Package ‘FABInference’

January 9, 2020

Title FAB p-Values and Confidence Intervals
Version 0.1
Description Frequentist assisted by Bayes (FAB) p-values and confidence interval construction. See
"Smaller p-values via indirect information",
Hoff and Yu (2019) <doi:10.1214/18-EJS1517>
"Exact adaptive confidence intervals for linear regression coefficients", and
"Adaptive multigroup confidence intervals with constant coverage".
Date 2019-12-27
Author Peter Hoff
Maintainer Peter Hoff <peter.hoff@duke.edu>
License GPL-3
Imports MASS
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-09 17:00:06 UTC

R topics documented:

fabtzCI ... 2
fabzCI ... 3
glmFAB ... 4
lmFAB ... 5
mmleFH .. 6
mmleFHP .. 7
qr.lmFAB .. 8
rssSplit ... 8
sfabz ... 9
fabtzCI

z-optimal FAB t-interval

Description

Computation of a 1-alpha FAB t-interval using z-optimal spending function

Usage

```
fabtzCI(y, s, dof, alpha = 0.05, psi = list(mu = 0, tau2 = 1e+05, sigma2 = 1))
```

Arguments

- `y`: a numeric scalar, a normally distributed statistic
- `s`: a numeric scalar, the standard error of `y`
- `dof`: positive integer, degrees of freedom for `s`
- `alpha`: the type I error rate, so 1-alpha is the coverage rate
- `psi`: a list of parameters for the spending function, including
 1. `mu`, the prior expectation of `E[y]`
 2. `tau2`, the prior variance of `E[y]`
 3. `sigma2` the variance of `y`

Value

a two-dimensional vector of the left and right endpoints of the interval

Author(s)

Peter Hoff

Examples

```
n<-10
y<-rnorm(n)
fabtzCI(mean(y),sqrt(var(y)/n),n-1)
t.test(y)$conf.int
```
Description

Computation of a 1-alpha FAB z-interval

Usage

fabzCI(y, mu, t2, s2, alpha = 0.05)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>a numeric scalar</td>
</tr>
<tr>
<td>mu</td>
<td>a numeric scalar</td>
</tr>
<tr>
<td>t2</td>
<td>a positive numeric scalar</td>
</tr>
<tr>
<td>s2</td>
<td>a positive numeric scalar</td>
</tr>
<tr>
<td>alpha</td>
<td>the type I error rate, so 1-alpha is the coverage rate</td>
</tr>
</tbody>
</table>

Details

A FAB interval is the "frequentist" interval procedure that is Bayes optimal: It minimizes the prior expected interval width among all interval procedures with exact 1-alpha frequentist coverage. This function computes the FAB z-interval for the mean of a normal population with an known variance, given a user-specified prior distribution determined by psi. The prior is that the population mean is normally distributed. Referring to the elements of psi as mu, t2, s2, the prior and population variance are determined as follows:

1. mu is the prior expectation of the mean
2. t2 is the prior variance of the mean
3. s2 is the population variance

Value

a two-dimensional vector of the left and right endpoints of the interval

Author(s)

Peter Hoff

Examples

```r
y<-0
fabzCI(y,0,10,1)
fabzCI(y,0,1/10,1)
fabzCI(y,2,10,1)
fabzCI(y,0,1/10,1)
```
glmFAB

FAB inference for generalized linear models

Description

asymptotic FAB p-values and confidence intervals for parameters in generalized linear regression models

Usage

glmFAB(cformula, FABvars, lformula = NULL, alpha = 0.05, silent = FALSE, ...)

Arguments

cformula formua for the control variables
FABvars matrix of regressors for which to make FAB p-values and CIs
lformula formula for the lining model (just specify right-hand side)
alpha error rate for CIs (1-alpha CIs will be constructed)
silent show progress (TRUE) or not (FALSE)
... additional arguments to be passed to glm

Value

an object of the class glmFAB which inherits from glm

Author(s)

Peter Hoff

Examples

n observations, p FAB variables, q=2 control variables

n<-100 ; p<-25

X is design matrix for params of interest
beta is vector of true parameter values
v a variable in the linking model - used to share info across betas

v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8

control coefficients and variables

alpha1<-.5 ; alpha2<- -.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8
simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rpois(n,exp(lp))

fit model
fit<-glmFAB(y~w1+w2,X,v,family=poisson)
fit$FABpv
fit$FABci
summary(fit) # look at p-value column

lmFAB

FAB inference for linear models

Description

FAB p-values and confidence intervals for parameters in linear regression models

Usage

```r
lmFAB(cformula, FABvars, lformula = NULL, alpha = 0.05,
      rssSplit = TRUE, silent = FALSE)
```

Arguments

- `cformula`: formula for the control variables
- `FABvars`: matrix of regressors for which to make FAB p-values and CIs
- `lformula`: formula for the linking model (just specify right-hand side)
- `alpha`: error rate for CIs (1-alpha CIs will be constructed)
- `rssSplit`: use some residual degrees of freedom to help fit linking model (TRUE/FALSE)
- `silent`: show progress (TRUE) or not (FALSE)

Value

an object of the class `lmFAB` which inherits from `lm`

Author(s)

Peter Hoff
Examples

n observations, p FAB variables, q=2 control variables

n<-100 ; p<-25

X is design matrix for params of interest
beta is vector of true parameter values
v a variable in the linking model - used to share info across betas

v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8

control coefficients and variables
alpha1<-.5 ; alpha2<-.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8

simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rnorm(n,lp)

fit model
fit<-lmFAB(y~w1+w2,X,~v)

fit$FABpv
fit$FABci
summary(fit) # look at p-value column

mmleFH

Marginal MLEs for the Fay-Herriot model

Description

Marginal MLEs for the Fay-Herriot random effects model where the covariance matrix for the sampling model is known to scale.

