Package ‘FCO’
February 11, 2022

Title Flexible Cutoffs for Model Fit Evaluation in Covariance-Based Structural Models

Version 0.7.2

Description
A toolbox to derive flexible cutoffs for fit indices in 'Covariance-based Structural Equation Modeling' based on the paper by 'Niemand & Mai (2018)' <doi:10.1007/s11747-018-0602-9>. Flexible cutoffs are an alternative to fixed cutoffs - rules-of-thumb - regarding an appropriate cut-off for fit indices such as 'CFI' or 'SRMR'. It has been demonstrated that these flexible cutoffs perform better than fixed cutoffs in grey areas where misspecification is not easy to detect. The package provides an alternative to the tool at <https://flexiblecutoffs.org> as it allows to tailor flexible cutoffs to a given dataset and model, which is so far not available in the tool. The package simulates fit indices based on a given dataset and model and then estimates the flexible cutoffs. Some useful functions, e.g., to determine the 'GoF-' or 'BoF-nature' of a fit index, are provided. So far, additional options for a relative use (is a model better than another?) are provided in an exploratory manner.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports lavaan, semTools, parallel, checkmate, data.table

Suggests rmarkdown, knitr, ggplot2, MASS, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Author Thomas Niemand [aut, cre] (<https://orcid.org/0000-0001-7677-1168>), Robert Mai [ctb] (<https://orcid.org/0000-0002-8364-9328>)

Maintainer Thomas Niemand <thomas.niemand@gmail.com>

NeedsCompilation no

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-02-11 19:20:07 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb1992</td>
<td>2</td>
</tr>
<tr>
<td>flex_co</td>
<td>3</td>
</tr>
<tr>
<td>gen_fit</td>
<td>5</td>
</tr>
<tr>
<td>index_guess</td>
<td>8</td>
</tr>
<tr>
<td>pop_mod</td>
<td>9</td>
</tr>
<tr>
<td>recommend</td>
<td>10</td>
</tr>
<tr>
<td>recommend_dv</td>
<td>11</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb1992</td>
<td>13</td>
</tr>
</tbody>
</table>

Description

Data from Babakus & Boller (1992) who investigated the dimensionality of the SERVQUAL scale based on a sample of N = 502. The data is available as a data.frame (simulated via mvrnorm in package MASS based on the correlation matrix provided by the authors) and used in the vignette.

Usage

```r
data(bb1992)
```

Format

A data.frame of 22 variables (Q1-Q22) with 502 observations

Source

Provided in paper

References

Examples

```r
data(bb1992)
head(bb1992, 3)
```
flex_co

Obtain flexible cutoffs for one or two models

Description

Obtain flexible cutoffs for one or two models

Usage

flex_co(fits, index, alpha.lev = 0.05, gof = NULL)

Arguments

fits A list of simulated fit indices obtained from gen_fit. Based on the structure of
fits, the number of models is derived.
index A vector of fit indices or measures provided by function fitmeasures in package
lavaan
alpha.lev The predefined uncertainty For example, if the default uncertainty of .05 (5 per-
cent) is accepted a-priori, the 5 percent stats::quantile (of type 8, see ?stats::quantile)
of the simulated distribution for correctly specified CFA models with the given
model and sample characteristics determines the flexible cutoff. Options are
.001, .01, .05, and .10. Higher values are more conservative.
gof An optional vector as to whether the indices are GoF (Goodness-of-Fit index)?
If TRUE, a GoF is assumed. If FALSE, a BoF is assumed. Depending on the
nature of the underlying fit index, the appropriate lower (GoF) or upper (BoF)
width of the respective confidence interval as defined by the stats::quantile is
used to derive the flexible cutoff. If not provided or not equal to the number of
fit indices, the function guesses the type for known fit indices (e.g., SRMR is a
BoF).

Value

A list of information regarding the selected fit index providing its flexible cutoff for the given
parameters.

