(DATA, DESIGN = NULL, make_design_nominal = TRUE)

Arguments

- **DATA**: original data that should be matched to a design matrix
- **DESIGN**: a column vector with levels for observations or a dummy-coded matrix
- **make_design_nominal**: a boolean. Will make DESIGN nominal if TRUE (default).

Details

Returns a properly formatted, dummy-coded (or disjunctive coding) design matrix.
Value

DESIGN d dummy-coded design matrix

Author(s)

Derek Beaton

Examples

```r
data <- iris[,c(1:4)]
design <- as.matrix(iris[,c('Species')])
iris.design <- designCheck(data,DESIGN=design,make_design_nominal=TRUE)
```

Description

Conversational data from Alzheimer’s Patient-Spouse Dyads.

Usage

```r
data(dica.ad)
```

Format

dica.ad$data: Seventeen dyads described by 58 variables.
dica.ad$design: Seventeen dyads that belong to three groups.

References

Twelve wines from 3 regions in France with 16 attributes.

Description
This data should be used for discriminant analyses or analyses where the *group* information is important.

Usage
```r
data(dica.wine)
```

Format
dica.wine$data: Data matrix with twelve wines (rows) from 3 regions with 16 attributes (columns) in disjunctive (0/1) coding.
dica.wine$design: Design matrix with twelve wines (rows) with 3 regions (columns) to indicate group relationship of the data matrix.

References

Fisher’s iris Set (for ExPosition)

Description
The world famous Fisher’s iris set: 150 flowers from 3 species with 4 attributes.

Usage
```r
data(ep.iris)
```

Format
ep.iris$data: Data matrix with 150 flowers (rows) from 3 species with 4 attributes (columns) describing sepal and petal features.
ep.iris$design: Design matrix with 150 flowers (rows) with 3 species (columns) indicating which flower belongs to which species.

Source
epCA: Correspondence Analysis (CA) via ExPosition.

Description

Correspondence Analysis (CA) via ExPosition.

Usage

epCA(data, DESIGN = NULL, make_design_nominal = TRUE, masses = NULL, weights = NULL, hellinger = FALSE, symmetric = TRUE, graphs = TRUE, k = 0)

Arguments

- DATA original data to perform a CA on.
- DESIGN a design matrix to indicate if rows belong to groups.
- make_design_nominal a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
- masses a diagonal matrix or column-vector of masses for the row items.
- weights a diagonal matrix or column-vector of weights for the column it
- hellinger a boolean. If FALSE (default), Chi-square distance will be used. If TRUE, Hellinger distance will be used.
- symmetric a boolean. If TRUE (default) symmetric factor scores for rows and columns are computed. If FALSE, the simplex (column-based) will be returned.
- graphs a boolean. If TRUE (default), graphs and plots are provided (via epGraphs)
- k number of components to return.

Details

epCA performs correspondence analysis. Essentially, a PCA for qualitative data (frequencies, proportions). If you decide to use Hellinger distance, it is best to set symmetric to FALSE.

Value

See coreCA for details on what is returned.

Author(s)

Derek Beaton
References

See Also
coreCA, epMCA

Examples

```r
data(authors)
ca.authors.res <- epca(authors$ca$data)
```

epGPCA

epGPCA: Generalized Principal Components Analysis (GPCA) via ExPosition.

Description

Generalized Principal Components Analysis (GPCA) via ExPosition.

Usage

```r
epGPCA(DATA, scale = TRUE, center = TRUE, DESIGN = NULL, make_design_nominal = TRUE, masses = NULL, weights = NULL, graphs = TRUE, k = 0)
```

Arguments

- **DATA**
 - original data to perform a PCA on.
- **scale**
 - a boolean, vector, or string. See `expo.scale` for details.
- **center**
 - a boolean, vector, or string. See `expo.scale` for details.
- **DESIGN**
 - a design matrix to indicate if rows belong to groups.
- **make_design_nominal**
 - a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
- **masses**
 - a diagonal matrix or column-vector of masses for the row items.
- **weights**
 - a diagonal matrix or column-vector of weights for the column items.
- **graphs**
 - a boolean. If TRUE (default), graphs and plots are provided (via `epGraphs`).
- **k**
 - number of components to return.
epGraphs

Details

epGPCA performs generalized principal components analysis. Essentially, a PCA with masses and weights for rows and columns, respectively.

Value

See corePCA for details on what is returned. In addition to the values in corePCA:

- \(M \) a matrix (or vector, depending on size) of masses for the row items.
- \(W \) a matrix (or vector, depending on size) of weights for the column items.

Author(s)

Derek Beaton

References

See Also

corePCA, epPCA, epMDS

Examples

this is for ExPosition's iris data
data(ep.iris)
gpca.iris.res <- epGPCA(ep.iris$data, DESIGN=ep.iris$design, make_design_nominal=FALSE)

description

epGraphs: ExPosition plotting function

Usage

epGraphs(res, x_axis = 1, y_axis = 2, epPlotInfo = NULL, DESIGN=NULL, fi.col = NULL, fi.pch = NULL, fj.col = NULL, fj.pch = NULL, col.offset = NULL, constraints = NULL, xlab = NULL, ylab = NULL, main = NULL, contributionPlots = TRUE, correlationPlotter = TRUE, biplots = FALSE, graphs = TRUE)
Arguments

