Package ‘ExtDist’

August 21, 2023

Version 0.7-2
License GPL (>= 2)
Title Extending the Range of Functions for Probability Distributions
Description A consistent, unified and extensible framework for estimation of parameters for probability distributions, including parameter estimation procedures that allow for weighted samples; the current set of distributions included are: the standard beta, The four-parameter beta, Burr, gamma, Gumbel, Johnson SB and SU, Laplace, logistic, normal, symmetric truncated normal, truncated normal, symmetric-reflected truncated beta, standard symmetric-reflected truncated beta, triangular, uniform, and Weibull distributions; decision criteria and selections based on these decision criteria.
Repository CRAN
Author Haizhen Wu <h.wu2@massey.ac.nz>,
A. Jonathan R. Godfrey <A.J.Godfrey@massey.ac.nz>,
Kondaswamy Govindaraju <k.govindaraju@massey.ac.nz>,
Sarah Pirikahu <s.pirikahu@massey.ac.nz>
Maintainer Oleksii Nikolaienko <oleksii.nikolaienko@gmail.com>
Imports numDeriv, optimx
Suggests ggplot2, knitr, PerformanceAnalytics, stats, SuppDists, truncdist, VGAM, xtable, graphics, utils, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Encoding UTF-8
RoxygenNote 7.2.3
Date/Publication 2023-08-21 09:02:36 UTC

R topics documented:

ExtDist-package ... 2
bestDist ... 3
Beta ... 4
Beta_ab ... 7
The package provides a consistent, unified and extensible framework for parameter estimation of probability distributions; it extends parameter estimation procedures to allow for weighted samples; moreover, it extends the gallery of available distributions.

Details

Index:

Beta The standard Beta Distribution.
Beta_ab The four-Parameter beta Distribution.
Burr The Burr's Distribution.
DistSelCriteriaValues Distribution Selection Criteria Values.
ExtDist-package Extended Probability Distribution Functions
Gamma The Gamma Distribution.
Gumbel The Gumbel Distribution.
JohnsonSB The Johnson SB Distribution.
JohnsonSU The Johnson SU Distribution.
Laplace The Laplace Distribution.
Logistic The Logistic Distribution.
bestDist

Finding the best distribution for a (weighted) sample.

Description

This function chooses the best fitted distribution, based on a specified criterion.

Usage

```r
bestDist(
  X,
  w = rep(1, length(X))/length(X),
  candDist = c("Beta_ab", "Laplace", "Normal"),
  criterion = c("AICc", "logLik", "AIC", "BIC", "MDL")
)
```

Distributions

- Normal
- Normal_sym_trunc_ab
- Normal_trunc_ab
- SRTB_ab
- SSRTB
- Triangular
- Uniform
- Weibull
- bestDist
- compareDist
- eDist
- eval.estimation
- wml

Further information is available in the following vignettes:

- Distributions-Beta
- Distributions-Beta (source)
- Distributions-Normal
- Distributions-Normal (source)
- Distributions-Index (source)
- ParaEst-and-DistSel-by-ExtDist
- Parameter-Estimation-and-Distribution-Selection-by-ExtDist (source)

Author(s)

Haizhen Wu <h.wu2@massey.ac.nz>, A. Jonathan R. Godfrey <A.J.Godfrey@massey.ac.nz>, Kon-daswamy Govindaraju <k.govindaraju@massey.ac.nz>, Sarah Pirikahu <s.pirikahu@massey.ac.nz>

Maintainer: Oleksii Nikolaenko <oleksii.nikolaienko@gmail.com>
Arguments

- **X**: Sample observations.
- **w**: An optional vector of sample weights.
- **candDist**: A vector of candidate distributions.
- **criterion**: The basis on which the best fitted distribution is chosen.

Details

When comparing models fitted by maximum likelihood to the same data, the smaller the AIC, BIC or MDL, the better the fit. When comparing models using the log-likelihood criterion, the larger the log-likelihood the better the fit.

Value

An object of class character containing the name of the best distribution and its corresponding parameter estimates.

Note

The MDL criterion only works for parameter estimation by numerical maximum likelihood.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Examples

```r
X <- rBeta_ab(30, a = 0, b = 1, shape1 = 2, shape2 = 10)
# Determining the best distribution from the list of candidate distributions for the data X
Best.Dist <- bestDist(X, candDist = c("Laplace","Normal","Beta_ab"), criterion = "logLik")
# Printing the parameter estimates of the best distribution
attributes(Best.Dist)$best.dist.par
```

Beta

The Standard Beta Distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the beta distribution with parameters `shape1` and `shape2`. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be carried out analytically or numerically.
Usage

```r
dBeta(x, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)  
pBeta(q, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)  
qBeta(p, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)  
rBeta(n, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)  
eBeta(X, w, method = c("MOM", "numerical.MLE"), ...)  
```

```r
lBeta(  
  X,  
  w,  
  shape1 = 2,  
  shape2 = 3,  
  params = list(shape1, shape2),  
  logL = TRUE,  
  ...  
)
```

```r
sBeta(X, w, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)  
iBeta(X, w, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)
```

Arguments

- `x, q` Vector of quantiles.
- `shape1, shape2` Shape parameters.
- `params` A list that includes all named parameters.
- `...` Additional parameters.
- `p` Vector of probabilities.
- `n` Number of observations.
- `X` Sample observations.
- `w` Optional vector of sample weights.
- `method` Parameter estimation method.
- `logL` logical, if TRUE lBeta gives the log-likelihood, otherwise the likelihood is given.

Details

The `dBeta()`, `pBeta()`, `qBeta()`, and `rBeta()` functions serve as wrappers of the standard `dbeta`, `pbeta`, `qbeta`, and `rbeta` functions in the `stats` package. They allow for the shape parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.
The beta distribution with parameters \(\text{shape1}=\alpha \) and \(\text{shape2}=\beta \) is given by

\[
 f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}
\]

where \(0 \leq x \leq 1, \alpha > 0, \beta > 0 \), and \(B \) is the beta function.

Analytical parameter estimation is conducted using the method of moments. The parameter estimates for \(\alpha \) and \(\beta \) are as given in the Engineering Statistics Handbook.

The log-likelihood function of the beta distribution is given by

\[
 l(\alpha, \beta|x) = (\alpha - 1) \sum_i \ln(x_i) + (\beta - 1) \sum_i \ln(1 - x_i) - \ln B(\alpha, \beta).
\]

Aryal & Nadarajah (2004) derived the score function and Fisher’s information matrix for the 4-parameter beta function, from which the 2-parameter cases can be obtained.

Value

dBeta gives the density, pBeta the distribution function, qBeta the quantile function, rBeta generates random deviates, and eBeta estimates the parameters. lBeta provides the log-likelihood function, sBeta the observed score function, and iBeta the observed information matrix.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Updates and bug fixes by Sarah Pirikahu.

References

Engineering Statistics Handbook

See Also

ExtDist for other standard distributions.

Examples

```r
# Parameter estimation for a distribution with known shape parameters
x <- rBeta(n=500, params=list(shape1=2, shape2=2))
```
est.par <- eBeta(x); est.par
plot(est.par)

Fitted density curve and histogram
dens <- dBeta(x=seq(0,1,length=100), params=list(shape1=2, shape2=2))
hist(x, breaks=10, probability=TRUE, ylim = c(0,1.2*max(dens)))
lines(seq(0,1,length=100), dens, col="blue")
lines(density(x), lty=2)

Extracting shape parameters
est.par[attributes(est.par)$par.type=="shape"]

Parameter estimation for a distribution with unknown shape parameters
Example from; Bury(1999) pp.253-255, parameter estimates as given by Bury are
shape1 = 4.222 and shape2 = 6.317
#data <- c(0.461, 0.432, 0.237, 0.113, 0.526, 0.278, 0.275, 0.309, 0.67, 0.428, 0.556,
0.402, 0.472, 0.226, 0.632, 0.533, 0.309, 0.417, 0.495, 0.241)
est.par <- eBeta(X=data, method="numerical.MLE"); est.par
plot(est.par)

Log-likelihood, score function, and observed information matrix
lBeta(data, param=est.par)
sBeta(data, param=est.par)
iBeta(data, param=est.par)

Evaluating the precision of parameter estimation by the Hessian matrix.
H <- attributes(est.par)$nll.hessian; H
var <- solve(H)
se <- sqrt(diag(var)); se

Beta_ab

The four-parameter beta distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the 4-parameter beta distribution. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be performed numerically.

Usage

dBeta_ab(
 x,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1, shape2, a, b),
 ...
)
pBeta_ab(
 q,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1 = 2, shape2 = 5, a = 0, b = 1),
 ...
)

qBeta_ab(
 p,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1 = 2, shape2 = 5, a = 0, b = 1),
 ...
)

rBeta_ab(
 n,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1, shape2, a, b),
 ...
)

eBeta_ab(X, w, method = "numerical.MLE", ...)

lBeta_ab(
 X,
 w,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1, shape2, a, b),
 logL = TRUE,
 ...
)

sBeta_ab(
 X,
Beta_ab

```
  w,
  shape1 = 2,
  shape2 = 3,
  a = 0,
  b = 1,
  params = list(shape1, shape2, a, b),
  ...
)
```

Arguments

- `x, q` A vector of quantiles.
- `shape1, shape2` Shape parameters.
- `a, b` Boundary parameters.
- `params` A list that includes all named parameters.
- `...` Additional parameters.
- `p` A vector of probabilities.
- `n` Number of observations.
- `X` Sample observations.
- `w` An optional vector of sample weights.
- `method` Parameter estimation method.
- `logL` logical; if TRUE, `lBeta_ab` gives the log-likelihood, otherwise the likelihood is given.

