Canadian climate: function-on-function regression

Sarah Brockhaus *

Institut für Statistik,
Ludwig-Maximilians-Universität München,
Ludwigstraße 33, D-80539 München, Germany.

The results of this vignette together with more explanations can be found in Brockhaus et al. (2015).

1 Descriptive analysis

Load FDboost package and write useful functions for plotting.
Load data and choose the time-interval.

```R
# load(“viscosity.RData”)
data(viscosity)
str(viscosity)
```

List of 7

- `$visAll`: 'AsIs' num [1:64, 1:132] 41.5 25.2 63.7 35.6 17.8 12.3 38.6 22 18.2 36 ...
- `$timeAll`: num [1:132] 11 13 15 17 19 21 23 25 27 29 ...
- `$T_C`: Factor w/ 2 levels "low","high": 1 1 2 2 2 2 1 1 1 1 ...
- `$T_A`: Factor w/ 2 levels "low","high": 1 1 1 1 1 1 1 1 1 1 ...
- `$T_B`: Factor w/ 2 levels "low","high": 1 1 1 1 1 1 2 2 ...
- `$rspeed`: Factor w/ 2 levels "low","high": 1 2 1 2 1 2 1 2 ...
- `$mflow`: Factor w/ 2 levels "low","high": 2 1 2 1 2 1 2 2 1 ...

```R
## set time-interval that should be modeled
interval <- "509"

## model time until "interval"
end <- which(viscosity$timeAll==as.numeric(interval))
viscosity$vis <- log(viscosity$visAll[,1:end])
viscosity$time <- viscosity$timeAll[1:end]

## set up interactions by hand
vars <- c("T_C", "T_A", "T_B", "rspeed", "mflow")
for(v in 1:length(vars)){
  for(w in v:length(vars))
    viscosity[[paste(vars[v], vars[w], sep="_")]] <- factor(
      (viscosity[[vars[v]]]:viscosity[[vars[w]]]=="high:high")*1)
}

#str(viscosity)
names(viscosity)
```

[*E-mail: sarah.brockhaus@stat.uni-muenchen.de*]
Figure 1: Viscosity over time with temperature of tools (T_C) and temperature of resin (T_A) color coded.

\begin{verbatim}
[9] "time" "T_C_T_C" "T_C_T_A" "T_C_T_B"
[13] "T_C_rspeed" "T_C_mflow" "T_A_T_A" "T_A_T_B"
[17] "T_A_rspeed" "T_A_mflow" "T_B_T_B" "T_B_rspeed"
[21] "T_B_mflow" "rspeed_rspeed" "rspeed_mflow" "mflow_mflow"

Plot the data

par(mfrow=c(1,1), mar=c(3, 3, 1, 2))#, cex=1.5)
mycol <- gray(seq(0, 0.8, l=4), alpha=0.8)[c(1,3,2,4)]
int_T_CA <- with(viscosity, paste(T_C,"-", T_A, sep=""))
with(viscosity, funplotLogscale(time, vis,
 col=getCol2(int_T_CA, cols=mycol[4:1])))
legend("bottomright", fill=mycol,
 legend=c("T_C low, T_A low", "T_C low, T_A high",
 "T_C high, T_A low", "T_C high, T_A high"), cex = 0.8)
\end{verbatim}
2 Model with all main effects and interactions of first order

Fit model with all main effects and interactions.

```r
set.seed(1911)
modAll <- FDboost(vis ~ 1
  + bols(T_C) # main effects
  + bols(T_A)
  + bols(T_B)
  + bols(rspeed)
  + bols(mflow)
  + bols(T_C_T_A) # interactions T_WZ
  + bols(T_C_T_B)
  + bols(T_C_rspeed)
  + bols(T_C_mflow)
  + bols(T_A_T_B) # interactions T_A
  + bols(T_A_rspeed)
  + bols(T_A_mflow)
  + bols(T_B_rspeed) # interactions T_B
  + bols(T_B_mflow)
  + bols(rspeed_mflow), # interactions rspeed
timeformula="bbs(time, lambda=100),
numInt="Riemann", family=QuantReg(),
offset=NULL, offset_control = o_control(k_min = 10),
data=viscosity, check0=FALSE,
control=boost_control(mstop = 100, nu = 0.2))
```