res results from ExPosition
x_axis which component should be on the x axis?
y_axis which component should be on the y axis?
epPlotInfo A list ($Plotting.Data) from epGraphs or ExPosition.
DESIGN A design matrix to apply colors (by pallete selection) to row items
fi.col A matrix of colors for the row items. If NULL, colors will be selected.
fi.pch A matrix of pch values for the row items. If NULL, pch values are all 21.
fj.col A matrix of colors for the column items. If NULL, colors will be selected.
fj.pch A matrix of pch values for the column items. If NULL, pch values are all 21.
col.offset A numeric offset value. Is passed to createColorVectorsByDesign.
constraints Plot constraints as returned from prettyPlot. If NULL, constraints are selected.
xlab x axis label
ylab y axis label
main main label for the graph window
contributionPlots a boolean. If TRUE (default), contribution bar plots will be created.
correlationPlotter a boolean. If TRUE (default), a correlation circle plot will be created. Applies to PCA family of methods (CA is excluded for now).
biplots a boolean. If FALSE (default), separate plots are made for row items ($fi) and column items ($fj). If TRUE, row ($fi) and column ($fj) items will be on the same plot.
graphs a boolean. If TRUE, graphs are created. If FALSE, only data associated to plotting (e.g., constraints, colors) are returned.

Details
epGraphs is an interface between ExPosition and prettyGraphs.

Value

The following items are bundled inside of $Plotting.Data:

$fi.col the colors that are associated to the row items ($fi).
$fj.pch the pch values associated to the row items ($fi).
$fj.col the colors that are associated to the column items ($fj).
$fj.pch the pch values associated to the column items ($fj).
$constraints axis constraints for the plots (determines end points of the plots).
epMCA: Multiple Correspondence Analysis (MCA) via ExPosition.

Description

Multiple Correspondence Analysis (MCA) via ExPosition.

Usage

epMCA(DATA, make_data_nominal = TRUE, DESIGN = NULL, make_design_nominal = TRUE, masses = NULL, weights = NULL, hellinger = FALSE, symmetric = TRUE, correction = c("b"), graphs = TRUE, k = 0)

Arguments

DATA
original data to perform a MCA on. This data can be in original formatting (qualitative levels) or in dummy-coded variables.

make_data_nominal
a boolean. If TRUE (default), DATA is recoded as a dummy-coded matrix. If FALSE, DATA is a dummy-coded matrix.

DESIGN
a design matrix to indicate if rows belong to groups.

make_design_nominal
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.

masses
a diagonal matrix or column-vector of masses for the row items.

weights
a diagonal matrix or column-vector of weights for the column it

hellinger
a boolean. If FALSE (default), Chi-square distance will be used. If TRUE, Hellinger distance will be used.

symmetric
a boolean. If TRUE symmetric factor scores for rows.
correction which corrections should be applied? "b" = Benzécri correction, "bg" = Greenacre adjustment to Benzécri correction.

graphs a boolean. If TRUE (default), graphs and plots are provided (via epGraphs)

k number of components to return.

Details

epMCA performs multiple correspondence analysis. Essentially, a CA for categorical data. It should be noted that when hellinger is selected as TRUE, no correction will be performed. Additionally, if you decide to use Hellinger, it is best to set symmetric to FALSE.

Value

See coreCA for details on what is returned. In addition to the values returned:

$pdq this is the corrected SVD data, if a correction was selected. If no correction was selected, it is uncorrected.

$pdq.uncor uncorrected SVD data.

Author(s)

Derek Beaton

References

See Also
coreCA, epCA, mca.eigen.fix

Examples
data(mca.wine)
mca.wine.res <- epMCA(mca.wine$data)
Description
Multidimensional Scaling (MDS) via ExPosition.

Usage
epMDS(DATA, DATA_is_dist = TRUE, method="euclidean", DESIGN = NULL,
make_design_nominal = TRUE, masses = NULL, graphs = TRUE, k = 0)

Arguments
data
original data to perform a MDS on.
DATA_is_dist
a boolean. If TRUE (default) the DATA matrix should be a symmetric distance
matrix. If FALSE, a Euclidean distance of row items will be computed and used.
method
which distance metric should be used. method matches dist; Two additional
distances are available: "correlation" and "chi2". For "chi2" see chi2Dist. De-
default is "euclidean".
DESIGN
a design matrix to indicate if rows belong to groups.
make_design_nominal
a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and
will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
masses
a diagonal matrix (or vector) that contains the masses (for the row items).
graphe
a boolean. If TRUE (default), graphs and plots are provided (via epGraphs)
k
number of components to return.

Details
epMDS performs metric multi-dimensional scaling. Essentially, a PCA for a symmetric distance
matrix.

Value
See coreMDS for details on what is returned. epMDS only returns values related to row items (e.g.,
fi, ci); no column data is returned.
D
the distance matrix that was decomposed. In most cases, it is returned as a
squared distance.

Note
With respect to input of DATA, epMDS differs slightly from other versions of multi-dimensional scal-
ing.
If you provide a rectangular matrix (e.g., observations x measures), epMDS will compute a distance
matrix and square it.
If you provide a distance (dissimilarity) matrix, epMDS does not square it.
Author(s)
Derek Beaton

References

See Also
corePCA, epPCA, epGPCA

Examples

data(jocn.2005.fmri)
#by default, components 1 and 2 will be plotted.
mds.res.images <- epMDS(jocn.2005.fmri$images$data)

##iris example
data(ep.iris)
iris.rectangular <- epMDS(ep.iris$data,DATA_is_dist=FALSE)
iris.euc.dist <- dist(ep.iris$data,upper=TRUE,diag=TRUE)
iris.sq.euc.dist <- as.matrix(iris.euc.dist^2)
iris.sq <- epMDS(iris.sq.euc.dist)

epPCA: Principal Component Analysis (PCA) via ExPosition.