Details

The `dBeta_ab()`, `pBeta_ab()`, `qBeta_ab()` and `rBeta_ab()` functions serve as wrappers of the standard `dbeta`, `pbeta`, `qbeta` and `rbeta` functions in the `stats` package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The four-parameter beta distribution with parameters \(\text{shape1} = p, \text{shape2} = q, a = a \) and \(b = b \) has probability density function

\[
f(x) = \frac{1}{B(p, q)} \frac{(x - a)^{(p-1)}(b - x)^{(q-1)}}{((b - a)(p+q-1))}
\]

with \(p > 0, q > 0, a \leq x \leq b \) and where \(B \) is the beta function, Johnson et.al (p.210).

The log-likelihood function of the four-parameter beta distribution is

\[
l(p, q, a, b | x) = -lnB(p, q) + ((p - 1)ln(x - a) + (q - 1)ln(b - x)) - (p + q - 1)ln(b - a).
\]

Johnson et.al (p.226) provides the Fisher’s information matrix of the four-parameter beta distribution in the regular case where \(p, q > 2 \).
Value

dBeta_ab gives the density, pBeta_ab the distribution function, qBeta_ab the quantile function, rBeta_ab generates random deviates, and eBeta_ab estimates the parameters. lBeta_ab provides the log-likelihood function, sBeta_ab the observed score function and iBeta_ab the observed information matrix.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey

Updates and bug fixes by Sarah Pirikahu.

References

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rBeta_ab(n=500, shape1=2, shape2=5, a=1, b=2)
est.par <- eBeta_ab(X); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dBeta_ab(den.x,params = est.par)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue") # Original data
lines(density(X), lty=2) # Fitted density curve

Extracting boundary and shape parameters
est.par[attributes(est.par)$par.type=="boundary"]
est.par[attributes(est.par)$par.type=="shape"]

Parameter Estimation for a distribution with unknown shape parameters
Example from: Bury(1999) pp.261-262, parameter estimates as given by Bury are
shape1 = 4.088, shape2 = 10.417, a = 1.279 and b = 2.407.
The log-likelihood for this data and Bury's parameter estimates is 8.598672.
data <- c(1.73, 1.5, 1.56, 1.89, 1.54, 1.68, 1.39, 1.64, 1.49, 1.43, 1.68, 1.61, 1.62)
est.par <- eBeta_ab(X=data, method="numerical.MLE"); est.par
plot(est.par)

Estimates calculated by eBeta_ab differ from those given by Bury(1999).
However, eBeta_ab's parameter estimates appear to be an improvement, due to a larger
log-likelihood of 9.295922 (as given by lBeta_ab below).

log-likelihood and score functions
lBeta_ab(data,param = est.par)
sBeta_ab(data,param = est.par)

Burr

The Burr Distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the Burr distribution with parameters location, scale and inequality. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be performed numerically.

Usage

- `dB Burr(x, b = 1, g = 2, s = 2, params = list(b = 1, g = 2, s = 2), ...)`
- `pBurr(q, b = 1, g = 2, s = 2, params = list(b = 1, g = 2, s = 2), ...)`
- `qBurr(p, b = 1, g = 2, s = 2, params = list(b = 1, g = 2, s = 2), ...)`
- `rBurr(n, b = 1, g = 2, s = 2, params = list(b = 1, g = 2, s = 2), ...)`
- `eBurr(X, w, method = "numerical.MLE", ...)`

Arguments

- `x, q`
 A vector of quantiles.
- `b`
 Scale parameters.
- `g, s`
 Shape parameters.
- `params`
 A list that includes all named parameters.
- `...`
 Additional parameters.
- `p`
 A vector of probabilities.
n Number of observations.
X Sample observations.
w An optional vector of sample weights.
method Parameter estimation method.
logL logical; if TRUE, lBurr gives the log-likelihood, otherwise the likelihood is given.

Details

The Burr distribution is a special case of the Pareto(IV) distribution where the location parameter is equal 0 and inequality parameter is equal to $1/g$, Brazauskas (2003).

The dBurr(), pBurr(), qBurr(), and rBurr() functions serve as wrappers of the dparetoIV, pparetoIV, qparetoIV, and rparetoIV functions in the VGAM package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The Burr distribution is most simply defined in terms of its cumulative distribution function (John-son et.al p.576)

$$F(x) = \left[1 + \left(\frac{x}{b}\right)^g\right]^{-s}$$

where b, g, and $s > 0$. Parameter estimation can only be implemented numerically.

The log-likelihood and score functions are as given by Watkins (1999) and the information ma-trix is as given by Brazauskas (2003).

Value

dBurr gives the density, pBurr the distribution function, qBurr the quantile function, rBurr generates random deviates, and eBurr estimate the distribution parameters. lBurr provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

Mathworks: Matlab documentation for Burr Type XII distribution
See Also

ExDist for other standard distributions.

Examples

```r
# Parameter estimation for a distribution of known shape parameters
X <- rBurr(n=500, b = 1, g = 2, s = 2)
est.par <- eBurr(X); est.par
plot(est.par)

# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dBurr(den.x, b=est.par$b, g=est.par$g, s=est.par$s)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)

# Extracting shape or scale parameters
est.par[attributes(est.par)$par.type=="scale"]
est.par[attributes(est.par)$par.type=="shape"]

# Parameter Estimation for a distribution with unknown shape parameters
# Example from: Matlab Statistical Toolbox package
# (See: https://au.mathworks.com/help/stats/burr-type-xii-distribution.html)
# Parameter estimates given are: b = 80.4515, g = 18.9251 and s = 0.4492.
QRS.duration <- c(91,81,138,100,88,100,77,78,84,89,102,77,78,91,77,75,82,70,91,82,83,90,71,75,82,
109,94,95,90,96,85,71,75,78,82,69,103,85,80,94,80,79,92,84,86,73,75,73,78,80,81,
83,103,92,88,77,79,90,91,83,80,78,76,82,81,80,82,71,73,87,76,101,93,90,87,88,94,
94,90,78,83,92,93,100,83,163,96,114,170,137,84,82,79,72,97,87,102,85,84,78,79,91,
98,86,72,97,82,78,97,94,82,78,79,87,93,75,106,96,88,90,74,85,90,71,75,77,87,95,
74,99,89,83,78,100,80,87,79,102,80,85,85,95,82,97,92,102,86,80,85,85,111,89,63,
70,92,75,93,83,84,91,81,113,92,81,74,78,80,82,95,106,95,100,98,88,71,78,77,87,79,
85,91,92,98,68,84,92,110,108,153,73,81,87,87,95,73,95,100,96,97,76,62,86,71,99,68,
90,146,86,80,90,93,91,111,89,79,77,73,92,98,78,87,98,84,92,80,85,71,84,85,77,93,
74,89,89,103,85,88,81,84,96,90,98,78,93,80,85,67,74,69,105,95,87,108,99,79,86,82,
91,93,80,84,90,81,90,78,98,81,90,85,79,61,90,79,83,84,78,86,72,87,91,102,80,82,104,
85,83,81,94,91,99,101,132,79,103,97,131,90,90,121,78,84,97,94,96,91,80,97,92,90,
90,123,105,85,77,82,92,85,96,69,88,84,107,91,74,89,109,80,83,92,100,113,105,99,84,
74,76,87,87,96,88,88,85,90,74,95,86,74,95,74,73,104,92,105,97,101,93,84,80,81,93,
84,102,94,91,100,92,94,98,146,84,77,82,84,76,106,70,87,118,86,82,95,89,93,82,97,
86,188,93,72,107,81,76,83,147,82,110,108,82,93,95,80,185,73,78,71,86,85,76,93,
87,96,86,78,87,80,98,75,78,82,94,83,94,140,87,55,133,83,77,123,79,88,80,88,79,
77,87,88,94,88,74,85,88,81,91,81,80,100,108,93,79)
est.par <- eBurr(QRS.duration); est.par
plot(est.par)

# log-likelihood function
lBurr(QRS.duration,param = est.par)

# Evaluation of the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
```
se <- sqrt(diag(var)); se

compareDist

Compare a sample to one or more fitted distributions

Description

Compare a sample to one or more fitted distributions

Usage

```r
compareDist(X, Dist1, Dist2 = NULL, Dist3 = NULL)
```

Arguments

- `X`: An unweighted sample
- `Dist1`, `Dist2`, `Dist3`: The fitted distribution, specified as either the objects of class eDist or names of the distribution to be fitted.

Value

`compareDist` returns an object of class histogram comparing the sample distribution to the specified fitted distribution(s).

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Examples

```r
X <- rBeta(n=100, params=list(shape1=1, shape2=2))
compareDist(X, "Beta", "Normal", eNormal(X))
```

DistSelCriteria

Distribution Selection Criteria.

Description

A function to calculate the distribution selection criteria for a list of candidate fits.

Usage

```r
DistSelCriteria(
    X,
    w = rep(1, length(X))/length(X),
    candDist = c("Beta_ab", "Laplace", "Normal"),
    criteria = c("logLik", "AIC", "AICc", "BIC", "MDL")
)
```
Arguments

- **X**: Sample observations.
- **w**: An optional vector of sample weights.
- **candDist**: A vector of names of candidate distributions.
- **criteria**: A vector of criteria to be calculated.

Details

When comparing models fitted by maximum likelihood to the same data, the smaller the AIC, BIC or MDL, the better the fit. When comparing models using the log-likelihood criterion, the larger the log-likelihood the better the fit.

Value

An object of class matrix, containing the listed distribution selection criteria for the named distributions.