Examples

#Note: Demonstration only! Please use higher numbers of replications for your applications (=> 500).
#A single model to obtain fit indices for
mod <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
"
fits.single <- gen_fit(mod1 = mod, x = bb1992, rep = 10, standardized = FALSE)
flex_co(fits = fits.single, index = c("CFI", "SRMR"))

Two models, an unconstrained and a constrained model to compare fit indices
mod.con <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
F1 ~~ 0 * F2
"
fits.con <- gen_fit(
 mod1 = mod,
 mod2 = mod.con,
 x = bb1992,
 rep = 10
)
flex_co(fits = fits.con,
 index = c("CFI", "SRMR"),
 alpha.lev = .05)

Two models for discriminant validity testing, this resembles constraining with a cutoff of .9
fits.dv.con <- gen_fit(
 mod1 = mod,
 x = bb1992,
 rep = 10,
 dv = TRUE,
 dv.factors = c("F4", "F5"),
 dv.cutoff = .9
)
flex_co(fits = fits.dv.con,
 index = "CFI",
 alpha.lev = .05)
mod.dv.con <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
F4 ~~ .9 * F5
"
lavaan::fitmeasures(lavaan::cfa(
 model = mod.dv.con,
 data = bb1992,
 auto.fix.first = FALSE,
 std.lv = TRUE
),
 fit.measures = "cfi"
)

Two models for discriminant validity testing, this resembles merging.
fits.dv.merge <- gen_fit(
 mod1 = mod,
Obtain fit statistics from one or two models

Description
Obtain fit statistics from one or two models

Usage
```R
gen_fit(
  mod1,
  mod2 = NULL,
  x,
  rep = 500,
  type = "NM",
  dv = FALSE,
  dv.factors = NULL,
  merge.mod = FALSE,
  dv.cutoff = 0.9,
  standardized = TRUE,
  assume.mvn = TRUE,
  multi.core = TRUE,
  cores = 2,
  seed = 1111,
  pop.mod1 = NULL,
)
```
Arguments

- **mod1**: A lavaan model to specify the CFA.
- **mod2**: Another lavaan model for a model comparison. If missing and `merge.mod = TRUE`, a merged model from function `merge_factors` is estimated based on `mod1`.
- **x**: A dataset for the model of `nrow` observations (minimum: 50) and `ncol` indicators (minimum: 4)
- **rep**: Number of replications to be simulated (default: 500, minimum: 10, maximum: 5000)
- **type**: Type of underlying population model. Based on the model(s) provided, a population model is derived to simulate the fit indices by function `pop_mod`. The type determines the factor loadings and covariances assumed for this population model. NM (the default when only one model is provided): Uses the factor loadings and covariances from Niemand & Mai’s (2018) simulation study. HB: Uses the factor loadings and covariances from Hu & Bentler’s (1999) simulation study. EM: Empirical (the default when two models are provided or `merge.mod` is TRUE), uses the given factor loadings and covariances.
- **dv**: Should the fit statistics be calculated for discriminant validity testing? If no (the default), this is not assumed. If yes, consider the arguments of `merge.mod`, `dv.factors` and `cutoff`. So far, two options of discriminant validity testing are supported. Constraining: A factor correlation between two factors can be constrained as selected by the `dv.factors` argument. In this case, `dv.cutoff` applies and `merge.mod` is not required. Merging: Two factors can be merged into one, again controlled by the `dv.factors` argument. In this case, `merge.mod` applies and `dv.cutoff` is not required (as `cutoff = 1` is implied).
- **dv.factors**: Names of the factors to be considered. Must be equal to 2. If missing (the default), the first and second factor of the model are selected.
- **merge.mod**: This is used for merging. If FALSE (the default), fit measures for `mod1` are estimated for a single model as long as no `mod2` is provided. If TRUE, a merged model from function `merge_factors` is estimated based on `mod1`. In this case, no `mod2` is required.
- **dv.cutoff**: This is used for constraining. It determines the critical correlation assumed to be a cutoff for discriminant validity testing. For example, based on Rönnkö & Cho (2020), a cutoff of .9 indicates a severe issue in discriminant validity between the selected factors. Cutoffs between .8 and 1 are recommended. The function returns a warning, if the cutoff is below .8.
- **standardized**: Are factor loadings assumed to be standardized and covariances to be correlations (default: TRUE)?
- **assume.mvn**: Should multivariate normality (mvn) be assumed? If TRUE (the default), kurtosis and skewness are set to 1 for simulated data. If FALSE, kurtosis and skewness are estimated from dataset `x` via `semTools::mardiaKurtosis` and `semTools::mardiaSkew`.
gen_fit

multi.core Should multiple cores be used to simulate fit indices? If TRUE (the default), mclapply (on Linux or Mac machines) or parLapply (on Windows machines) from parallel package with the number of specified cores is used. If FALSE, a single core is used.