Description
Principal Component Analysis (PCA) via ExPosition.

Usage
epPCA(DATA, scale = TRUE, center = TRUE, DESIGN = NULL, make_design_nominal = TRUE, graphs = TRUE, k = 0)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>original data to perform a PCA on.</td>
</tr>
<tr>
<td>scale</td>
<td>a boolean, vector, or string. See expo.scale for details.</td>
</tr>
<tr>
<td>center</td>
<td>a boolean, vector, or string. See expo.scale for details.</td>
</tr>
<tr>
<td>DESIGN</td>
<td>a design matrix to indicate if rows belong to groups.</td>
</tr>
</tbody>
</table>
expo.scale

make_design_nominal
 a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and
 will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.

graphs
 a boolean. If TRUE (default), graphs and plots are provided (via epGraphs)

k
 number of components to return.

Details

epPCA performs principal components analysis on a data matrix.

Value
 See corePCA for details on what is returned.

Author(s)
 Derek Beaton

References

See Also
 corePCA, epMDS, epGPCA

Examples

 data(words)
 pca.words.res <- epPCA(words$data)

expo.scale Scaling functions for ExPosition.

Description
 expo.scale is a more elaborate, and complete, version of scale. Several text options are available, but more importantly, the center and scale factors are always returned.

Usage

 expo.scale(DATA, center = TRUE, scale = TRUE)
Arguments

DATA

data: A data structure representing a distance matrix (6X6) for four algorithms.

Value

A data matrix that is scaled with the following attributes (see scale):

\$'scaled:center'$

The center of the data. If no center is provided, all 0s will be returned.

\$'scaled:scale'$

The scale factor of the data. If no scale is provided, all 1s will be returned.

Author(s)

Derek Beaton

Description

Four algorithms compared using a distance matrix between six faces.

Usage

data(faces2005)

Format

faces2005$data: A data structure representing a distance matrix (6X6) for four algorithms.

References

Description

This data should be used with `epPCA`.

Usage

```r
data(french.social)
```

Format

`french.social$data`: Data matrix with twelve families (rows) with 7 attributes (columns) describing what they spend their income on.

References

genPDQ

genPDQ: the GSVD

Description

`genPDQ` performs the SVD and GSVD for all methods in `ExPosition`.

Usage

```r
genPDQ(datain, M = NULL, W = NULL, is.mds = FALSE, decomp.approach = "svd", k = 0)
```

Arguments

- `datain`: fully preprocessed data to be decomposed.
- `M`: vector or diagonal matrix of masses (for the rows)
- `W`: vector or diagonal matrix of weights (for the columns)
- `is.mds`: a boolean. If the method is of MDS (e.g., `epMDS`), use TRUE. All other methods: FALSE
- `decomp.approach`: a string. Allows for the user to choose which decomposition method to perform. Current options are SVD or Eigen.
- `k`: number of components to return (this is not a rotation, just an *a priori* selection of how much data should be returned).
Details

This function should only be used to create new methods based on the SVD or GSVD.

Value

Data of class epSVD which is a list of matrices and vectors:

- \(P \) The left singular vectors (rows).
- \(Q \) The right singular vectors (columns).
- \(\text{dv} \) Vector of the singular values.
- \(\text{dd} \) Diagonal matrix of the singular values.
- \(\text{ng} \) Number of singular values/vectors
- \(\text{rank} \) Rank of the decomposed matrix. If it is 1, 0s are padded to the above items for plotting purposes.
- \(\text{tau} \) Explained variance per component

Author(s)

Derek Beaton

See Also

pickSVD

great.beer.tasting.1 A collection of beer tasting notes from untrained assessors.

Description

A collection of beer tasting notes of 9 beers, across 16 descriptors, from 4 untrained assessors.

Usage

data(great.beer.tasting.1)

Format

great.beer.tasting.1$data: Data matrix (cube). Tasting notes (ratings) of 9 different beers (rows) described by 16 different flavor profiles (columns) by 4 untrained assessors. Thes data contain NAs and must be imputed or adjusted before an analysis is performed.
great.beer.tasting.1$brewery.design: Design matrix. Source brewery of 9 different beers (rows) across 5 breweries (columns).
great.beer.tasting.1$flavor: Design matrix. Intended prominent flavor of 9 different beers (rows) across 3 flavor profiles (columns).
Source

Rachel Williams, Jenny Rieck and Derek Beaton recoded, collected data and/or “ran the experiment”.

Description

A collection of beer tasting notes of 13 beers, across 15 descriptors, from 9 untrained assessors.

Usage

data(great.beer.tasting.2)

Format

great.beer.tasting.2$data: Data matrix (cube). Tasting notes (ratings) of 13 different beers (rows) described by 15 different flavor profiles (columns) by 9 untrained assessors. All original values were on an interval scale of 0-5. Any decimal values are imputed from alternate data sources or additional assessors.
great.beer.tasting.2$brewery.design: Design matrix. Source brewery of 13 different beers (rows) across 13 breweries (columns).
great.beer.tasting.2$style.design: Design matrix. Style of 13 different beers (rows) across 8 styles (columns). Some complex styles were truncated.