Note

The MDL criterion only works for parameter estimation by numerical maximum likelihood.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Examples

```r
Ozone <- airquality$Ozone
Ozone <- Ozone[!is.na(Ozone)]  # Removing the NA's from Ozone data
DistSelCriteria(Ozone, candDist = c("Gamma", "Weibull", "Normal", "Exp"),
criteria = c("logLik","AIC","AICc","BIC"))
```

Description

S3 methods for manipulating eDist objects.

Usage

```r
## S3 method for class 'eDist'
logLik(object, ...)

## S3 method for class 'eDist'
AIC(object, ..., k = 2)
```
AICc(object)

S3 method for class 'eDist'
AICc(object, ...)

BIC(object)

S3 method for class 'eDist'
BIC(object, ...)

MDL(object)

S3 method for class 'eDist'
MDL(object, ...)

print(x, ...)

S3 method for class 'eDist'
plot(x, ...)

Arguments

object, x An object of class eDist, usually the output of a parameter estimation function.
...
Additional parameters
k numeric, The penalty per parameter to be used; the default k = 2 is the classical
AIC.
corr logical; should vcov() return correlation matrix (instead of variance-covariance
matrix).
x, A list to be returned as class eDist.
plot logical; if TRUE histogram, P-P and Q-Q plot of the distribution returned else
only parameter estimation is returned.

Note

The MDL only works for parameter estimation by numerical maximum likelihood.

Author(s)

References

psychology, 44(1), 190-204.
Examples

X <- rnorm(20)
est.par <- eNormal(X, method = "numerical.MLE")
logLik(est.par)
AIC(est.par)
AICc(est.par)
BIC(est.par)
MDL(est.par)
vcov(est.par)
vcov(est.par, corr=TRUE)
print(est.par)
plot(est.par)

eval.estimation

Parameter Estimation Evaluation.

Description

A function to evaluate the parameter estimation function.

Usage

```r
eval.estimation(
  rdist,
  edist,
  n = 20,
  rep.num = 1000,
  params,
  method = "numerical.MLE"
)
```

Arguments

- `rdist` Random variable generating function.
- `edist` Parameter estimation function.
- `n` Sample size.
- `rep.num` Number of replicates.
- `params` True parameters of the distribution.
- `method` Estimation method.

Value

A list containing the mean and sd of the estimated parameters.

`na.cont` returns the number of "na"s that appeared in the parameter estimation.
Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Examples

eval.estimation(rdist = rBeta, edist = eBeta, n = 100, rep.num = 50,
params = list(shape1 = 1, shape2 = 5))

Exponential

The Exponential Distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for
the exponential distribution. Parameter estimation can be based on a weighted or unweighted i.i.d
sample and is carried out analytically.

Usage

dExp(x, scale = 1, params = list(scale = 1), ...)
pExp(q, scale = 1, params = list(scale = 1), ...)
qExp(p, scale = 1, params = list(scale = 1), ...)
rExp(n, scale = 1, params = list(scale = 1), ...)
eExp(x, w, method = "analytical.MLE", ...)
lExp(x, w, scale = 1, params = list(scale = 1), logL = TRUE, ...)
sExp(x, w, scale = 1, params = list(scale = 1), ...)
iExp(x, w, scale = 1, params = list(scale = 1), ...)

Arguments

x, q A vector of sample values or quantiles.
scale scale parameter, called rate in other packages.
params A list that includes all named parameters
... Additional parameters.
p A vector of probabilities.
n Number of observations.
w An optional vector of sample weights.
method Parameter estimation method.
logL logical; if TRUE, lExp gives the log-likelihood, otherwise the likelihood is
given.
Details

If `scale` is omitted, it assumes the default value 1 giving the standard exponential distribution.

The exponential distribution is a special case of the gamma distribution where the shape parameter $\alpha = 1$. The `dExp()`, `pExp()`, `qExp()`, and `rExp()` functions serve as wrappers of the standard `dexp`, `pexp`, `qexp` and `rexp` functions in the `stats` package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The probability density function for the exponential distribution with `scale=\beta` is

$$f(x) = \frac{1}{\beta} \ast \exp(-x/\beta)$$

for $\beta > 0$, Johnson et.al (Chapter 19, p.494). Parameter estimation for the exponential distribution is carried out analytically using maximum likelihood estimation (p.506 Johnson et.al).

The likelihood function of the exponential distribution is given by

$$l(\lambda|x) = n \log \lambda - \lambda \sum x_i.$$

It follows that the score function is given by

$$dl(\lambda|x)/d\lambda = n/\lambda - \sum x_i$$

and Fisher’s information given by

$$E[-d^2l(\lambda|x)/d\lambda^2] = n/\lambda^2.$$

Value

dExp gives the density, pExp the distribution function, qExp the quantile function, rExp generates random deviates, and eExp estimates the distribution parameters. lExp provides the log-likelihood function.

Author(s)

Jonathan R. Godfrey and Sarah Pirikahu.

References

Examples

```r
# Parameter estimation for a distribution with known shape parameters
x <- rExp(n=500, scale=2)
```
est.par <- eExp(x); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(x), max(x), length=100)
den.y <- dExp(den.x, scale=est.par$scale)
hist(x, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(x), lty=2)

Extracting the scale parameter
est.par[attributes(est.par)$par.type=="scale"]

Parameter estimation for a distribution with unknown shape parameters
Example from Kapadia et.al(2005), pp.380-381.
Parameter estimate as given by Kapadia et.al is scale=0.00277
cardio <- c(525, 719, 2880, 150, 30, 251, 45, 858, 15,
 47, 90, 56, 68, 6, 139, 180, 60, 60, 294, 747)
est.par <- eExp(cardio, method="analytical.MLE"); est.par
plot(est.par)

log-likelihood, score function and Fisher's information
lExp(cardio,param = est.par)
sExp(cardio,param = est.par)
iExp(cardio,param = est.par)

Gamma

The Gamma Distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the gamma distribution with parameters shape and scale. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be carried out numerically.

Usage

dGamma(x, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
pGamma(q, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
qGamma(p, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
rGamma(n, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
eGamma(X, w, method = c("moments", "numerical.MLE"), ...)
lGamma(X,
Arguments

- **x, q**: A vector of quantiles.
- **shape**: Shape parameter.
- **scale**: Scale parameter.
- **params**: A list that includes all named parameters
- **p**: A vector of probabilities.
- **n**: Number of observations.
- **X**: Sample observations.
- **w**: An optional vector of sample weights.
- **method**: Parameter estimation method.
- **logL**: logical; if TRUE, lBeta_ab gives the log-likelihood, otherwise the likelihood is given.

Details

The `dGamma()`, `pGamma()`, `qGamma()`, and `rGamma()` functions serve as wrappers of the standard `dgamma`, `pgamma`, `qgamma`, and `rgamma` functions in the `stats` package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The gamma distribution with parameter `shape=α` and `scale=β` has probability density function,

\[f(x) = (1/β^αΓ(α))x^{α-1}e^{-x/β} \]

where \(α > 0 \) and \(β > 0 \). Parameter estimation can be performed using the method of moments as given by Johnson et.al (pp.356-357).

The log-likelihood function of the gamma distribution is given by,

\[l(α, β|x) = (α - 1)\sum_i ln(x_i) - \sum_i (x_i/β) - nαln(β) + nlnΓ(α) \]

where \(Γ \) is the gamma function. The score function is provided by Rice (2007), p.270.

Value

- **dGamma**: gives the density.
- **pGamma**: the distribution function.
- **qGamma**: the quantile function.
- **rGamma**: generates random deviates.
- **eGamma**: estimates the distribution parameters.
- **lgamma**: provides the log-likelihood function.
Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu, Oleksii Nikolaenko.

References

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rGamma(n=500, shape=1.5, scale=0.5)
est.par <- eGamma(X, method="numerical.MLE"); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dGamma(den.x,shape=est.par$shape,scale=est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)

Extracting shape or scale parameters
est.par[attributes(est.par)$par.type=="shape"]
est.par[attributes(est.par)$par.type=="scale"]

Parameter estimation for a distribution with unknown shape parameters
Example from: Bury(1999) pp.225-226, parameter estimates as given by Bury are
shape = 6.40 and scale=2.54.
data <- c(16, 11.6, 19.9, 18.6, 18, 13.1, 29.1, 10.3, 12.2, 15.6, 12.7, 13.1,
19.2, 19.5, 23, 6.7, 7.1, 14.3, 20.6, 25.6, 8.2, 34.4, 16.1, 10.2, 12.3)
est.par <- eGamma(data, method="numerical.MLE"); est.par
plot(est.par)

log-likelihood
lGamma(data,param = est.par)

Evaluating the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var)); se
The Gumbel distribution

Description
Density, distribution, quantile, random number generation, and parameter estimation functions for the Gumbel distribution with parameters location and scale. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be performed analytically or numerically.

Usage

dGumbel(
 x,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

pGumbel(
 q,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

qGumbel(
 p,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

rGumbel(
 n,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

eGumbel(X, w, method = c("moments", "numerical.MLE"), ...)

lGumbel(
 X,
w,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
logL = TRUE,
...
)

Arguments

x, q
A vector of quantiles.

location
Location parameter.

scale
Scale parameter.

params
A list that includes all named parameters

...
Additional parameters.

p
A vector of probabilities.

n
Number of observations.

X
Sample observations.

w
An optional vector of sample weights.

method
Parameter estimation method.

logL
logical if TRUE, LGumbel gives the log-likelihood, otherwise the likelihood is given.