cores How many cores should be used for multiple cores? The default is 2. Consider the available number of cores of your system.

seed The seed to be set to obtain reproducible cutoffs (default: 1111). Defines a vector of length rep with the seed being the first value.

pop.mod1 For flexibility reasons, an optional lavaan population model can be provided.

pop.mod2 Another optional lavaan population model.

Value

A list of simulated fit statistics (fco) and all previously defined parameters.

References

Examples

#Note: Demonstration only! Please use higher numbers of replications for your applications (>= 500).

#A single model to obtain fit indices for
mod <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
"

fits.single <- gen_fit(mod1 = mod, x = bb1992, rep = 10, standardized = FALSE)

#Two models, an unconstrained and a constrained model to compare fit indices
mod.con <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
F1 ~~ 0 * F2
"
fits.con <- gen_fit(
 mod1 = mod,
 mod2 = mod.con,
 x = bb1992,
 rep = 10
)

Two models for discriminant validity testing, this resembles constraining with a cutoff of .9
fits.dv.con <- gen_fit(
 mod1 = mod,
 x = bb1992,
 rep = 10,
 dv = TRUE,
 dv.factors = c("F4", "F5"),
 dv.cutoff = .9
)

Two models for discriminant validity testing, this resembles merging.
fits.dv.merge <- gen_fit(
 mod1 = mod,
 x = bb1992,
 rep = 10,
 dv = TRUE,
 dv.factors = c("F4", "F5"),
 merge.mod = TRUE
)

index_guess

Helper function that guesses GoF or BoF from a given index name

Description

Helper function that guesses GoF or BoF from a given index name

Usage

```r
index_guess(index)
```

Arguments

- `index` A fit index or measure provided by function fitmeasures in package lavaan

Value

Returns GoF (Goodness-of-Fit index) or BoF (Badness of Fit index).
pop_mod

Helper function to obtain population model for simulation based on data and model

Examples

```r
index_guess("cfi")
index_guess("tli")
index_guess("rmsea")
index_guess("srmr")
index_guess("cfi")
index_guess("tli")
index_guess("rmsea")
index_guess("srmr")
```

Description

Helper function to obtain population model for simulation based on data and model

Usage

```r
pop_mod(mod, x, type = "NM", standardized = TRUE, afl = 0.7, aco = 0.3)
```

Arguments

- **mod**: A lavaan model (only CFA supported so far)
- **x**: A dataset for the model of nrow observations (minimum: 50) and ncol indicators (minimum: 4)
- **type**: Type of population model. NM (the default): Uses the factor loadings and covariances from Niemand & Mai’s (2018) simulation study. HB: Uses the factor loadings and covariances from Hu & Bentler’s (1999) simulation study. EM: Empirical, uses the given factor loadings and covariances. EM is not recommended for confirmative use as it leads to the least generalizable cutoffs.
- **standardized**: Are factor loadings assumed to be standardized and covariances to be correlations (default: TRUE)?
- **afl**: Average factor loading of indicators per factor, only relevant for type = "NM" (default: .7).
- **aco**: Average correlation between factors, only relevant for type = "NM" (default: .3).

