Package ‘FADPclust’

October 8, 2021

Type Package
Title Functional Data Clustering Using Adaptive Density Peak Detection
Version 0.1.0
Author Rui Ren <xmurr@stu.xmu.edu.cn>
Maintainer Rui Ren <xmurr@stu.xmu.edu.cn>
License GPL (>= 2)
Depends R (>= 3.5.0)
Imports MFPCA, cluster, fda, fda.usc, funData, stats, graphics
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-10-08 07:10:09 UTC

R topics documented:

 FADPclust .. 2
 FADPplot ... 4
 FADPsummary ... 5
 simData1 ... 6
 simData2 ... 6

Index 7
Description

Clustering of univariate or multivariate functional data by finding cluster centers from estimated density peaks. FADPclust is a non-iterative procedure that incorporates KNN density estimation algorithm. The number of clusters can also be selected by the user or selected automatically through an internal clustering criterion.

Usage

FADPclust(fdata, cluster = 2:10, method = "FADP1",
 proportion = seq(0.1, 1, 0.1), f.cut = 0.15, pve = 0.99)

Arguments

- **cluster**: integer, or a vector of integers specifying the pool of the number of clusters in automatic variation. The default is 2:10.
- **method**: character string specifying the method used to calculate the pseudo functional k-nearest neighbor density. Valid options of are 'FADP1' and 'FADP2' (see details in references). The default is 'FADP1'.
- **proportion**: numeric, a number or numeric vector of numbers within the range [0,1], specifying to automatically select the smoothing parameter k in density estimation (see details). The default is 0.1, 0.2, ..., 1.
- **f.cut**: numeric, a number within the range [0,1], specified to automatically select cluster centroids from the decision plot. The default is 0.15.
- **pve**: numeric, a number within the range [0,1], the proportion of variance explained: used to choose the number of functional principal components. The default is 0.99. When the method is chosen to be 'FADP1', there is no need to specify parameter 'pve' for univariate functional data clustering.

Details

Given n functional objects or curves, FADPclust() calculates f(x) and delta(x) for each object based on the semi-metric distance (see details in references), where f(x) is the local density calculated by the functional k-nearest neighbor density estimator of curve x, and delta(x) is the shortest semi-metric distance between sample curve x and y for all samples y such that f(x) <= f(y). Functional objects or curves with large f and large delta values are labeled class centroids. In other words, they appear as isolated points in the upper right corner of the f vs delta plot (the decision plot, see details in FADPplot). After cluster centroids are determined, other objects are clustered according to their semi-metric distances to the closes centroids.
The smoothing parameter k in functional k-nearest neighbor density estimation must be explicitly provided. Following Lauter (1988)'s idea, suggest that the optimal size of k satisfies a certain proportion, $k = a * n^{4/5}$, where a is a parameter about the optimal proportion to be determined. Here, users enters variable 'proportion' to specify the parameter a.

Value

An 'FADPclust' object that contains the list of the following items.

- `nclust`: number of clusters.
- `para`: smoothing parameter k selected automatically by KNN estimation.
- `method`: character string introducing the method used to calculate the smoothing parameter.
- `clust`: cluster assignments. A vector of the same length as the number of observations.
- `density`: final density vector $f(x)$.
- `delta`: final delta vector $\delta(x)$.
- `center`: indices of the clustering centers.
- `silhouette`: silhouette score from the final clustering result.

References

See Also

FADPsummary, FADPplot.

Examples

```r
###univariate functional data
data("simData1")
plot(simData1, xlab = "x", ylab = "y")
FADP1.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP1", proportion = seq(0.02, 0.2, 0.02))
FADP2.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP2", proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary(FADP1.ans); FADPplot(FADP1.ans)
FADPsummary(FADP2.ans); FADPplot(FADP2.ans)

###multivariate functional data
```
data("simData2")
FADP1.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP1",
proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADP2.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP2",
proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary(FADP1.ans); FADPplot(FADP1.ans)
FADPsummary(FADP2.ans); FADPplot(FADP2.ans)

FADPplot
Visualize the result of FADPclust

Description
Plot the f vs delta plot with selected centroids.

Usage
FADPplot(object, cols = "default")

Arguments

object object of class 'FADPclust' that is returned from FADPclust().

cols vector of colors used to distinguish different clusters. Ten default colors are given.

See Also
FADPclust, FADPsummary.

Examples
univariate functional data
data("simData1")
plot(simData1, xlab = "x", ylab = "y")
FADP1.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP1",
proportion = seq(0.02, 0.2, 0.02))
FADP2.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP2",
proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary(FADP1.ans); FADPplot(FADP1.ans)
FADPsummary(FADP2.ans); FADPplot(FADP2.ans)

multivariate functional data
data("simData2")
FADP1.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP1",
proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADP2.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP2",
proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary

Summary of FADPclust

Description

Summarize the result obtained from the FADPclust() function.

Usage

FADPsummary(object)

Arguments

object
	object of class 'FADPclust' that is returned from FADPclust().

See Also

FADPclust, FADPplot.

Examples

univariate functional data
data("simData1")
plot(simData1, xlab = "x", ylab = "y")
FADP1.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP1",
 proportion = seq(0.02, 0.2, 0.02))
FADP2.ans <- FADPclust(fdata = simData1, cluster = 2:10, method = "FADP2",
 proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary(FADP1.ans); FADPplot(FADP1.ans)
FADPsummary(FADP2.ans); FADPplot(FADP2.ans)

multivariate functional data
data("simData2")
FADP1.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP1",
 proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADP2.ans <- FADPclust(fdata = simData2, cluster = 2:10, method = "FADP2",
 proportion = seq(0.02, 0.2, 0.02), pve = 0.9)
FADPsummary(FADP1.ans); FADPplot(FADP1.ans)
FADPsummary(FADP2.ans); FADPplot(FADP2.ans)
simData1

Simulated univariate functional data for method FADPclust

Description
Simulated univariate functional data, with 2 clusters each containing 100 sample curves, were for users to apply the method FADPclust.

Format
fd, see FDA R package for details.

simData2

Simulated multivariate functional data for method FADPclust

Description
Simulated three-dimensional multivariate functional data, with 2 clusters each containing 100 sample curves, were for users to apply the method FADPclust.

Format
fd, see FDA R package for details.
Index

∗ datasets
 simData1, 6
 simData2, 6

FADPclust, 2, 4, 5
FADPplot, 3, 4, 5
FADPsummary, 3, 4, 5

simData1, 6
simData2, 6