Details

The dGumbel(), pGumbel(), qGumbel(), and rGumbel() functions serve as wrappers of the dgumbel, pgumbel, qgumbel, and rgumbel functions in the VGAM package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The Gumbel distribution is a special case of the generalised extreme value (GEV) distribution and has probability density function,

\[f(x) = \exp(-\exp(-(x - \mu)/\sigma)) \]

where \(\mu = \text{location} \) and \(\sigma = \text{scale} \) which has the constraint \(\sigma > 0 \). The analytical parameter estimations are as given by the Engineering Statistics Handbook with corresponding standard errors given by Bury (p.273).

The log-likelihood function of the Gumbel distribution is given by

\[l(\mu, \sigma|x) = \sigma^{-n} \exp\left(-\sum (x_i - \mu/\sigma) - \sum \exp(-(x_i - \mu/\sigma))\right) \]

Shi (1995) provides the score function and Fishers information matrix.
Value

dGumbel gives the density, pGumbel the distribution function, qGumbel the quantile function, rGumbel generates random deviates, and eGumbel estimate the distribution parameters. lGumbel provides the log-likelihood function.

Author(s)

References

See Also

ExtDist for other standard distributions.

Examples

```r
# Parameter estimation for a distribution with known shape parameters
X <- rGumbel(n = 500, location = 1.5, scale = 0.5)
est.par <- eGumbel(X, method="moments"); est.par
plot(est.par)

# Extracting location and scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]

# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dGumbel(den.x, location = est.par$location, scale= est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X))

# Parameter Estimation for a distribution with unknown shape parameters
# Example from; Bury(1999) pp.283-284, parameter estimates as given by Bury are location = 33.5
# and scale = 2.241
data <- c(32.7, 30.4, 31.8, 33.2, 33.8, 35.3, 34.6, 33, 32, 35.7, 35.5, 36.8, 40.8, 38.7, 36.7)
est.par <- eGumbel(X=data, method="numerical.MLE"); est.par
plot(est.par)
```
log-likelihood
lgumbel(data, param = est.par)

Evaluating the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var)); se

JohnsonSB

The Johnson SB distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the Johnson SB (bounded support) distribution. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be performed numerically.

Usage

- **dJohnsonSB**:
  ```r
dJohnsonSB(  
x,  
gamma = -0.5,  
delta = 2,  
xi = -0.5,  
lambda = 2,  
params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),  
...)
  ```

- **dJohnsonSB_ab**: (abreviated version)
  ```r
dJohnsonSB_ab(  
x,  
gamma = -0.5,  
delta = 2,  
a = -0.5,  
b = 1.5,  
params = list(gamma = -0.5, delta = 2, a = -0.5, b = 1.5),  
...)
  ```

- **pJohnsonSB**: (probability function)
  ```r
  pJohnsonSB(  
  q,  
gamma = -0.5,  
delta = 2,  
xi = -0.5,  
lambda = 2,  
params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),  
...)
  ```
```r
qJohnsonSB(
  p,
  gamma = -0.5,
  delta = 2,
  xi = -0.5,
  lambda = 2,
  params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
  ...
)

rJohnsonSB(
  n,
  gamma = -0.5,
  delta = 2,
  xi = -0.5,
  lambda = 2,
  params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
  ...
)

eJohnsonSB(X, w, method = "numerical.MLE", ...)

lJohnsonSB(
  X,
  w,
  gamma = -0.5,
  delta = 2,
  xi = -0.5,
  lambda = 2,
  params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
  logL = TRUE,
  ...
)
```

Arguments

- `x, q` A vector of quantiles.
- `gamma, delta` Shape parameters.
- `xi, lambda, a, b` Location-scale parameters.
- `params` A list that includes all named parameters.
- `...` Additional parameters.
- `p` A vector of probabilities.
- `n` Number of observations.
- `X` Sample observations.
w An optional vector of sample weights.
method Parameter estimation method.
logL logical, it is assumed that the log-likelihood is desired. Set to FALSE if the likelihood is wanted.

Details

The Johnson system of distributions consists of families of distributions that, through specified transformations, can be reduced to the standard normal random variable. It provides a very flexible system for describing statistical distributions and is defined by

\[z = \gamma + \delta f(Y) \]

with \(Y = (X - xi) / \lambda \). The Johnson SB distribution arises when \(f(Y) = \ln[Y/(1 - Y)] \), where \(0 < Y < 1 \). This is the bounded Johnson family since the range of \(Y \) is \((0, 1)\), Karian & Dudewicz (2011).

The \(\text{dJohnsonSB}() \), \(\text{pJohnsonSB}() \), \(\text{qJohnsonSB}() \), and \(\text{rJohnsonSB}() \) functions serve as wrappers of the \(\text{dJohnson} \), \(\text{pJohnson} \), \(\text{qJohnson} \), and \(\text{rJohnson} \) functions in the \text{SuppDists} package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The JohnsonSB distribution has probability density function

\[
p_X(x) = \frac{\delta \lambda}{\sqrt{2\pi(x - xi)(1 - x + xi)}} \exp[-0.5(\gamma + \delta \ln((x - xi)/(1 - x + xi)))^2].
\]

Value

dJohnsonSB gives the density, pJohnsonSB the distribution function, qJohnsonSB gives quantile function, rJohnsonSB generates random deviates, and eJohnsonSB estimate the parameters. lJohnsonSB provides the log-likelihood function. The dJohnsonSB_ab provides an alternative parameterisation of the JohnsonSB distribution.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

JohnsonSU

See Also

`ExtDist` for other standard distributions.

Examples

```r
# Parameter estimation for a distribution with known shape parameters
X <- rJohnsonSB(n=500, gamma=-0.5, delta=2, xi=-0.5, lambda=2)
est.par <- eJohnsonSB(X); est.par
plot(est.par)

# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dJohnsonSB(den.x,params = est.par)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X))

# Extracting location, scale and shape parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]
est.par[attributes(est.par)$par.type=="shape"]

# Parameter Estimation for a distribution with unknown shape parameters
# Parameter estimates as given by Karian & Dudewicz using moments are:
# gamma =-0.2081, delta=0.9167, xi = 95.1280 and lambda = 21.4607 with log-likelihood = -67.03579
brain <- c(108.7, 107.0, 110.3, 110.0, 113.6, 99.2, 109.8, 104.5, 108.1, 107.2, 112.0, 115.5, 108.4,
          107.4, 113.4, 101.2, 98.4, 100.9, 100.0, 107.1, 108.7, 102.5, 103.3)
est.par <- eJohnsonSB(brain); est.par

# Estimates calculated by eJohnsonSB differ from those given by Karian & Dudewicz (2011).
# However, eJohnsonSB's parameter estimates appear to be an improvement, due to a larger
# log-likelihood of -66.35496 (as given by lJohnsonSB below).

# log-likelihood function
lJohnsonSB(brain, param = est.par)
```

JohnsonSU

The Johnson SU distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the Johnson SU (unbounded support) distribution. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be carried out numerically.
Usage

dJohnsonSU(
 x,
 gamma = -0.5,
 delta = 2,
 xi = -0.5,
 lambda = 2,
 params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
 ...
)

pJohnsonSU(
 q,
 gamma = -0.5,
 delta = 2,
 xi = -0.5,
 lambda = 2,
 params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
 ...
)

qJohnsonSU(
 p,
 gamma = -0.5,
 delta = 2,
 xi = -0.5,
 lambda = 2,
 params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
 ...
)

rJohnsonSU(
 n,
 gamma = -0.5,
 delta = 2,
 xi = -0.5,
 lambda = 2,
 params = list(gamma = -0.5, delta = 2, xi = -0.5, lambda = 2),
 ...
)

eJohnsonSU(X, w, method = "numerical.MLE", ...)

lJohnsonSU(
 X,
 w,
 gamma = -0.5,
 delta = 2,
Arguments

- `x, q`: A vector of quantiles.
- `gamma, delta`: Shape parameters.
- `xi, lambda`: Location-scale parameters.
- `params`: A list that includes all named parameters.
- `...`: Additional parameters.
- `p`: A vector of probabilities.
- `n`: Number of observations.
- `X`: Sample observations.
- `w`: An optional vector of sample weights.
- `method`: Parameter estimation method.
- `logL`: logical; if TRUE, `lJohnsonSU` gives the log-likelihood, otherwise the likelihood is given.

Details

The Johnson system of distributions consists of families of distributions that, through specified transformations, can be reduced to the standard normal random variable. It provides a very flexible system for describing statistical distributions and is defined by

\[
z = \gamma + \delta f(Y)
\]

with \(Y = (X - \xi)/\lambda \). The Johnson SB distribution arises when \(f(Y) = \text{arsinh}(Y) \), where \(-\infty < Y < \infty\). This is the unbounded Johnson family since the range of \(Y \) is \((-\infty, \infty)\), Karian & Dudewicz (2011).

The JohnsonSU distribution has probability density function

\[
p_X(x) = \frac{\delta}{\sqrt{2\pi((x-\xi)^2 + \lambda^2)}} e^{\exp[-0.5(\gamma + \delta \ln(x - \xi + \sqrt{(x - \xi)^2 + \lambda^2})/\lambda)]}.\]

Parameter estimation can only be carried out numerically.

Value

`dJohnsonSU` gives the density, `pJohnsonSU` the distribution function, `qJohnsonSU` gives the quantile function, `rJohnsonSU` generates random variables, and `eJohnsonSU` estimates the parameters. `lJohnsonSU` provides the log-likelihood function.
Author(s)
Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

See Also
ExtDist for other standard distributions.

