Package ‘ExpertChoice’

October 12, 2022

Title Design of Discrete Choice and Conjoint Analysis
Version 0.2.0
Description Supports designing efficient discrete choice experiments (DCEs). Experimental designs can be formed on the basis of orthogonal arrays or search methods for optimal designs (Federov or mixed integer programs). Various methods for converting these experimental designs into a discrete choice experiment. Many efficiency measures! Draws from literature of Kuhfeld (2010) and Street et. al (2005) <doi:10.1016/j.ijresmar.2005.09.003>.

ByteCompile true
License MIT + file LICENSE
Encoding UTF-8
LazyData true

Depends R (>= 3.6.0)
Imports stats, far, dplyr, DoE.base, rlist, purrr
RoxygenNote 7.1.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Jed Stephens [aut, cre] (<https://orcid.org/0000-0002-0131-703X>)
Maintainer Jed Stephens <STPJED001@myuct.ac.za>
Repository CRAN
Date/Publication 2020-04-03 14:30:02 UTC

R topics documented:

 augment_levels ... 2
 check_overshadow ... 3
 construct_question_frame ... 4
 dce_efficiency ... 5
 fractional_factorial_efficiency ... 7
Augment levels

Description

Augments the full factorial design with a column summarising the levels of that design. Importantly, it also adds the B-matrix as an attribute.

Usage

```r
augment_levels(full_factorial)
```

Arguments

- `full_factorial` a `data.table` generated from the `full_factorial` function.

Value

a `data.frame` with an additional column identifying the level and the B-matrix attribute.

References

Street, D. J.; Burgess, L. & Louviere, J. J. Quick and easy choice sets: Constructing optimal and nearly optimal stated choice experiments International Journal of Research in Marketing, 2005, 22, 459 - 470

Examples

```r
# See Practical Introduction to ExpertChoice Vignette. Step 2.

# Step 1
attrshort = list(condition = c("0", "1", "2"),
                  technical =c("0", "1", "2"),
                  provenance = c("0", "1"))

# Step 2! - the augment_levels function
#' # ff stands for "full factorial"
' ff <- full_factorial(attrshort)
af <- augment_levels(ff)
#' # af stands for "augmented factorial"
af
# Compare ff and af. - do not confuse them. They serve different purposes.
```
Description

Check Overshadow - Pareto Dominate Solutions

Usage

check_overshadow(choice_sets)

Arguments

choice_sets An object of the choiceset class made by one of the DCE methods.

Value

A matrix of logicals indicating which if any card for a given row is Pareto dominate.

Examples

See Step 7 of the Practical Introduction to ExpertChoice Vignette.

Step 1
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))

Step 2
' ff stands for "full factorial"
ff <- full_factorial(attrshort)
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))}))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4 & 5
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
Step 5 - Skipped, but important, see vignette.

Step 6
Two modulators c(1,1,1) and c(0,1,1) are specified.
dce_modulo <- modulo_method(
 fractional,
 list(c(1,1,1), c(0,1,1))
)
Step 7! -- Check for Pareto dominate solutions
check_overshadow(dce_modulo)

construct_question_frame

Convert from choice_sets to a question data

Description

Convert from choice_sets to a question data

Usage

```r
construct_question_frame(  
augmented_full_factorial,  
choice_sets,  
randomise_choice_sets = TRUE  
)
```

Arguments

- **augmented_full_factorial**
 The augmented full factorial object.
- **choice_sets**
 The choice sets list generated from one of the methods. (See Step 6 of the tutorial)
- **randomise_choice_sets**
 A binary variable indicating if the order of the choice sets should be randomised. Some methods create choice sets which have a systematic order. Randomising the order of the choice sets does not change the alternatives within the choice sets. It simply rearranges the choice_set object in a random manner.

Value

a data.frame object

Examples

#See Step 9 of Practical Introduction to ExpertChoice vignette.

```r
# Step 1
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))

#Step 2
# ff stands for "full fatorial"
ff <- full_factorial(attrshort)
```
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, length(levels(x))))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4 & 5
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
Step 5 (skipped, but important, see vignette)

Step 6
Two modulators c(1,1,1) and c(0,1,1) are specified.
dce_modulo <- modulo_method(fractional,
 list(c(1,1,1),c(0,1,1))
)

Step 7 and Step 8 are very important for the design, but skipped here.

Step 9! -- Construct a question frame to use with your study.
Note the use of af here.
questions <- construct_question_frame(af, dce_modulo)
levels(questions$condition) <- c("bad", "good", "excellent")
levels(questions$technical) <- c("poor", "fair", "skilled")
levels(questions$provenance) <- c("none", "present")
questions

dce_efficiency

Efficiency Measures for Discrete Choice Experiments

Description

Efficiency Measures for Discrete Choice Experiments

Usage

dce_efficiency(augmented_full_factorial, choice_sets)

Arguments

augmented_full_factorial
 The level augmented full factorial. See tutorial step 2.
choice_sets
 A list of choice sets generated by one of the methods used to convert from fractional factorial designs.
Value

a list of named output.