Usage

```r
mmleFH(y, X, V, ss0 = 0, df0 = 0)
```

Arguments

- **y**: direct data following normal model $y \sim N(\theta, V\sigma^2)$
- **X**: linking model predictors $\theta \sim N(X\beta, \tau^2 I)$
- **V**: covariance matrix to scale
- **ss0**: prior sum of squares for estimate of σ^2
- **df0**: prior degrees of freedom for estimate of σ^2
mmleFHP

Value

a list of parameter estimates including

1. beta, the estimated regression coefficients
2. t2, the estimate of \(\tau^2 \)
3. s2, the estimate of \(\sigma^2 \)

Author(s)

Peter Hoff

Examples

```r
n<-30 ; p<-3
X<-matrix(rnorm(n*p),n,p)
beta<-rnorm(p)
theta<-X%*%beta + rnorm(n)
V<-diag(n)
y<-theta+rnorm(n)
mmleFH(y,X,V)
```

mmleFHP
Marginal MLEs for the Fay-Herriot model with known covariance

Description

Marginal MLEs for the Fay-Herriot random effects model where the covariance matrix for the sampling model is known

Usage

```r
mmleFHP(y, X, Sigma)
```

Arguments

- **y** direct data following normal model \(y \sim N(\theta, \Sigma) \)
- **X** linking model predictors \(\theta \sim N(X\beta, \tau^2 I) \)
- **Sigma** covariance matrix in sampling model

Value

a list of parameter estimates including

1. beta, the estimated regression coefficients
2. t2, the estimate of \(\tau^2 \)
Author(s)

Peter Hoff

Examples

```r
n<-30 ; p<-3
X<-matrix(rnorm(n*p),n,p)
beta<-rnorm(p)
theta<-X%*%beta + rnorm(n)
Sigma<-diag(n)
y<-theta+rnorm(n)
mmleFHP(y,X,Sigma)
```

qr.lmFAB

QR decomposition

Description

QR decomposition for lmFAB objects

Usage

```r
## S3 method for class 'lmFAB'
qr(x, ...)
```

Arguments

- `x` : lmFAB object
- `...` : see `qr.lm`, if you can find it

Value

qr decomposition for a design matrix

rssSplit

Residual sum of squares split

Description

Split residual sum of squares from normal linear regression

Usage

```r
rssSplit(fit, df0 = max(1, floor(fit$df/10)), seed = -71407)
```
sfabz

Bayes-optimal spending function

Description
Compute Bayes optimal spending function

Usage
sfabz(theta, psi, alpha = 0.05)

Arguments
theta value of theta being tested
psi a list of theta being tested parameters for the spending function, including
 1. mu, the prior expectation of E[y]
 2. tau2, the prior variance of E[y]
 3. sigma2 the variance of y
alpha level of test

Details
This function computes the value of s that minimizes the acceptance probability of a biased level-
alpha test for a normal population with known variance, under a specified prior predictive distribution.
Value

a scalar value giving the optimal tail-area probability

Author(s)

Peter Hoff

Examples

thetas<-seq(-1,1,length=100)
s<-NULL
for(theta in thetas){ s<-c(s,sfabz(theta,list(mu=0,tau2=1,sigma2=1))) }
plot(thetas,s,type="l")
Examples

n observations, p FAB variables, q=2 control variables

n<-100 ; p<-25

X is design matrix for params of interest
beta is vector of true parameter values
v a variable in the linking model - used to share info across betas

v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8

control coefficients and variables
alpha1<-.5 ; alpha2<- -.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8

simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rpois(n,exp(lp))

fit model
fit<-glmFAB(y~w1+w2,X,~v,family=poisson)

fit$FABpv
fit$FABci
summary(fit) # look at p-value column

summary.lmFAB

Summarizing Linear Model Fits with FAB Inference

Description
summary method for class lmFAB

Usage

S3 method for class 'lmFAB'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

Arguments

object an object of class lmFAB
correlation see summary.lm
symbolic.cor see summary.lm
... see summary.lm
Details

A mod of summary.lm that shows FAB p-values in table

Value

A list of summary statistics of the fitted linear model

Examples

n observations, p FAB variables, q=2 control variables

n<-100 ; p<-25

X is design matrix for params of interest
beta is vector of true parameter values
v a variable in the linking model - used to share info across betas

v<-rnorm(p) ; beta<-(-2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8

control coefficients and variables
alpha1<-.5 ; alpha2<- -.5
w1<-rnorm(n)/8
w2<-rnorm(n)/8

simulate data
lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta
y<-rnorm(n,lp)

fit model
fit<-lmFAB(y~w1+w2,X,~v)

fit$FABpv
fit$FABci
summary(fit) # look at p-value column
Index

fabtzCI, 2
fabzCI, 3

glmFAB, 4

lmFAB, 5

mmleFH, 6
mmleFHP, 7

qr.lmFAB, 8

rssSplit, 8

sfabz, 9
summary.glmFAB, 10
summary.lmFAB, 11