Examples

Parameter estimation for a known distribution
X <- rJohnsonSU(n=500, gamma=-0.5, delta=2, xi=-0.5, lambda=2)
est.par <- eJohnsonSU(X); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dJohnsonSU(den.x,params = est.par)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)

Extracting shape and boundary parameters
est.par[attributes(est.par)$par.type=="shape"]
est.par[attributes(est.par)$par.type=="boundary"]

Parameter Estimation for a distribution with unknown shape parameters
Parameter estimates as given by Karian & Dudewicz are:
gamma =-0.2823, delta=1.0592, xi = -1.4475 and lambda = 4.2592 with log-likelihood = -277.1543
data <- c(1.99, -0.424, 5.61, -3.13, -2.24, -0.14, -3.32, -0.837, -1.98, -0.120, 7.81, -3.13, 1.20, 1.54, -0.594, 1.05, 0.192, -3.83, -0.522, 0.605, 0.427, 0.276, 0.784, -1.30, 0.542, -0.159, -1.66, -2.46, -1.81, -0.412, -9.67, 6.61, -0.589, -3.42, 0.036, 0.851, -1.34, -1.22, -1.47, -0.592, -0.311, 3.85, -4.92, -0.112, 4.22, 1.89, -0.382, 1.20, 3.21, -0.648, -0.523, -0.882, 0.306, -0.882, -0.635, 13.2, 0.463, -2.60, 0.281, 1.00, -0.336, -1.69, -0.484, -1.68, -0.131, -0.166, -0.266, 0.511, -0.198, 1.55, -1.03, 2.15, 0.495, 6.37, -0.714, -1.35, -1.55, -4.79, 4.36, -1.53,
est.par <- eJohnsonSU(data); est.par
plot(est.par)

Estimates calculated by eJohnsonSU differ from those given by Karian & Dudewicz (2011).
However, eJohnsonSU's parameter estimates appear to be an improvement, due to a larger
log-likelihood of -250.3208 (as given by lJohnsonSU below).

log-likelihood function
lJohnsonSU(data, param = est.par)

Evaluation of the precision using the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var)); se

Laplace

The Laplace Distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for
the Laplace distribution with location parameter μ and scale parameter b. Parameter estimation
can for the Laplace distribution can be carried out numerically or analytically but may only be based
on an unweighted i.i.d. sample.

Usage

dLaplace(x, mu = 0, b = 1, params = list(mu, b), ...)
pLaplace(q, mu = 0, b = 1, params = list(mu, b), ...)
qLaplace(p, mu = 0, b = 1, params = list(mu, b), ...)
rLaplace(n, mu = 0, b = 1, params = list(mu, b), ...)
eLaplace(X, w, method = c("analytic.MLE", "numerical.MLE"), ...)
lLaplace(x, w = 1, mu = 0, b = 1, params = list(mu, b), logL = TRUE, ...)

Arguments

x, q A vector of quantiles.
mu Location parameter.
b Scale parameter.
params A list that includes all named parameters
Additional parameters.

\(p \) A vector of probabilities.

\(n \) Number of observations.

\(X \) Sample observations.

\(w \) Optional vector of sample weights.

\(\text{method} \) Parameter estimation method.

\(\text{logL} \) logical; if TRUE, lLaplace gives the log-likelihood, otherwise the likelihood is given.

Details

The \(\text{dLaplace()} \), \(\text{pLaplace()} \), \(\text{qLaplace()} \), and \(\text{rLaplace()} \) functions allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The Laplace distribution with parameters \(\text{location} = \mu \) and \(\text{scale} = b \) has probability density function

\[
f(x) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)
\]

where \(-\infty < x < \infty\) and \(b > 0 \). The cumulative distribution function for \(\text{pLaplace} \) is defined by Johnson et.al (p.166).

Parameter estimation can be carried out analytically via maximum likelihood estimation, see Johnson et.al (p.172). Where the population mean, \(\mu \), is estimated using the sample median and \(b \) by the mean of \(|x - b| \).

Johnson et.al (p.172) also provides the log-likelihood function for the Laplace distribution

\[
l(\mu, b|x) = -n \ln(2b) - b^{-1} \sum |x_i - \mu|.
\]

Value

\(\text{dLaplace} \) gives the density, \(\text{pLaplace} \) the distribution function, \(\text{qLaplace} \) the quantile function, \(\text{rLaplace} \) generates random deviates, and \(\text{eLaplace} \) estimates the distribution parameters. \(\text{lLaplace} \) provides the log-likelihood function, \(\text{sLaplace} \) the score function, and \(\text{iLaplace} \) the observed information matrix.

Note

The estimation of the population mean is done using the median of the sample. Unweighted samples are not yet catered for in the \(\text{eLaplace}() \) function.

Author(s)

A. Jonathan R. Godfrey and Haizhen Wu.

Updates and bug fixes by Sarah Pirikahu

Laplace

References

See Also

ExtDist for other standard distributions.

Examples

```r
# Parameter estimation for a distribution with known shape parameters
X <- rLaplace(n=500, mu=1, b=2)
est.par <- eLaplace(X, method="analytic.MLE"); est.par
plot(est.par)

# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dLaplace(den.x, location = est.par$location, scale= est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)

# Extracting location or scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]

# Parameter estimation for a distribution with unknown shape parameters
# Parameter estimates as given by Best et.al mu=10.13 and b=3.36
flood <- c(1.96, 1.96, 3.60, 3.80, 4.79, 5.66, 5.76, 5.78, 6.27, 6.30, 6.76, 7.65, 7.84, 7.99,
8.51, 9.18, 10.13, 10.24, 10.25, 10.43, 11.45, 11.48, 11.75, 11.81, 12.34, 12.78, 13.06,
13.29, 13.98, 14.18, 14.40, 16.22, 17.06)
est.par <- eLaplace(flood, method="numerical.MLE"); est.par
plot(est.par)

#log-likelihood function
lLaplace(flood,param=est.par)

# Evaluating the precision by the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var));se
```
Logistic

The Logistic Distribution.

Description

Density, distribution, and quantile, random number generation, and parameter estimation functions for the logistic distribution with parameters location and scale. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be carried out numerically.

Usage

dLogistic(
 x,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

pLogistic(
 q,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

qLogistic(
 p,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

rLogistic(
 n,
 location = 0,
 scale = 1,
 params = list(location = 0, scale = 1),
 ...
)

eLogistic(X, w, method = "numerical.MLE", ...)

lLogistic(
 X,
Logistic

w, location = 0, scale = 1, params = list(location = 0, scale = 1), logL = TRUE, ...

Arguments

x, q A vector of quantiles.
location Location parameter.
scale Scale parameter.
params A list that includes all named parameters.
... Additional parameters.
p A vector of probabilities.
n Number of observations.
X Sample observations.
w An optional vector of sample weights.
method Parameter estimation method.
logL logical; if TRUE, lLogistic gives the log-likelihood, otherwise the likelihood is given.

Details

If location or scale are omitted, they assume the default values of 0 or 1 respectively.

The dLogistic(), pLogistic(), qLogistic(), and rLogistic() functions serve as wrappers of the standard dlogis, plogis, qlogis, and rlogis functions in the stats package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The logistic distribution with location = \(\alpha \) and scale = \(\beta \) is most simply defined in terms of its cumulative distribution function (Johnson et.al pp.115-116)

\[
F(x) = 1 - \left[1 + \exp((x - \alpha)/\beta)\right]^{-1}.
\]

The corresponding probability density function is given by

\[
f(x) = 1/\beta[\exp(x - \alpha/\beta][1 + \exp(x - \alpha/\beta)]^{-2}
\]

Parameter estimation is only implemented numerically.

The score function and Fishers information are as given by Shi (1995) (See also Kotz & Nadarajah (2000)).
Logistic

Value

dLogistic gives the density, pLogistic the distribution function, qLogistic the quantile function, rLogistic generates random deviates, and eLogistic estimates the parameters. lLogistic provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rLogistic(n=500, location=1.5, scale=0.5)
est.par <- eLogistic(X); est.par
plot(est.par)
Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dLogistic(den.x,location=est.par$location,scale=est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)

Extracting location or scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]

log-likelihood function
lLogistic(X,param = est.par)

Evaluation of the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
fisher_info <- solve(H)
var <- sqrt(diag(fisher_info));var

Example of parameter estimation for a distribution with
The Normal Distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the normal distribution. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be carried out analytically or numerically.

Usage

dNormal(x, mean = 0, sd = 1, params = list(mean, sd), ...)
pNormal(q, mean = 0, sd = 1, params = list(mean, sd), ...)
qNormal(p, mean = 0, sd = 1, params = list(mean, sd), ...)
rNormal(n, mean = 0, sd = 1, params = list(mean, sd), ...)
eNormal(
 X,
 w,
 method = c("unbiased.MLE", "analytical.MLE", "numerical.MLE"),
 ...
)
lNormal(X, w, mean = 0, sd = 1, params = list(mean, sd), logL = TRUE, ...)
sNormal(X, w, mean = 0, sd = 1, params = list(mean, sd), ...)
iNormal(X, w, mean = 0, sd = 1, params = list(mean, sd), ...)

Arguments

x, q Vector of quantiles.
mean Location parameter.
sd Scale parameter.
params A list that includes all named parameters.
... Additional parameters.
p Vector of probabilities.
n Number of observations.
x Sample observations.
w Optional vector of sample weights.
Parameter estimation method.

logL logical; if TRUE, lNormal gives the log-likelihood, otherwise the likelihood is given.

Details

If the mean or sd are not specified they assume the default values of 0 and 1, respectively.

The dNormal(), pNormal(), qNormal(), and rNormal() functions serve as wrappers of the standard dnorm, pnorm, qnorm, and rnorm functions in the stats package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The normal distribution has probability density function

\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where \(\mu \) is the mean of the distribution and \(\sigma \) is the standard deviation. The analytical unbiased parameter estimations are as given by Johnson et.al (Vol 1, pp.123-128).