Source

Rachel Williams, Jenny Rieck and Derek Beaton recoded, collected data and/or “ran the experiment”.

Description

Performs all steps required for Hellinger form of CA processing (row profile approach).

Usage

hellingerNorm(X, X_dimensions, colTotal, rowTotal, grandTotal, weights = NULL, masses = NULL)
Arguments

- **X**
 - Data matrix

- **X_dimensions**
 - The dimensions of X in a vector of length 2 (rows, columns). See `dim`

- **colTotal**
 - Vector of column sums.

- **rowTotal**
 - Vector of row sums.

- **grandTotal**
 - Grand total of X

- **weights**
 - Optional weights to include for the columns.

- **masses**
 - Optional masses to include for the rows.

Value

- **rowCenter**
 - The barycenter of X.

- **masses**
 - Masses to be used for the GSVD.

- **weights**
 - Weights to be used for the GSVD.

- **rowProfiles**
 - The row profiles of X.

- **deviations**
 - Deviations of row profiles from `rowCenter`.

Author(s)

- Derek Beaton and Hervé Abdi

hellingerSupplementaryColsPreProcessing

Preprocessing for supplementary columns in Hellinger analyses.

Description

Preprocessing for supplementary columns in Hellinger analyses.

Usage

```r
hellingerSupplementaryColsPreProcessing(SUP.DATA, W = NULL, M = NULL)
```

Arguments

- **SUP.DATA**
 - A supplemental matrix that has the same number of rows as an active data set.

- **W**
 - A vector or matrix of Weights. If none are provided, a default is computed.

- **M**
 - A vector or matrix of Masses. If none are provided, a default is computed.

Value

- A matrix that has been preprocessed to project supplementary rows for Hellinger methods.

Author(s)

- Derek Beaton
Preprocessing for supplementary rows in Hellinger analyses.

Description

Preprocessing for supplementary rows in Hellinger analyses.

Usage

```r
hellingersupplementaryrowspreprocessing(supNdata, center = NULL)
```

Arguments

- `supNdata`: A supplemental matrix that has the same number of rows as an active data set.
- `center`: The center from the active data. NULL will center `supNdata` to itself.

Value

A matrix that has been preprocessed to project supplementary columns for Hellinger methods.

Author(s)

Derek Beaton

jlsr.2010.ad

Data from 17 Alzheimer’s Patient-Spouse dyads.

Description

Seventeen Alzheimer’s Patient-Spouse Dyads had conversations recorded and 58 attributes were recoded for this data. Each attribute is a frequency of occurrence of the item.

Usage

```r
data(jlsr.2010.ad)
```

Format

- `jlsr.2010.adcadata`: Seventeen patient-spouse dyads (rows) described by 58 conversation items. For use with `epCA` and discriminant analyses.
- `jlsr.2010.admcadesign`: A design matrix that indicates which group the dyad belongs to: control (CTRL), early stage Alzheimer’s (EDAT) or middle stage Alzheimer’s (MDAT).
References

jocn.2005.fmri

Data of categories of images as view in an fMRI experiment.

Description

Contains 2 data sets: distance matrix of fMRI scans of participants viewing categories of items and distance matrix of the actual pixels from the images in each category.

Usage

data(jocn.2005.fmri)

Format

jocn.2005.fmri$scans$data: A distance matrix of 6 categories of images based on fMRI scans.

References

See Also

http://openfmri.org/dataset/ds000105

makeDistancesAndWeights

Makes distances and weights for MDS analyses (see epMDS).

Description

Makes distances and weights for MDS analyses (see epMDS).

Usage

code makeDistancesAndWeights(DATA, method = "euclidean", masses = NULL)
makeNominalData

Arguments

- **DATA**
 A data matrix to compute distances between row items.

- **method**
 which distance metric should be used. method matches `dist`; Two additional distances are available: "correlation" and "chi2". For "chi2" see `chzdists`. Default is "euclidean".

- **masses**
 a diagonal matrix (or vector) that contains the masses (for the row items).

Value

- **D**
 Distance matrix for analysis

- **MW**
 a list item with masses and weights. Weights are not used in `epMDS`.

Author(s)

Derek Beaton

See Also

- `link{computeMW}`, `link{epMDS}`, `link{coreMDS}`

Description

Transforms each column into measure-response columns with disjunctive (0/1) coding. If NA is found somewhere in matrix, barycentric recoding is performed for the missing value(s).

Usage

```r
makeNominalData(datain)
```

Arguments

- **datain**
 a data matrix where the *columns* will be recoded.

Value

- **dataout**
 a transformed version of *datain*.

Author(s)

Derek Beaton

See Also

- `epMCA`
Examples

```r
data(mca.wine)
nominal.wine <- makeNominalData(mca.wine$data)
```

Description

This function performs all preprocessing steps required for Correspondence Analysis-based preprocessing.

Usage

```r
makeRowProfiles(X, weights = NULL, masses = NULL, hellinger = FALSE)
```

Arguments

- `X` Data matrix.
- `weights` optional. Weights to include in preprocessing.
- `masses` optional. Masses to include in preprocessing.
- `hellinger` a boolean. If TRUE, Hellinger preprocessing is used. Else, CA row profile is computed.

Value

Returns from `hellingerNorm` or `caNorm`.