Get optimal stopping iteration using bootstrap over curves (better use multiple cores).

```r
set.seed(1911)
folds <- cv(weights=rep(1, modAll$ydim[1]), type="bootstrap", B=10)
cvmAll <- suppressWarnings(validateFDboost(modAll, folds = folds,
   getCoefCV=FALSE,
   grid=seq(10, 500, by=10), mc.cores = 1))
mstop(cvmAll) # 180
# modAll <- modAll[mstop(cvmAll)]
# summary(modAll)
# cvmAll
```

Do model selection using stability selection (better use multiple cores).

```r
set.seed(1911)
folds <- cvMa(ydim=modAll$ydim, weights=model.weights(modAll),
type = "subsampling", B = 50)

stabsel_parameters(q=5, PFER=2, p=16, sampling.type = "SS")
sel1 <- stabsel(modAll, q=5, PFER=2, folds=folds, grid=1:100,
    sampling.type="SS", mc.cores = 1)

sel1
# selects effects T_C, T_A, T_C_T_A
```

The effects T_A, T_C and their interaction are selected into the model.
3 Model with selected effects

Estimate the model containing only the selected effects \(T_C, T_A, \) and their interaction.

```r
set.seed(1911)
mod1 <- FDboost(vis ~ 1 + bols(T_C) + bols(T_A) + bols(T_C_T_A),
    timeformula = "bbs(time, lambda = 100),
    numInt = "Riemann", family = QuantReg(), check0 = FALSE,
    offset = NULL, offset_control = o_control(k_min = 10),
    data = viscosity, control = boost_control(mstop = 200, nu = 0.2))
```

Find the optimal stopping iteration (better use multiple cores).

```r
set.seed(1911)
folds <- cv(weights = rep(1, mod1$ydim[1]), type = "bootstrap", B = 10)
cvm1 <- validateFDboost(mod1, folds = folds, getCoefCV = FALSE,
    grid = seq(10, 500, by = 10), mc.cores = 1)
mstop(cvm1) # 430
mod1 <- mod1[mstop(cvm1)]
# summary(mod1)
```

Center all coefficient functions at each timepoint, yielding the following model:

\[
\text{median}\{\log(\text{vis}_i(t))|x_i\} = \beta_0(t) + T_{Ai}\beta_A(t) + T_{Ci}\beta_C(t) + T_{ACi}\beta_{AC}(t),
\]

where \(\text{vis}_i(t)\) is the viscosity of observation \(i\) at time \(t\), \(T_{Ai}\) and \(T_{Ci}\) are the temperatures of resin and of tools, respectively, each coded as -1 for the lower and 1 for the higher temperature. The interaction \(T_{ACi}\) is 1 if both temperatures are in the higher category and -1 otherwise.

```r
# set up dataframe containing systematically all variable combinations
newdata <- list(T_C=factor(c(1,1,2,2), levels=1:2, labels=c("low","high")) ,
                T_A=factor(c(1, 2, 1, 2), levels=1:2, labels=c("low","high")),
                T_C_T_A=factor(c(1, 1, 1, 2)), time=mod1$yind)
intercept <- 0
## effect of T_C
pred2 <- predict(mod1, which=2, newdata=newdata)
intercept <- intercept + colMeans(pred2)
pred2 <- t(t(pred2)-intercept)

## effect of T_A
pred3 <- predict(mod1, which=3, newdata=newdata)
intercept <- intercept + colMeans(pred3)
pred3 <- t(t(pred3)-colMeans(pred3))

## interaction effect T_C_T_A
pred4 <- predict(mod1, which=4, newdata=newdata)
intercept <- intercept + colMeans(pred4[3:4,])
pred4 <- t(t(pred4)-colMeans(pred4[3:4,]))
```

Plot the centered coefficient functions.
Figure 2: Viscosity over time and estimated coefficient functions. On the left hand side the viscosity measures are plotted over time with temperature of tools (T_C) and temperature of resin (T_A) color-coded. On the right hand side the estimated coefficient functions are plotted.

```r
lines(mod1$yind, pred4[4,,] col=mycol[3], lty=4, lwd=2)
legend("topright", lty=2:4, lwd=2, col=mycol,
legend=c("effect T_C high", "effect T_A high", "effect T_C, T_A high"))
```

References