The log-likelihood function of the normal distribution is given by

\[l(\mu, \sigma|x) = \sum_i [-0.5ln(2\pi) - ln(\sigma) - 0.5\sigma^{-2}(x_i - \mu)^2]. \]

The score function and observed information matrix are as given by Casella & Berger (2nd Ed, pp.321-322).

Value

dNormal gives the density, pNormal gives the distribution function, qNormal gives the quantiles, rNormal generates random deviates, and eNormal estimates the parameters. lNormal provides the log-likelihood function, sNormal the score function, and iNormal the observed information matrix.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
x <- rNormal(n=500, params=list(mean=1, sd=2))
est.par <- eNormal(X=x, method="unbiased.MLE"); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(x), max(x), length=100)
den.y <- dNormal(den.x, mean = est.par$mean, sd = est.par$sd)
hist(x, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(lines(den.x, den.y, col="blue")) # Original data
lines(density(x), col="red") # Fitted curve

Extracting location and scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]

Parameter Estimation for a distribution with unknown shape parameters
Example from: Bury(1999) p.143, parameter estimates as given by Bury are
mu = 11.984 and sigma = 0.067
11.982, 12.109, 11.966, 12.081, 11.846, 12.007, 12.011)
est.par <- eNormal(X=data, method="numerical.MLE"); est.par
plot(est.par)

log-likelihood, score function and observed information matrix
lNormal(data, param = est.par)
sNormal(data, param = est.par)
iNormal(data, param = est.par)

Evaluating the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian; H
var <- solve(H)
se <- sqrt(diag(var)); se

Normal_sym_trunc_ab The symmetric truncated normal distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the symmetric truncated normal distribution with parameters, sigma, a and b which represent the lower and upper truncation points respectively. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be carried out numerically.
Usage

\texttt{dNormal_sym_trunc_ab(}
\texttt{x,}
\texttt{sigma = 0.3,}
\texttt{a = 0,}
\texttt{b = 1,}
\texttt{params = list(sigma, a, b),}
\texttt{...})

\texttt{pNormal_sym_trunc_ab(}
\texttt{q,}
\texttt{sigma = 0.3,}
\texttt{a = 0,}
\texttt{b = 1,}
\texttt{params = list(mu = 2, sigma = 5, a = 0, b = 1),}
\texttt{...})

\texttt{qNormal_sym_trunc_ab(}
\texttt{p,}
\texttt{sigma = 0.3,}
\texttt{a = 0,}
\texttt{b = 1,}
\texttt{params = list(mu = 2, sigma = 5, a = 0, b = 1),}
\texttt{...})

\texttt{rNormal_sym_trunc_ab(}
\texttt{n,}
\texttt{mu = 2,}
\texttt{sigma = 3,}
\texttt{a = 0,}
\texttt{b = 1,}
\texttt{params = list(sigma, a, b),}
\texttt{...})

\texttt{eNormal_sym_trunc_ab(X, w, method = "numerical.MLE", ...)}

\texttt{lNormal_sym_trunc_ab(}
\texttt{X,}
\texttt{w,}
\texttt{mu = 2,}
\texttt{sigma = 3,}
\texttt{a = 0,}
\texttt{b = 1,}
\texttt{params = list(sigma, a, b),}
Normal_sym_trunc_ab

\[
\text{logL} = \text{TRUE},
\]

Arguments

- **x**, **q** A vector of quantiles.
- **a**, **b** Boundary parameters.
- **params** A list that includes all named parameters.
- **...** Additional parameters
- **p** A vector of probabilities.
- **n** Number of observations.
- **mu**, **sigma** Shape parameters.
- **X** Sample observations.
- **w** An optional vector of sample weights.
- **method** Parameter estimation method.
- **logL** logical; if TRUE, lNormal_sym_trunc_ab gives the log-likelihood, otherwise the likelihood is given.

Details

The normal symmetric truncated distribution is a special case of the truncated normal distribution. See Normal_trunc_ab.

Value

dNormal_sym_trunc_ab gives the density, pNormal_sym_trunc_ab the distribution function, qNormal_sym_trunc_ab the quantile function, rNormal_sym_trunc_ab generates random deviates, and eNormal_sym_trunc_ab estimates the parameters. lNormal_sym_trunc_ab provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

See Also

ExtDist for other standard distributions.
The truncated normal distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the truncated normal distribution with parameters mean, sd and a and b which represent the lower and upper truncation points respectively. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and is performed numerically.

Usage

dNormal_trunc_ab(
 x,
 mu = 0,
 sigma = 1,
 a = 0,
 b = 1,
 params = list(mu, sigma, a, b),
 ...
)

pNormal_trunc_ab(
 q,
 mu = 0,
 sigma = 1,
 a = 0,
 b = 1,
 params = list(mu = 2, sigma = 5, a = 0, b = 1),
 ...
)

qNormal_trunc_ab(
 p,
 mu = 0,
 sigma = 1,
 a = 0,
 b = 1,
 params = list(mu = 2, sigma = 5, a = 0, b = 1),
 ...
)

rNormal_trunc_ab(
 n,
 mu = 0,
 sigma = 1,
 a = 0,
Normal_trunc_ab

b = 1,
params = list(mu, sigma, a, b),
...
)

eNormal_trunc_ab(X, w, method = "numerical.MLE", ...)

lNormal_trunc_ab(
 x,
 w,
 mu = 0,
 sigma = 1,
 a = 0,
 b = 1,
 params = list(mu, sigma, a, b),
 logL = TRUE,
 ...
)

Arguments

x, q A vector of quantiles.
mu, sigma Shape parameters.
a, b Boundary parameters.
params A list that includes all named parameters.
... Additional parameters.
p A vector of probabilities.
n Number of observations.
X Sample observations.
w An optional vector of sample weights.
method Parameter estimation method.
logL logical; if TRUE, lNormal_trunc_ab gives the log-likelihood, otherwise the likelihood is given.

Details

If the mean, sd, a or b are not specified they assume the default values of 0, 1, 0, 1 respectively.

The dNormal_trunc_ab(), pNormal_trunc_ab(), qNormal_trunc_ab() and rNormal_trunc_ab() functions serve as wrappers of the dtrunc, ptrunc, qtrunc, and rtrunc functions in the truncdist package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The probability density function of the doubly truncated normal distribution is given by

\[f(x) = \sigma^{-1}Z(x - \mu/\sigma)[\Phi(b - \mu/\sigma) - \Phi(a - \mu/\sigma)]^{-1} \]
where \(\infty < a \leq x \leq b < \infty \). The degrees of truncation are \(\Phi((a - \mu)/\sigma) \) from below and \(1 - \Phi((a - \mu)/\sigma) \) from above. If a is replaced by \(-\infty \), or b by \(\infty \), the distribution is singly truncated, (Johnson et.al, p.156). The upper and lower limits of truncation \(a \) and \(b \) are normally known parameters whereas \(\mu \) and \(\sigma \) may be unknown. Crain (1979) discusses parameter estimation for the truncated normal distribution and the method of numerical maximum likelihood estimation is used for parameter estimation in \(\text{eNormal_trunc_ab} \).

Value

\(\text{dNormal_trunc_ab} \) gives the density, \(\text{pNormal_trunc_ab} \) the distribution function, \(\text{qNormal_trunc_ab} \) the quantile function, \(\text{rNormal_trunc_ab} \) generates random variables, and \(\text{eNormal_trunc_ab} \) estimates the parameters. \(\text{lNormal_trunc_ab} \) provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu.

References

See Also

\text{ExtDist} for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rNormal_trunc_ab(n= 500, mu= 2, sigma = 5, a = 1, b = 2)
est.par <- eNormal_trunc_ab(X); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dNormal_trunc_ab(den.x,params = est.par)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty = 2)

Extracting boundary and shape parameters
est.par[attributes(est.par)$par.type=="boundary"]
est.par[attributes(est.par)$par.type=="shape"]

log-likelihood function
The symmetric-reflected truncated beta (SRTB) distribution.

Density, distribution, quantile, random number generation and parameter estimation functions for the SRTB distribution. Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be carried out numerically.

Usage

dSRTB_ab(
 x,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1, shape2, a, b),
 ...)

pSRTB_ab(
 q,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1 = 2, shape2 = 5, a = 0, b = 1),
 ...)

qSRTB_ab(
 p,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1 = 2, shape2 = 5, a = 0, b = 1),
 ...)

rSRTB_ab(
 n,
 shape1 = 2,
 shape2 = 3,
a = 0,
b = 1,
params = list(shape1, shape2, a, b),
...
)
eSRTB_ab(X, w, method = "numerical.MLE", ...)

lSRTB_ab(
 X,
 w,
 shape1 = 2,
 shape2 = 3,
 a = 0,
 b = 1,
 params = list(shape1, shape2, a, b),
 logL = TRUE,
 ...
)

Arguments

- **x**, **q** A vector of quantiles.
- **shape1**, **shape2** Shape parameters.
- **a**, **b** Boundary parameters.
- **params** A list that includes all named parameters.
- **...** Additional parameters.
- **p** A vector of probabilities.
- **n** Number of observations.
- **X** Sample observations.
- **w** An optional vector of sample weights.
- **method** Parameter estimation method.
- **logL** logical; if TRUE, lSRTB_ab gives the log-likelihood, otherwise the likelihood is given.

Details

No details as of yet.

Value

dSRTB_ab gives the density, pSRTB_ab the distribution function, qSRTB_ab gives the quantile function, rSRTB_ab generates random variables, and eSRTB_ab estimates the parameters. lSRTB_ab provides the log-likelihood function and sSRTB_ab the score function.
Author(s)
Haizhen Wu.