Author(s)

Derek Beaton

mca.eigen.fix

Description

A function for correcting the eigenvalues and output from multiple correspondence analysis (MCA, `epMCA`)

Usage

```r
mca.eigen.fix(DATA, mca.results, make_data_nominal = TRUE, numVariables = NULL, correction = c("b"), symmetric = FALSE)
```
mca.eigen.fix

Arguments

- **DATA**
 original data (i.e., not transformed into disjunctive coding)

- **mca.results**
 output from epMCA

- **make_data_nominal**
 a boolean. Should DATA be transformed into disjunctive coding? Default is TRUE.

- **numVariables**
 the number of actual measures/variables in the data (typically the number of columns in DATA)

- **correction**
 which corrections should be applied? "b" = Benzécri correction, "bg" = Greenacre adjustment to Benzécri correction.

- **symmetric**
 a boolean. If the results from MCA are symmetric or asymmetric factor scores. Default is FALSE.

Value

- **mca.results**
 a modified version of mca.results. Factor scores (e.g., $fi, $fj), and $pdq are updated based on corrections chosen.

Author(s)

Derek Beaton

References

See Also

- epMCA

Examples

```r
data(mca.wine)
# No corrections used in MCA
mca.wine.res.uncor <- epMCA(mca.wine$data, correction=NULL)
data <- mca.wine$data
expo.output <- mca.wine.res.uncor$ExPosition.Data
# mca.eigen.fix with just Benzécri correction
mca.wine.res.b <- mca.eigen.fix(data, expo.output, correction=c('b'))
# mca.eigen.fix with Benzécri + Greenacre adjustment
mca.wine.res.bg <- mca.eigen.fix(data, expo.output, correction=c('b','g'))
```
mca.wine

Six wines described by several assessors with qualitative attributes.

Description

Six wines described by several assessors with qualitative attributes.

Usage

```r
data(mca.wine)
```

Format

- `mca.wine$data`: A (categorical) data matrix with 6 wines (rows) from several assessors described by 10 attributes (columns). For use with `epMCA`.

References

mdsSupplementalElementsPreProcessing

MDS preprocessing

Description

Preprocessing of supplemental data for MDS analyses.

Usage

```r
mdsSupplementalElementsPreProcessing(SUP.DATA = NULL, D = NULL, M = NULL)
```

Arguments

- `SUP.DATA`: A supplementary data matrix.
- `D`: The original (active) distance matrix that `SUP.DATA` is supplementary to.
- `M`: Masses from the original (active) analysis for `D`.

Value

A matrix that is preprocessed for supplementary projection in MDS.

Author(s)

Derek Beaton
mdsTransform

Transform data for MDS analysis.

Description
Transform data for MDS analysis.

Usage
mdsTransform(D, masses)

Arguments
D A distance matrix
masses A vector or matrix of masses (see `computeMw`).

Value
S a preprocessed matrix that can be decomposed.

Author(s)
Derek Beaton

nominalCheck

Checks if data are disjunctive.

Description
Checks if data is in disjunctive (sometimes called complete binary) format. To be used with MCA (e.g., `epMCA`).

Usage
nominalCheck(DATA)

Arguments
DATA A data matrix to check. This should be 0/1 disjunctive coded. `nominalCheck` just checks to make sure it is complete.

Value
If `DATA` are nominal, `DATA` is returned. If not, `stop` is called and execution halts.

Author(s)
Derek Beaton
Description

A replication of MatLab pause function.

Usage

```r
pause(x = 0)
```

Arguments

- `x` optional. If `x>0` a call is made to `Sys.sleep`. Else, execution pauses until a key is entered.

Author(s)

Derek Beaton (but the pase of which is provided by Phillipe Brosjean from the R mailing list.)

References

Copied from:

Description

Six wines described by several assessors with rank attributes.

Usage

```r
data(pca.wine)
```

Format

- `pca.wine$data`: A data matrix with 6 wines (rows) from several assessors described by 11 attributes (columns). For use with `epPCA`.

References

See Also

- `mca.wine`
pcaSupplementaryColsPreProcessing

Preprocessing for supplementary columns in PCA.

Description

Preprocessing for supplementary columns in PCA.

Usage

pcaSupplementaryColsPreProcessing(supNdata = nullL, center = trueL, scale = trueL, M = nullI)

Arguments

- **SUP.DATA**: A supplemental matrix that has the same number of rows as an active data set.
- **center**: The center from the active data. NULL will center SUP.DATA to itself.
- **scale**: The scale factor from the active data. NULL will scale (z-score) SUP.DATA to itself.
- **M**: Masses from the active data. Used in epGPCA.

Value

A matrix that has been preprocessed to project supplementary columns for PCA methods.

Author(s)

Derek Beaton

pcaSupplementaryRowsPreProcessing

Preprocessing for supplemental rows in PCA.

Description

Preprocessing for supplemental rows in PCA.

Usage

pcaSupplementaryRowsPreProcessing(SUP.DATA = NULL, center = TRUE, scale = TRUE, W = NULL)
pickSVD

Arguments

SUP.DATA
A supplemental matrix that has the same number of columns as an active data set.

center
The center from the active data. NULL will center `SUP.DATA` to itself.

scale
The scale factor from the active data. NULL will scale (z-score) `SUP.DATA` to itself.

W
Weights from the active data. Used in `epGPCA`.

Value

A matrix that has been preprocessed to project supplementary rows for PCA methods.

Author(s)

Derek Beaton

pickSVD
Pick which generalized SVD (or related) decomposition to use.

