Package ‘FLORAL’

May 11, 2023

Type Package
Title Fit Log-Ratio Lasso Regression for Compositional Data
Version 0.1.0
Date 2023-05-09
Description Log-ratio Lasso regression for continuous, binary, and survival outcomes with compositional features. See Fei and others (2023) <doi:10.1101/2023.05.02.538599>.
License GPL (>= 3)
URL https://vdblab.github.io/FLORAL/
BugReports https://github.com/vdblab/FLORAL/issues
Depends R (>= 3.5.0)
biocViews
Imports Rcpp (>= 1.0.9), stats, survival, ggplot2, survcomp, reshape, dplyr, glmnet, caret, grDevices, utils, mvtnorm
LinkingTo Rcpp, RcppArmadillo, RcppProgress
RoxygenNote 7.2.3
Encoding UTF-8
Suggests covr, knitr, rmarkdown, spelling, testthat (>= 3.0.0), patchwork
Language en-US
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation yes
Author Teng Fei [aut, cre, cph] (<https://orcid.org/0000-0001-7888-1715>), Tyler Funnell [aut] (<https://orcid.org/0000-0003-1612-5644>), Nicholas Waters [aut] (<https://orcid.org/0000-0002-9035-2143>), Sandeep Raj [aut] (<https://orcid.org/0000-0003-4629-0528>)
Maintainer Teng Fei <feit1@mskcc.org>
Repository CRAN
Date/Publication 2023-05-11 08:50:22 UTC
R topics documented:

- FLORAL .. 2
- simu ... 4

Index .. 6

FLORAL

Fit Log-ratio lasso regression for compositional covariates

Description

Conduct log-ratio lasso regression for continuous, binary and survival outcomes.

Usage

```r
FLORAL(
  x,
  y,
  family = "gaussian",
  longitudinal = FALSE,
  id = NULL,
  tobs = NULL,
  failcode = NULL,
  length.lambda = 100,
  lambda.min.ratio = NULL,
  mu = 1,
  ncv = 5,
  intercept = FALSE,
  foldid = NULL,
  step2 = TRUE,
  progress = TRUE,
  plot = TRUE
)
```

Arguments

- `x`: Count data matrix, where rows specify subjects and columns specify features. If `x` contains longitudinal data, the rows must be sorted in the same order of the subject IDs used in `y`.
- `y`: Outcome. For a continuous or binary outcome, `y` is a vector. For survival outcome, `y` is a Surv object.
- `family`: Available options are gaussian, binomial, cox, finegray.
- `longitudinal`: TRUE or FALSE, indicating whether longitudinal data matrix is specified for input `x`. (Still under development. Please use with caution)
- `id`: If `longitudinal` is TRUE, `id` specifies subject IDs corresponding to the rows of input `x`.
tobs If `longitudinal` is TRUE, tobs specifies time points corresponding to the rows of input x.

failcode If `family = finegray`, failcode specifies the failure type of interest. This must be a positive integer.

length.lambda Number of penalty parameters used in the path

lambda.min.ratio Ratio between the minimum and maximum choice of lambda. Default is NULL, where the ratio is chosen as 1e-2.

mu Value of penalty for the augmented Lagrangian

ncv Number of cross-validation runs. Use NULL if cross-validation is not wanted.

intercept TRUE or FALSE, indicating whether an intercept should be estimated.

foldid A vector of fold indicator. Default is NULL.

step2 TRUE or FALSE, indicating whether a second-stage feature selection for specific ratios should be performed for the features selected by the main lasso algorithm. Will only be performed if cross validation is enabled.

progress TRUE or FALSE, indicating whether printing progress bar as the algorithm runs.

plot TRUE or FALSE, indicating whether returning plots of model fitting.

Value

A list with path-specific estimates (beta), path (lambda), and others. Details can be found in README.md.

Author(s)

Teng Fei. Email: feit1@mskcc.org

References

Examples

```r
set.seed(23420)

# Continuous outcome
dat <- simu(n=50, p=30, model="linear")
fit <- FLORAL(dat$xcount, dat$y, family="gaussian", progress=FALSE, step2=TRUE)
```
Simulate data following log-ratio model

Description
Simulate a dataset from log-ratio model.

Usage
```r
simu(
  n = 100,
  p = 200,
  model = "linear",
  weak = 4,
  strong = 6,
  weaksize = 0.125,
  strongsize = 0.25,
  pct.sparsity = 0.5,
  rho = 0,
  intercept = FALSE
)
```

Arguments

- `n`: An integer of sample size
- `p`: An integer of number of features (taxa).
- `model`: Type of models associated with outcome variable, can be "linear", "binomial", "cox", or "finegray".
- `weak`: Number of features with weak effect size.
- `strong`: Number of features with strong effect size.
- `weaksize`: Actual effect size for weak effect size. Must be positive.
- `strongsize`: Actual effect size for strong effect size. Must be positive.
- `pct.sparsity`: Percentage of zero counts for each sample.
- `rho`: Parameter controlling the correlated structure between taxa. Ranges between 0 and 1.
- `intercept`: Boolean. If TRUE, then a random intercept will be generated in the model. Only works for linear or binomial models.

Value
A list with simulated count matrix `xcount`, log1p-transformed count matrix `x`, outcome (continuous `y`, continuous centered `y0`, binary `y`, or survival `t`, `d`), true coefficient vector `beta`, list of non-zero features `idx`, value of intercept `intercept` (if applicable).
`simu`

Author(s)

Teng Fei. Email: feit1@mskcc.org

Examples

```r
set.seed(23420)
dat <- simu(n=50,p=30,model="linear")
```
Index

FLORAL, 2

simu, 4