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rSRTB_ab(n=500, shape1=2, shape2=10, a=1, b=2)
est.par <- eSRTB_ab(X)
plot(est.par)

Extracting boundary and shape parameters
est.par[attributes(est.par)$par.type="boundary"]
est.par[attributes(est.par)$par.type="shape"]

log-likelihood function
lSRTB_ab(X,param = est.par)

SSRTB

The standard symmetric-reflected truncated beta (SSRTB) distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for
the SSRTB distribution. Parameter estimation can be based on a weighted or unweighted i.i.d
sample and can be carried out numerically.

Usage

dSSRTB(x, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)
pSSRTB(q, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)
qSSRTB(p, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)
rSSRTB(n, shape1 = 2, shape2 = 3, params = list(shape1, shape2), ...)
eSSRTB(X, w, method = "numerical.MLE", ...)

1SSRTB(
 X,
 w,
 shape1 = 2,
 shape2 = 3,
 params = list(shape1, shape2),
logL = TRUE,

Arguments

- `x`, `q` A vector of quantiles.
- `shape1`, `shape2` Shape parameters.
- `params` A list that includes all named parameters.
- `p` A vector of probabilities.
- `n` Number of observations.
- `X` Sample observations.
- `w` An optional vector of sample weights.
- `method` Parameter estimation method.
- `logL` logical; if TRUE, lSSRTB gives the log-likelihood, otherwise the likelihood is given.

Details

No details as of yet.

Value

dSSRTB gives the density, pSSRTB the distribution function, qSSRTB the quantile function, rSSRTB generates random variables, eSSRTB estimates the parameters and lSSRTB provides the log-likelihood.

Author(s)

Haizhen Wu.

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rSSRTB(n=500, shape1=2, shape2=10)
est.par <- eSSRTB(X); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dSSRTB(den.x,shape1=est.par$shape1,shape2=est.par$shape2)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
```r
lines(density(X), lty=2)

# Extracting shape parameters
est.par[attributes(est.par)$par.type=="shape"]

# log-likelihood function
lSSRTB(X, param = est.par)
```

Triangular

The Triangular Distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the triangular distribution with support \([a, b]\) and shape parameter \(\theta\). Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be performed numerically.

Usage

- `dTriangular(x, a = 0, b = 1, theta = 0.5, params = list(a, b, theta), ...)`
- `pTriangular(q, a = 0, b = 1, theta = 0.5, params = list(a, b, theta), ...)`
- `qTriangular(p, a = 0, b = 1, theta = 0.5, params = list(a, b, theta), ...)`
- `rTriangular(n, a = 0, b = 1, theta = 0.5, params = list(a, b, theta), ...)`
- `eTriangular(X, w, method = "numerical.MLE", ...)`
- `lTriangular(
 X,
 w,
 a = 0,
 b = 1,
 theta = 0.5,
 params = list(a, b, theta),
 logL = TRUE,
 ...
)

Arguments

- `x, q` A vector of quantiles.
- `a, b` Boundary parameters.
- `theta` Shape parameters.
- `params` A list that includes all named parameters.
- `...` Additional parameters.
Triangular

- `p` A vector of probabilities.
- `n` Number of observations.
- `X` Sample observations.
- `w` An optional vector of sample weights.
- `method` Parameter estimation method.
- `logL` logical, it is assumed that the log-likelihood is desired. Set to FALSE if the likelihood is wanted.

Details

If `a`, `b` or `theta` are not specified they assume the default values of 0, 1 and 0.5 respectively.

The `dTriangle()`, `pTriangle()`, `qTriangle()`, and `rTriangle()` functions serve as wrappers of the `dtriangle`, `ptriangle`, `qtriangle`, and `rtriangle` functions in the VGAM package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The triangular distribution has a probability density function, defined in Forbes et.al (2010), that consists of two lines joined at `theta`, where `theta` is the location of the mode.

Value

`dTriangular` gives the density, `pTriangular` the distribution function, `qTriangular` the quantile function, `rTriangular` generates random variables, and `eTriangular` estimates the parameters. `lTriangular` provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Updates and bug fixes by Sarah Pirikahu.

References

See Also

`ExtDist` for other standard distributions.
The Uniform Distribution.

Description

Density, distribution, quantile, random number generation and parameter estimation functions for the uniform distribution on the interval \([a, b]\). Parameter estimation can be based on an unweighted i.i.d. sample only and can be performed analytically or numerically.

Usage

\[
\begin{align*}
d\text{Uniform}(x, a = 0, b = 1, \text{params} = \text{list}(a, b), \ldots) \\
p\text{Uniform}(q, a = 0, b = 1, \text{params} = \text{list}(a, b), \ldots) \\
q\text{Uniform}(p, a = 0, b = 1, \text{params} = \text{list}(a, b), \ldots) \\
r\text{Uniform}(n, a = 0, b = 1, \text{params} = \text{list}(a, b), \ldots) \\
e\text{Uniform}(X, w, \text{method} = \text{c}("analytic.MLE", "moments", "numerical.MLE"), \ldots) \\
l\text{Uniform}(X, w, a = 0, b = 1, \text{params} = \text{list}(a, b), \logL = \text{TRUE}, \ldots)
\end{align*}
\]

Arguments

- \(x, q\): A vector of quantiles.
- \(a, b\): Boundary parameters.
- \(\text{params}\): A list that includes all named parameters.
- \(\ldots\): Additional parameters.
- \(p\): A vector of probabilities.
- \(n\): Number of observations.
- \(X\): Sample observations.
- \(w\): An optional vector of sample weights.
- \(\text{method}\): Parameter estimation method.
- \(\logL\): logical; if \(\text{TRUE}\), \(l\text{Uniform}\) gives the log-likelihood, otherwise the likelihood is given.

Details

If \(a\) or \(b\) are not specified they assume the default values of 0 and 1, respectively.

The \(d\text{Uniform}\), \(p\text{Uniform}\), \(q\text{Uniform}\), and \(r\text{Uniform}\) functions serve as wrappers of the standard \text{dunif}, \text{punif}, \text{qunif}, and \text{runif} functions in the \text{stats} package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter
estimation can be carried out.

The uniform distribution has probability density function

\[p_x(x) = \frac{1}{b - a} \]

for \(a \leq x \leq b \). The analytic maximum likelihood parameter estimates are as given by Engineering Statistics Handbook. The method of moments parameter estimation option is also available and the estimates are as given by Forbes et.al (2011), p.179.

The log-likelihood function for the uniform distribution is given by

\[l(a, b|x) = -n \log(b - a) \]

Value

dUniform gives the density, pUniform the distribution function, qUniform the quantile function, rUniform generates random deviates, and eUniform estimates the parameters. lUniform provides the log-likelihood function.

Note

The analytical maximum likelihood estimation of the parameters \(a \) and \(b \) is calculated using the range and mid-range of the sample. Therefore, only unweighted samples are catered for in the eUniform distribution when the method analytic.MLE is selected.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.

Updates and bugfixes by Sarah Pirikahu.

References

Engineering Statistics Handbook

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rUniform(n=500, a=0, b=1)
est.par <- eUniform(X, method="analytic.MLE"); est.par
Weibull

plot(est.par)

Histogram and fitted density
den.x <- seq(min(X), max(X), length=100)
den.y <- dUniform(den.x, a=est.par$a, b=est.par$b)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue") # Original data
lines(density(X), lty=2) # Fitted curve

Extracting boundary parameters
est.par[attributes(est.par)$par.type=="boundary"]

log-likelihood
lUniform(X,param = est.par)

Example of parameter estimation for a distribution with
unknown parameters currently been sought after.

Weibull

The Weibull Distribution.

Description

Density, distribution, quantile, random number generation, and parameter estimation functions for the Weibull distribution with parameters shape and scale. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be carried out analytically or numerically.

Usage

dWeibull(x, shape = 2, scale = 2, params = list(shape = 2, scale = 2))
pWeibull(q, shape = 2, scale = 2, params = list(shape = 2, scale = 2))
qWeibull(p, shape = 2, scale = 2, params = list(shape = 2, scale = 2))
rWeibull(n, shape = 2, scale = 2, params = list(shape = 2, scale = 2))
eWeibull(X, w, method = c("numerical.MLE", "moments"), ...)

lWeibull(
 X,
 w,
 shape = 2,
 scale = 2,
 params = list(shape = 2, scale = 2),
 logL = TRUE
)
Arguments

- **x, q**: A vector of quantiles.
- **shape**: Shape parameter.
- **scale**: Scale parameter.
- **params**: A list that includes all named parameters.
- **p**: A vector of probabilities.
- **n**: Number of observations.
- **X**: Sample observations.
- **w**: An optional vector of sample weights.
- **method**: Parameter estimation method.
- **...**: Additional parameters.
- **logL**: logical; if TRUE, lWeibull gives the log-likelihood, otherwise the likelihood is given.

Details

The Weibull distribution is a special case of the generalised gamma distribution. The `dWeibull()`, `pWeibull()`, `qWeibull()`, and `rWeibull()` functions serve as wrappers of the standard `dweibull`, `pweibull`, `qweibull`, and `rweibull` functions with in the `stats` package. They allow for the parameters to be declared not only as individual numerical values, but also as a list so parameter estimation can be carried out.

The Weibull distribution with parameters `shape=a` and `scale=b` has probability density function,

\[f(x) = \left(\frac{a}{b}\right)\left(\frac{x}{b}\right)^{a-1} \exp\left(-\left(\frac{x}{b}\right)^a\right) \]

for \(x > 0 \). Parameter estimation can be carried out using the method of moments as done by Winston (2003) or by numerical maximum likelihood estimation.