References

Examples

See Step 8 of the Practical Introduction to ExpertChoice vignette.
Step 1
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))

Step 2
ff stands for "full factorial"
ff <- full_factorial(attrshort)
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))}))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4 & 5
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
Step 5 (skipped, but important, see vignette)

Step 6
Two modulators c(1,1,1) and c(0,1,1) are specified.
dce_modulo <- modulo_method(fractional, c(1,1,1), c(0,1,1))

Step 7 (skipped)

Step 8! -- Inspect the D-efficiency using the Street et. al method of the DCE design.
NOTE: the af is used at this stage not the ff.
dce_efficiency(af, dce_modulo)
fractional_factorial_efficiency

Fractional Factorial Design Efficiency

Description
Fractional Factorial Design Efficiency

Usage

```r
fractional_factorial_efficiency(formula, searched_fractional_factorial)
```

Arguments

- `formula`: A specification, in formula form, of the desired effects sought to be estimated.
- `searched_fractional_factorial`: a fractional factorial generated as the result of a 'search_design'.

Value

A list with the following objects: 1. `X` - This is the formula expanded version of the fractional factorial which was passed to the function. Note: it is rounded to three decimal places to ease reading. 2. `information_mat` - This is the information matrix described by the associated note. Note: it is rounded to three decimal places to ease reading. 3. `inv_information_mat` - This is the inverse of the information matrix. Note: it is rounded to three decimal places to ease reading. 4. `lamda_mat` - This is the diagonal elements of the Lamda Matrix described by Kuhfeld (pg. 62). The elements are the eigen values of the `inv_information_mat`. 5. `inv_diag` - This is the diagonal elements of the `inv_information_mat`. (May be of use to some researchers...) 6. `GWLP` - This is the generalised world lengths for the searched design. (Note: this would not change depending on what is in the formula expansion.) 7. `A_eff` - This is the A-efficiency of the design given the particular formula expansion. 8. `D_eff` - This is the D-efficiency of the design given the particular formula expansion.

References

Examples

```r
# See step 5 of the Practical Introduction to ExpertChoice vignette.

# Step 1
attrshort = list(condition = c("0", "1", "2"),
                 technical =c("0", "1", "2"),
                 provenance = c("0", "1"))

#Step 2
# ff stands for "full factorial"
```
ff <- full_factorial(attrshort)
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))}))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)

Step 5! - The fractional_factorial_efficiency function
The formula requires reference to the original attributes of the design.
Check for the main effects.
fractional_factorial_efficiency(~ condition + technical + provenance, fractional)
Check for the main effects with some interaction.
fractional_factorial_efficiency(~ condition + technical * provenance, fractional)

full_factorial
Full Factorial Design

Description

Generates the full factorial design with all the factors coded using standardised orthogonal contrast coding.

Usage

full_factorial(attributes_list)

Arguments

attributes_list

A named list: giving the variable name and the levels as characters. The levels should start from the base of either "0" or "1" and go up in integer values.

Value

a ‘data.frame’ with the full factorial design and factors coded using standardised orthogonal contrast coding.

References

Jörg Suckut (https://stats.stackexchange.com/users/237455/j)
modulo_method

Examples

See step 1 of the Practical Introduction to ExpertChoice vignette.
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))
full_factorial(attrshort)

modulo_method

Modulo Method - Described by Street et al.

Description

Modulo Method - Described by Street et al.

Usage

modulo_method(fractional_fatorial, generators)

Arguments

fractional_fatorial

The usual.

generators

a list of generators

Value

a choicelist.

Examples

See step 6 of the Practical Introduction to ExpertChoice vignette.

Step 1
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))

Step 2
ff stands for "full factorial"
ff <- full_factorial(attrshort)
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x) length(levels(x))))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
Step 5 - Skipped, but important, see vignette.

Step 6! -- The modulo_method function
Two modulators c(1,1,1) and c(0,1,1) are specified.
dce_modulo <- modulo_method(
 fractional,
 list(c(1,1,1), c(0,1,1))
)
dce_modulo

search_design

Search Full Factorial for Fractional Factorial Design

Description

Returns a consistent fractional factorial design from the input fractional factorial design. The key advantage of this function is that it ensures factors are coded and enhances the attributes of the output.

Usage

```r
search_design(full_factorial, fractional_factorial_design)
```

Arguments

- `full_factorial` a `data.table` generated by the `full_factorial` function
- `fractional_factorial_design` a means of creating a fractional design using either orthogonal arrays or Federov. See the tutorial for examples.

Value

a `data.frame` with only the rows of your chosen fractional factorial design.

Examples

The use of this function depends on what the input to the argument fractional_factorial_design will be. See Step 4 of Practical Introduction to ExpertChoice vignette.

Step 1
attrshort = list(condition = c("0", "1", "2"),
technical = c("0", "1", "2"),
provenance = c("0", "1"))

#Step 2
ff stands for "full factorial"
search_design

ff <- full_factorial(attrshort)
af <- augment_levels(ff)
af stands for "augmented factorial"

Step 3
Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used.
nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))}))
fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34")

Step 4! - The search_design function.
The functional draws out the rows from the original augmented full factorial design.
colnames(fractional_factorial) <- colnames(ff)
fractional <- search_design(ff, fractional_factorial)
Index

augment_levels, 2
check_overshadow, 3
construct_question_frame, 4
dce_efficiency, 5
fractional_factorial_efficiency, 7
full_factorial, 8
modulo_method, 9
search_design, 10