Description

This function is an interface for the user to a general SVD or related decomposition. It provides direct access to `svd` and `eigen`. Future decompositions will be available.

Usage

```r
pickSVD(datain, is.mds = FALSE, decomp.approach = "svd", k = 0)
```

Arguments

datain
a data matrix to decompose.

is.mds
a boolean. TRUE for a MDS decomposition.

decomp.approach
a string. 'svd' for singular value decomposition, 'eigen' for an eigendecomposition. All approaches provide identical output. Some approaches are (in some cases) faster than others.

k
numeric. The number of components to return.

Value

A list with the following items:

- **u**
 Left singular vectors (rows)

- **v**
 Right singular vectors (columns)

- **d**
 Singular values

- **tau**
 Explained variance per component
print.epCA

Author(s)

Derek Beaton

print.epCA *Print Correspondence Analysis (CA) results*

Description

Print Correspondence Analysis (CA) results.

Usage

```r
## S3 method for class 'epCA'
print(x, ...)
```

Arguments

- `x`: an list that contains items to make into the epCA class.
- `...`: inherited/passed arguments for S3 print method(s).

Author(s)

Derek Beaton and Cherise Chin-Fatt

print.epGPCA *Print Generalized Principal Components Analysis (GPCA) results*

Description

Print Generalized Principal Components Analysis (GPCA) results.

Usage

```r
## S3 method for class 'epGPCA'
print(x, ...)
```

Arguments

- `x`: an list that contains items to make into the epGPCA class.
- `...`: inherited/passed arguments for S3 print method(s).

Author(s)

Derek Beaton and Cherise Chin-Fatt
print.epMCA

print.epGraphs
Print epGraphs results

Description
Print epGraphs results.

Usage
```r
## S3 method for class 'epGraphs'
print(x,...)
```

Arguments
- `x`: an list that contains items to make into the epGraphs class.
- `...`: inherited/passed arguments for S3 print method(s).

Author(s)
Derek Beaton and Cherise Chin-Fatt

See Also
epGraphs

print.epMCA

Print Multiple Correspondence Analysis (MCA) results

Description
Print Multiple Correspondence Analysis (MCA) results.

Usage
```r
## S3 method for class 'epMCA'
print(x,...)
```

Arguments
- `x`: an list that contains items to make into the epMCA class.
- `...`: inherited/passed arguments for S3 print method(s).

Author(s)
Derek Beaton and Cherise Chin-Fatt
print.epMDS

Print Multidimensional Scaling (MDS) results

Description

Print Multidimensional Scaling (MDS) results.

Usage

```r
## S3 method for class 'epMDS'
print(x,...)
```

Arguments

- `x` an list that contains items to make into the epMDS class.
- `...` inherited/passed arguments for S3 print method(s).

Author(s)

Derek Beaton and Cherise Chin-Fatt

print.epPCA

Print Principal Components Analysis (PCA) results

Description

Print Principal Components Analysis (PCA) results.

Usage

```r
## S3 method for class 'epPCA'
print(x,...)
```

Arguments

- `x` an list that contains items to make into the epPCA class.
- `...` inherited/passed arguments for S3 print method(s).

Author(s)

Derek Beaton and Cherise Chin-Fatt
print.epSVD

Print results from the singular value decomposition (SVD) in ExPosition.

Description
Print results from the singular value decomposition (SVD) in ExPosition.

Usage
S3 method for class 'epSVD'
print(x,...)

Arguments
x
an list that contains items to make into the epSVD class.

...inherited/passed arguments for S3 print method(s).

Author(s)
Derek Beaton and Cherise Chin-Fatt

print.expoOutput

Print results from ExPosition

Description
Print results from the ExPosition. Includes results from a given method and epGraphs.

Usage
S3 method for class 'expoOutput'
print(x,...)

Arguments
x
an list that contains items to make into the expoOutput class.

...inherited/passed arguments for S3 print method(s).

Author(s)
Derek Beaton and Cherise Chin-Fatt

See Also
epPCA, epGraphs
rowNorms

Normalize the rows of a matrix.

Description
This function will normalize the rows of a matrix.

Usage
rowNorms(X, type = NULL, center = FALSE, scale = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Data matrix</td>
</tr>
<tr>
<td>type</td>
<td>a string. Type of normalization to perform. Options are hellinger, ca, z, other</td>
</tr>
<tr>
<td>center</td>
<td>optional. A vector to center the columns of X.</td>
</tr>
<tr>
<td>scale</td>
<td>optional. A vector to scale the values of X.</td>
</tr>
</tbody>
</table>

Details
rowNorms works like link(expo.scale), but for rows. Hellinger row norm via hellinger, Correspondence analysis analysis row norm (row profiles) via ca, Z-score row norm via z. other passes center and scale to expo.scale and allows for optional centering and scaling parameters.

Value
Returns a row normalized version of X.

Author(s)
Derek Beaton

rvCoeff
Perform Rv coefficient computation.

Description
Perform Rv coefficient computation.

Usage
rvCoeff(S, T, type = -1)
Arguments

S A square covariance matrix
T A square covariance matrix
type which Rv computation to use. 0 or 1 are faster methods. Any other value (e.g., -1) defaults to a slow, loop-based, method. The loop method is illustrative and not recommended for use.

Value

A single value that is the Rv coefficient.