The log-likelihood function of the Weibull distribution is given by

\[l(a,b|x) = n(\ln a - \ln b) + (a - 1) \sum \ln(x_i/b) - \sum (x_i/b)^a \]

The score function and information matrix are as given by Rinne (p.412).

Value

`dWeibull` gives the density, `pWeibull` the distribution function, `qWeibull` the quantile function, `rWeibull` generates random deviates, and `eWeibull` estimates the distribution parameters. `lWeibull` provides the log-likelihood function.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey.
Updates and bug fixes by Sarah Pirikahu, Oleksii Nikolaienko.
References

See Also

ExtDist for other standard distributions.

Examples

Parameter estimation for a distribution with known shape parameters
X <- rWeibull(n=1000, params=list(shape=1.5, scale=0.5))
est.par <- eWeibull(X=X, method="numerical.MLE"); est.par
plot(est.par)

Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dWeibull(den.x,shape=est.par$shape,scale=est.par$scale)
hist(X, breaks=10, col="red", probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue", lwd=2) # Original data
lines(density(X), lty=2) # Fitted curve

Extracting shape and scale parameters
est.par[attributes(est.par)$par.type=="shape"]
est.par[attributes(est.par)$par.type=="scale"]

Parameter Estimation for a distribution with unknown shape parameters
Example from: Rinne (2009) Dataset p.338 and example pp.418-419
Parameter estimates are given as shape = 2.5957 and scale = 99.2079.
data <- c(35,38,42,56,58,61,63,76,81,83,86,90,99,104,113,114,117,119,141,183)
est.par <- eWeibull(X=data, method="numerical.MLE"); est.par
plot(est.par)

log-likelihood function
lWeibull(data, param = est.par)

evaluate the precision of estimation by Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var)); se

wmle

Weighted Maximum Likelihood Estimation.
Description

A general weighted maximum likelihood estimation function.

Usage

```r
wmle(X, w, distname, initial, lower, upper, loglik.fn, score.fn, obs.info.fn)
```

Arguments

- **X**: Sample observations.
- **w**: Frequency (or weights) of observation.
- **distname**: Name of distribution to be estimated.
- **initial**: Initial value of the parameters.
- **lower**: The lower bound of the parameters.
- **upper**: The upper bound of the parameters.
- **loglik.fn**: Function to compute (weighted) log likelihood.
- **score.fn**: Function to compute (weighted) score.
- **obs.info.fn**: Function to compute observed information matrix.

Details

Weighted Maximum Likelihood Estimation

Value

Weighted mle estimates.

Author(s)

Haizhen Wu and A. Jonathan R. Godfrey
Index

AIC, eDist (eDist), 15
AICc (eDist), 15

bestDist, 3
Beta, 4
beta, 6, 9
Beta_ab, 7
BIC (eDist), 15
Burr, 11

compareDist, 14
dBeta (Beta), 4
dbeta, 5, 9
dBeta_ab (Beta_ab), 7
dBurr (Burr), 11
dExp (Exponential), 18
dexp, 19
dGamma (Gamma), 20
dgamma, 21
dGumbel (Gumbel), 23
dgumbel, 24
DistSelCriteria, 14
dJohnson, 28
dJohnsonSB (JohnsonSB), 26
dJohnsonSB_ab (JohnsonSB), 26
dJohnsonSU (JohnsonSU), 29
dlaplace (Laplace), 33
dlogis, 37
dLogistic (Logistic), 36
dnorm, 40
dNormal (Normal), 39
dNormal_sym_trunc_ab
 (Normal_sym_trunc_ab), 41
dNormal_trunc_ab (Normal_trunc_ab), 44
dparetoIV, 12
dSRTB_ab (SRTB_ab), 47
dSSRTB (SSRTB), 49
dtriangle, 52
dTriangular (Triangular), 51
dtrunc, 45
dunif, 53
dUniform (Uniform), 53
dWeibull (Weibull), 55
dweibull, 56
eBeta (Beta), 4
eBeta_ab (Beta_ab), 7
eBurr (Burr), 11
eDist, 15
eExp (Exponential), 18
eGamma (Gamma), 20
eGumbel (Gumbel), 23
eJohnsonSB (JohnsonSB), 26
eJohnsonSU (JohnsonSU), 29
eLaplace (Laplace), 33
eLogistic (Logistic), 36
eNormal (Normal), 39
eNormal_sym_trunc_ab
 (Normal_sym_trunc_ab), 41
eNormal_trunc_ab (Normal_trunc_ab), 44
eSRTB_ab (SRTB_ab), 47
eSSRTB (SSRTB), 49
eTriangular (Triangular), 51
eUniform (Uniform), 53
eval.estimation, 17
eWeibull (Weibull), 55
Exponential, 18
ExtDist, 6, 10, 13, 22, 25, 29, 32, 35, 38, 41,
 43, 46, 49, 50, 52, 54, 57
ExtDist (ExtDist-package), 2
ExtDist-package, 2

Gamma, 20
gamma, 21
Gumbel, 23

iBeta (Beta), 4
iExp (Exponential), 18
iLaplace (Laplace), 33
iNormal (Normal), 39

JohnsonSB, 26
JohnsonSU, 29

Laplace, 33
1Beta (Beta), 4
1Beta_ab (Beta_ab), 7
1Burr (Burr), 11
1Exp (Exponential), 18
1Gamma (Gamma), 20
1Gumbel (Gumbel), 23
1JohnsonSB (JohnsonSB), 26
1JohnsonSU (JohnsonSU), 29
1Laplace (Laplace), 33
1Logistic (Logistic), 36
1Normal (Normal), 39
1Normal_sym_trunc_ab
(Normal_sym_trunc_ab), 41
1Normal_trunc_ab (Normal_trunc_ab), 44
Logistic, 36
logLik.eDist (eDist), 15
1SRTB_ab (SRTB_ab), 47
1SSRTB (SSRTB), 49
1Triangular (Triangular), 51
1Uniform (Uniform), 53
1Weibull (Weibull), 55

MDL (eDist), 15

Normal, 39
Normal_sym_trunc_ab, 41
Normal_trunc_ab, 43, 44

pBeta (Beta), 4
pBeta_ab (Beta_ab), 7
pBurr (Burr), 11
pExp (Exponential), 18
pexp, 19
pGamma (Gamma), 20
pgamma, 21
pGumbel (Gumbel), 23
pgumbel, 24
pJohnson, 28
pJohnsonSB (JohnsonSB), 26
pJohnsonSU (JohnsonSU), 29
pLaplace (Laplace), 33
plogis, 37

pLogistic (Logistic), 36
plot.eDist (eDist), 15
pnorm, 40
pNormal (Normal), 39
pNormal_sym_trunc_ab
(Normal_sym_trunc_ab), 41
pNormal_trunc_ab (Normal_trunc_ab), 44
qparetoIV, 12
print.eDist (eDist), 15
pSRTB_ab (SRTB_ab), 47
pSSRTB (SSRTB), 49
ptriangle, 52
pTriangular (Triangular), 51
ptrunc, 45
punif, 53
pUniform (Uniform), 53
pWeibull (Weibull), 55
pweibull, 56

qBeta (Beta), 4
qBeta_ab (Beta_ab), 7
qBurr (Burr), 11
qExp (Exponential), 18
qexp, 19
qGamma (Gamma), 20
qgamma, 21
qGumbel (Gumbel), 23
qgumbel, 24
qJohnson, 28
qJohnsonSB (JohnsonSB), 26
qJohnsonSU (JohnsonSU), 29
qLaplace (Laplace), 33
qlogis, 37
qLogistic (Logistic), 36
qnorm, 40
qNormal (Normal), 39
qNormal_sym_trunc_ab
(Normal_sym_trunc_ab), 41
qNormal_trunc_ab (Normal_trunc_ab), 44
qparetoIV, 12
qSRTB_ab (SRTB_ab), 47
qSSRTB (SSRTB), 49
qtriangle, 52
qTriangular (Triangular), 51
qtrunc, 45
qunif, 53
qUniform (Uniform), 53
qWeibull (Weibull), 55
INDEX

qweibull, 56
rBeta (Beta), 4
rbeta, 5, 9
rBeta_ab (Beta_ab), 7
rBurr (Burr), 11
rExp (Exponential), 18
rexp, 19
rGamma (Gamma), 20
rgamma, 21
rGumbel (Gumbel), 23
rgumbel, 24
rJohnson, 28
rJohnsonSB (JohnsonSB), 26
rJohnsonSU (JohnsonSU), 29
rLaplace (Laplace), 33
rlogis, 37
rLogistic (Logistic), 36
rnorm, 40
rNormal (Normal), 39
rNormal_sym_trunc_ab
(Normal_sym_trunc_ab), 41
rNormal_trunc_ab (Normal_trunc_ab), 44
rparetoIV, 42
rSRTB_ab (SRTB_ab), 47
rSSRTB (SSRTB), 49
rtriangle, 52
rTriangular (Triangular), 51
rtrunc, 45
runif, 53
rUniform (Uniform), 53
rWeibull (Weibull), 55
rweibull, 56

sBeta (Beta), 4
sBeta_ab (Beta_ab), 7
sExp (Exponential), 18
sLaplace (Laplace), 33
sNormal (Normal), 39
SRTB_ab, 47
SSRTB, 49
sSRTB_ab (SRTB_ab), 47
stats, 5, 9, 19, 21, 37, 40, 53, 56

Triangular, 51
Uniform, 53

vcov.eDist (eDist), 15