Value

List of population model type, standardized, average factor loading and average correlation. All values are round to three decimals.
Examples

mod <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16"

pop_mod(mod, x = bb1992, type = "NM")$pop.mod
pop_mod(mod, x = bb1992, type = "HB")$pop.mod
pop_mod(mod, x = bb1992, type = "EM")$pop.mod
pop_mod(mod, x = bb1992, type = "NM", afl = .9)$pop.mod
pop_mod(mod, x = bb1992, type = "NM", aco = .5)$pop.mod
pop_mod(mod, x = bb1992, type = "EM", standardized = FALSE)$pop.mod

Descripción

This function recommends pre-defined selected fit indices in case the user does not know which fit index should be used for model evaluation. Results may differ based on three settings, the sample size of the data, the research purpose of the investigated model and the focus of the model. For obvious reasons, this function only works for single models and does not accept any other model type.

Usage

recommend(fits, purpose = "novel", focus = "cfa", override = FALSE, index = NULL, digits = 3)

Arguments

- **fits**: A list of simulated fit indices obtained from gen_fit. Based on the structure of fits, the number of models is derived.
- **purpose**: The research purpose of the model investigated. Is the underlying model novel (default) or established (= established). This parameter is relevant to find the proper recommended fit indices.
- **focus**: The focus of estimation for the model. Is the focus on CFA (default) or analyzing the structural model of a theoretical model (= structural)? This parameter is relevant to find the proper recommended fit indices.
recommend_dv

override

Should the recommendations by Mai et al. (2021) overridden (default: FALSE)? This may be useful to explore models outside of the scope of the paper. In this case, the recommended fit indices are not determined by the function, and hence need to be provided. In this case, the function requires the argument index.

index

An optional vector of fit indices or measures provided by function fitmeasures in package lavaan. This argument is required when override is TRUE. It is ignored otherwise.

digits

An optional integer to round fit values and cutoffs (min: 1, max: 5).

Value

A list of information regarding the recommended fit indices based on Mai et al. (2021) or when overridden, based on the provided indices.

References

Examples

#Note: Demonstration only! Please use higher numbers of replications for your applications (>= 500).

mod <- "
F1 =~ Q5 + Q7 + Q8
F2 =~ Q2 + Q4
F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
F4 =~ Q1 + Q17
F5 =~ Q6 + Q14 + Q15 + Q16
"

fits.single <- gen_fit(mod1 = mod, x = bb1992, rep = 10, standardized = FALSE)
recommend(fits.single)
recommend(fits.single, purpose = "established")
recommend(fits.single,
override = TRUE,
index = c("CFI", "SRMR"))

recommend_dv

Obtain recommendations for discriminant validity testing

Description

This function recommends on potential issues for discriminant validity testing, based on differences between fit values and differences between flexible cutoffs. Two approaches of testing are supported: merging and constraining.

Usage

recommend_dv(fits, index = "CFI", digits = 3)
Arguments

fits A list of simulated fit indices obtained from gen_fit. Based on the structure of fits, the number of models is derived.

index A vector of fit indices or measures provided by function fitmeasures in package lavaan. The default is set to CFI.

digits An optional integer to round fit values and cutoffs (min: 1, max: 5).

Value

A list of information regarding discriminant validity testing.

Examples

```r
#Note: Demonstration only! Please use higher numbers of replications for your applications (>= 500).
mod <- 
  F1 =~ Q5 + Q7 + Q8
  F2 =~ Q2 + Q4
  F3 =~ Q10 + Q11 + Q12 + Q13 + Q18 + Q19 + Q20 + Q21 + Q22
  F4 =~ Q1 + Q17
  F5 =~ Q6 + Q14 + Q15 + Q16

#Two models for discriminant validity testing, this resembles constraining with a cutoff of .9
fits.dv.con <- gen_fit(
  mod1 = mod,
  x = bb1992,
  rep = 10,
  dv = TRUE,
  dv.factors = c("F4", "F5"),
  dv.cutoff = .9
)
recommend_dv(fits.dv.con)

#Two models for discriminant validity testing, this resembles merging.
fits.dv.merge <- gen_fit(
  mod1 = mod,
  x = bb1992,
  rep = 10,
  dv = TRUE,
  dv.factors = c("F4", "F5"),
  merge.mod = TRUE
)
recommend_dv(fits.dv.merge)
```
Index

* datasets
 bb1992, 2

bb1992, 2
flex_co, 3
gen_fit, 5
index_guess, 8
pop_mod, 9
recommend, 10
recommend_dv, 11