Author(s)

Derek Beaton

References

snps.druguse

Small data set for Partial Least Squares-Correspondence Analysis

Description

The data come from a larger study on marijuuana dependent individuals (see Filbey et al., 2009) and are illustrated in Beaton et al., 2013.

The data contain 2 genetic markers and 3 additional drug use questions from 50 marijuuana dependent individuals.

Usage

data(snps.druguse)

Format

snps.druguse$DATA1: Fifty marijuana dependent participants indicated which, if any, other drugs they have ever used.

snps.druguse$DATA2: Fifty marijuana dependent participants were genotyped for the COMT and FAAH genes.
supplementalProjection

Details

In snps.druguse$DATA1:
- **e** - Stands for ecstasy use. Responses are yes or no.
- **cc** - Stands for crack/cocaine use. Responses are yes or no.
- **cm** - Stands for crystal meth use. Responses are yes or no.

In snps.druguse$DATA2:
- **COMT** - Stands for the COMT gene. Alleles are AA, AG, or GG. Some values are NA.
- **FAAH** - Stands for FAAH gene. Alleles are AA, CA, CC. Some values are NA.

References

supplementalProjection

Supplemental projections.

Description

Performs a supplementary projection across ExPosition (and related) techniques.

Usage

```r
supplementalProjection(supNtransform = NULL, fNscores = NULL, dv = NULL, scaleNfactor = NULL, symmetric = TRUE)
```

Arguments

- **sup.transform** Data already transformed for supplementary projection. That is, the output from: `caSupplementalElementsPreProcessing, mdsSupplementalElementsPreProcessing, pcaSupplementalColsPreProcessing, or pcaSupplementaryRowsPreProcessing`.
- **f.scores** Active factor scores, e.g., `res$ExPosition.Data$fi`
- **Dv** Active singular values, e.g., `res$ExPosition.Data$pdq$Dv`
- **scale.factor** allows for a scaling factor of supplementary projections. Primarily used for MCA supplementary projections to a correction (e.g., Benzecri).
- **symmetric** a boolean. Default is TRUE. If FALSE, factor scores are computed with asymmetric properties (for rows only).
supplementaryCols

Value

A list with:

- `f.out` Supplementary factor scores.
- `d.out` Supplementary square distances.
- `r.out` Supplementary cosines.

Author(s)

Derek Beaton

See Also

It is preferred for users to compute supplemental projections via `supplementaryRows` and `supplementaryCols`. These handle some of the nuances and subtleties due to the different methods.

supplementaryCols Supplementary columns

Description

Computes factor scores for supplementary measures (columns).

Usage

`supplementaryCols(SUP.DATA, res, center = TRUE, scale = TRUE)`

Arguments

- `SUP.DATA` a data matrix of supplementary measures (must have the same observations [rows] as active data)
- `res` ExPosition or TExPosition results
- `center` a boolean, string, or numeric. See `expo.scale`
- `scale` a boolean, string, or numeric. See `expo.scale`

Details

This function recognizes the class types of: `epPCA`, `epGPCA`, `epMDS`, `epCA`, `epMCA`, and TExPosition methods. Further, the function recognizes if Hellinger (as opposed to row profiles; in CA, MCA and DICA) were used.
supplementaryRows

Value
A list of values containing:

- \(fj \) factor scores computed for supplemental columns
- \(dj \) squared distances for supplemental columns
- \(rj \) cosines for supplemental columns

Author(s)
Derek Beaton

supplementaryRows Supplementary rows

Description
Computes factor scores for supplementary observations (rows).

Usage
supplementaryRows(SUP.DATA, res)

Arguments
- \(SUP\text{.DATA} \): a data matrix of supplementary observations (must have the same measures [columns] as active data)
- \(res \): ExPosition or TExPosition results

Details
This function recognizes the class types of: epPCA, epGPCA, epMDS, epCA, epMCA and TExPosition methods. Further, the function recognizes if Hellinger (as opposed to row profiles; in CA, MCA and DICA) were used.

Value
A list of values containing:

- \(fi \) factor scores computed for supplemental observations
- \(di \) squared distances for supplemental observations
- \(ri \) cosines for supplemental observations

Author(s)
Derek Beaton
wines2007

Six wines described by 3 assessors.

Description

How six wines are described by 3 assessors across various flavor profiles, totaling 10 columns.

Usage

data(wines2007)

Format

wines2007$data: A data set with 3 experts (studies) describing 6 wines (rows) using several variables using a scale from 1 to 7 with a total of 10 measures (columns).
wines2007$table: A data matrix which identifies the 3 experts (studies).

References

wines2012

Wines Data from 12 assessors described by 15 flavor profiles.

Description

10 experts who describe 12 wines using four variables (cat-pee, passion fruit, green pepper, and mineral) considered as standard, and up to two additional variables if the experts chose.

Usage

data(wines2012)

Format

wines2012$data: A data set with 10 experts (studies) describing 12 wines (rows) using four to six variables using a scale from 1 to 9 with a total of 53 measures (columns).
wines2012$table: A data matrix which identifies the 10 experts (studies).
wines2012$supplementary: A data matrix with 12 wines (rows) describing 4 Chemical Properties (columns).
words

References

words

Twenty words described by 2 features.

Description

Twenty words “randomly” selected from a dictionary and described by two features: length of word and number of definitions.

Usage

data(words)

Format

words$data: A data matrix with 20 words (rows) described by 2 attributes (columns). For use with *epPCA*.

