Package `FGalgorithm`

February 19, 2015

Version 1.0
Date 2013-06-04
Title Flury and Gautschi algorithms
Author Dariush Najzarzadeh
Maintainer Dariush Najzarzadeh `<D_Najarzadeh@sbu.ac.ir>`
Description This is a package for implementation of Flury-Gautschi algorithms.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-04 11:04:39

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGalgorithm-package</td>
<td>1</td>
</tr>
<tr>
<td>FGalgorithm</td>
<td>3</td>
</tr>
</tbody>
</table>

Index 4

FGalgorithm-package
Execute the Flury and Gautschi diagonalisation algorithm, which tries to simultaneously diagonalize a set of symmetric positive definite matrices.

Description

The minimization of the objective function

\[
\Phi(B) = \prod_{i=1}^{k} \left[\frac{\det(\text{diag}(B'A_iB))}{\det(B'A_iB)} \right]^{n_i}
\]
is required for a potpourri of statistical problems. This algorithm (Flury & Gautschi, 1984) is
designed to find an orthogonal matrix B_0 of dimension $p \times p$ such that

$$\Phi(B) \geq \Phi(B_0)$$

for all orthogonal matrices B. The matrices A_1, \ldots, A_k are positive-definite and are usually sample
covariance matrices and n_is are positive real numbers.

It can be shown (Flury, 1983) that if $B_0 = [b_1, b_2, \ldots, b_p]$, then the following system of equations holds:

$$b_j' \left[\sum_{i=1}^{k} n_i \frac{\lambda_{ii} - \lambda_{ij}}{\lambda_{ii} \lambda_{ij}} A_i \right] b_j = 0 \quad (l, j = 1, \ldots, p; l \neq j)$$

where

$$\lambda_{ih} = b_h' A_i b_h \quad (i = 1, \ldots, k; h = 1, \ldots, p).$$

In other words, Flury and Gautschi algorithms find the solution B_0 of the above system of equations.
Also, this algorithm can be used to find the maximum likelihood estimates of common principal
components in k groups (Flury, 1984).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>FGalgorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2012-11-14</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>

Author(s)

Dariush Najarzadeh

Maintainer: Dariush Najarzadeh <D_Najarzadeh@sbu.ac.ir>

References

Flury, B. N. (1983), "A generalization of principal component analysis to k groups", Technical
Report No. 83-14, Dept. of Statistics, Purdue University.

Association, 79(388), 892-898.

several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific
FGalgorithm

Flury and Gautschi algorithms

Description

Find the orthogonal matrix B_0 such that minimize $\Phi(B)$.

Usage

`FGalgorithm(eF, eG, p, n, A)`

Arguments

- `eF, eG`: small positive constants controlling error terms.
- `p`: dimensionality.
- `n`: a numeric vector containing the positive integers.
- `A`: a list of length k of positive definite symmetric matrices.

Value

Orthogonal matrix B_0 such that minimize Φ with respect to the group of orthogonal matrices B.

Author(s)

Dariush Najarzadeh

References

Examples

```r
n<-numeric(3)
n[[1]]<-50
n[[2]]<-50
n[[3]]<-50
A<-vector("list",length=3)
A[[1]]<-var(iris[51:100,1:4])
A[[2]]<-var(iris[101:150,1:4])
A[[3]]<-var(iris[1:50,1:4])
B0<-FGalgorithm(1e-5,1e-5,4,n,A)
B0
```
Index

*Topic Flury and Gautschi algorithm
 FGalgorithm, 3
 FGalgorithm-package, 1

FGalgorithm, 3
FGalgorithm-package, 1