References

Index

*Topic datasets
 authors, 5
 bada.wine, 5
 beer.tasting.notes, 6
 beers2007, 6
 coffee.data, 9
 dica.ad, 17
 dica.wine, 18
 ep.iris, 18
 faces2005, 28
 french.social, 29
 great.beer.tasting.1, 30
 great.beer.tasting.2, 31
 jlsr.2010.ad, 33
 jocn.2005.fmri, 34
 mca.wine, 38
 pca.wine, 40
 snps.druguse, 48
 wines2007, 52
 wines2012, 52
 words, 53

*Topic graphs
 epGraphs, 21

*Topic misc
 acknowledgements, 4
 calculateConstraints, 7
 caSupplementalElementsPreProcessing, 8
 chi2Dist, 9
 computeMW, 10
 coreCA, 11
 corePCA, 14
 createDefaultDesign, 16
 designCheck, 16
 epGraphs, 21
 expo.scale, 27
 hellingerSupplementaryColsPreProcessing, 32
 hellingerSupplementaryRowsPreProcessing, 33
 makeDistancesAndWeights, 34
 makeNominalData, 35
 mca.eigen.fix, 36
 mdsSupplementalElementsPreProcessing, 38
 mdsTransform, 39
 nominalCheck, 39
 pause, 40
 pcaSupplementaryColsPreProcessing, 41
 pcaSupplementaryRowsPreProcessing, 41
 pickSVD, 42
 rvCoeff, 47
 supplementalProjection, 49
 supplementaryCols, 50
 supplementaryRows, 51

*Topic multiple correspondence analysis

*Topic multivariate
 caSupplementalElementsPreProcessing, 8
 chi2Dist, 9
 computeMW, 10
 coreCA, 11
 coreMDS, 13
 corePCA, 14
 epCA, 19
 epGPCA, 20
 epGraphs, 21
 epMCA, 23
 epMDS, 25
 epPCA, 26
 ExPosition-package, 3
 hellingerSupplementaryColsPreProcessing, 32
 hellingerSupplementaryRowsPreProcessing,
INDEX

makeDistancesAndWeights, 34
makeNominalData, 35
mca.eigen.fix, 36
mdsSupplementalElementsPreProcessing, 38
mdsTransform, 39
nominalCheck, 39
pcaSupplementaryColsPreProcessing, 41
pcaSupplementaryRowsPreProcessing, 41
pickSVD, 42
rvCoeff, 47
supplementalProjection, 49
supplementaryCols, 50
supplementaryRows, 51

Topic package
ExPosition-package, 3

Topic print
print.epCA, 43
print.epGPCA, 43
print.epGraphs, 44
print.epMCA, 44
print.epMDS, 45
print.epPCA, 45
print.epSVD, 46
print.expoOutput, 46

acknowledgements, 4
authors, 5

bada.wine, 5
beer.tasting.notes, 6
beers2007, 6

calculateConstraints, 7
caNorm, 7, 36
cSupplementalElementsPreProcessing, 8, 49
chi2Dist, 9, 25, 35
coffee.data, 9
computeMW, 10
coreCA, 11, 19, 20, 24
coreMDS, 13, 25
corePCA, 14, 21, 26, 27
colorVectorsByDesign, 22
colorVectorsByDesign, 16
designCheck, 16
dica.ad, 17
dica.wine, 18
dim, 8, 32
dist, 25, 35
eigen, 42
ep.iris, 18
epCA, 4, 5, 11, 12, 19, 24, 33, 35, 50, 51
epGPCA, 4, 10, 14, 15, 20, 26, 27, 41, 42, 50, 51
epGraphs, 19, 20, 21, 24, 25, 27, 44, 46
epMCA, 4, 5, 11, 12, 20, 23, 35–39, 50, 51
epMDS, 4, 9, 13, 14, 21, 25, 27, 29, 34, 35, 50, 51
epPCA, 4, 14, 15, 21, 26, 29, 40, 46, 50, 51, 53
expo.scale, 20, 26, 27, 47, 50
ExPosition, 22, 29
ExPosition (ExPosition-package), 3
ExPosition-package, 3
great.beer.tasting.1, 30
great.beer.tasting.2, 31
hellingerNorm, 31
hellingerSupplementaryColsPreProcessing, 9, 32
hellingerSupplementaryRowsPreProcessing, 9, 33

ejlsr.2010.ad, 33
jocn.2005.fmri, 34

makeDistancesAndWeights, 34
makeNominalData, 35
makeRowProfiles, 36
mca.eigen.fix, 24, 36
mca.wine, 38, 40
mdsSupplementalElementsPreProcessing, 9, 38, 49
mdsTransform, 39

nominalCheck, 39

pause, 40
pca.wine, 40
pcaSupplementaryColsPreProcessing, 9, 41, 49
pcaSupplementaryRowsPreProcessing, 9, 41, 49
pickSVD, 11, 13, 14, 30, 42
prettyGraphs, 21–23
prettyPlot, 22
print.epCA, 43
print.epGPCA, 43
print.epGraphs, 44
print.epMCA, 44
print.epMDS, 45
print.epPCA, 45
print.epSVD, 46
print.expoOutput, 46

rowNoms, 9, 47
rvCoeff, 47

scale, 27, 28
snps.druguse, 48
stop, 39
supplementalProjection, 9, 49
supplementaryCols, 9, 50, 50
supplementaryRows, 9, 50, 51
svd, 3, 42
Sys.sleep, 40

wines2007, 52
wines2012, 52
words, 53