R Package FME: Inverse Modelling, Sensitivity, Monte Carlo – Applied to a Dynamic Simulation Model

Karline Soetaert
NIOZ Yerseke
The Netherlands

Abstract

This vignette (vignette("FMEdyna")) applies the functions to a dynamic simulation model, solved with integration routines from package deSolve. A similar vignette, (vignette("FMEsteady")), applies FME to a partial differential equation, solved with a steady-state solver from package rootSolve. A third vignette (vignette("FMEother")), applies the functions to a simple nonlinear model. vignette("FMEmcmc") tests the Markov chain Monte Carlo (MCMC) implementation.

Keywords: dynamic simulation models, differential equations, fitting, sensitivity, Monte Carlo, identifiability, R.

1. Introduction

R-package FME contains part of the functions present in the software environment FEMME (Soetaert, deClippele, and Herman 2002), a Flexible Environment for Mathematically Modelling the Environment. FEMME was written in FORTRAN. FME is – obviously – written in R.

Although FME can work with many types of functions, it is mainly meant to be used with models that are written as (a system of) differential equations (ordinary or partial), which are solved either with routines from package deSolve (Soetaert, Petzoldt, and Setzer 2010), which integrate the model in time, or from package rootSolve (Soetaert 2009) which estimate steady-state conditions. With FME it is possible to:

- perform local and global sensitivity analysis (Brun, Reichert, and Kunsch 2001; Soetaert and Herman 2009),
- perform parameter identifiability analysis (Brun et al. 2001),
- fit a model to data,
- run a Markov chain Monte Carlo (MCMC, Haario, Laine, Mira, and Saksman 2006).
Most of these functions have suitable methods for printing, visualising output etc. In addition, there are functions to generate parameter combinations corresponding to a certain distribution. In this document a – very quick – survey of the functionality is given, based on a simple model from (Soetaert and Herman 2009).

2. The example model

The example model describes growth of bacteria (BACT) on a substrate (SUB) in a closed vessel. The model equations are:

\[
\frac{d\text{Bact}}{dt} = g_{max} \cdot \text{eff} \cdot \frac{\text{Sub}}{\text{Sub} + ks} \cdot \text{Bact} - d \cdot \text{Bact} - r_B \cdot \text{Bact}
\]

\[
\frac{d\text{Sub}}{dt} = -g_{max} \cdot \frac{\text{Sub}}{\text{Sub} + ks} \cdot \text{Bact} + d \cdot \text{Bact}
\]

where the first, second and third term of the rate of change of Bact is growth of bacteria, death and respiration respectively. In R, this model is implemented and solved as follows (see help pages of deSolve). First the parameters are defined, as a list (a vector would also do):

\[
\text{pars} \leftarrow \text{list}(gmax = 0.5, \text{eff} = 0.5, \text{ks} = 0.5, \text{rB} = 0.01, \text{dB} = 0.01)
\]

The model function solveBact takes as input the parameters and the time sequence at which output is wanted. Within this function, derivs is defined, which is the derivative function, called at each time step by the solver. It takes as input the current time (t), the current values of the state variables (state) and the parameters (pars). It returns the rate of change of the state variables, packed as a list. Also within function solveBact, the state variables are given an initial condition (state) and the model is solved by integration, using function ode from package deSolve. The results of the integration are returned, packed as a data.frame.

\[
\text{solveBact} \leftarrow \text{function}(\text{pars}, \text{times}=\text{seq}(0,50,\text{by}=0.5)) \{
+ \text{derivs} \leftarrow \text{function}(t, \text{state}, \text{pars}) \{ \# \text{returns rate of change}
+ \quad \text{with(\text{as.list(\text{c(state, pars)}))}, \{ \text{returns rate of change}
+ \quad + \text{dBact} \leftarrow g_{max} \cdot \text{eff} \cdot \text{Sub}/(\text{Sub} + ks) \cdot \text{Bact} - d \cdot \text{Bact} - r_B \cdot \text{Bact}
+ \quad + \text{dSub} \leftarrow -g_{max} \cdot \text{Sub}/(\text{Sub} + ks) \cdot \text{Bact} + d \cdot \text{Bact}
+ \quad + \text{return(\text{list(\text{c(dBact, dSub), TOC = Bact + Sub}}))}
+ \quad \}
+ \}
+ \}
+ \text{state} \leftarrow \text{c(\text{Bact} = 0.1, \text{Sub} = 100)}
+ \quad \# \text{ode solves the model by integration...}
+ \quad \text{return(\text{ode(\text{y = state, times = times, func = derivs, pars = pars}}))}
+ \}
\]

The model is then solved by calling solveBact with the default parameters:
3. Global sensitivity

In global sensitivity analysis, certain parameters are changed over a large range, and the effect on certain model output variables assessed. In FME this is done via function `sensRange`.

First the sensitivity parameters are defined and a distribution is assigned; here we specify the minimum and maximum values of three parameters in a `data.frame`:

```r
> parRanges <- data.frame(min = c(0.4, 0.4, 0.0), max = c(0.6, 0.6, 0.02))
> rownames(parRanges) <- c("gmax", "eff", "rB")
> parRanges

  min max
gmax 0.4 0.60
eff 0.4 0.60
rB 0.0 0.02
```

Then we estimate the sensitivity to one parameter, `rB` (parameter 3), varying its values according to a regular grid (`dist=grid`). The effect of that on sensitivity variables `Bact` and `Sub` are estimated. To do this, the model is run 100 times (`num=100`). The `system.time` is printed (in seconds):
> tout <- 0:50
> print(system.time(
+ sR <- sensRange(func = solveBact, parms = pars, dist = "grid",
+ sensvar = c("Bact", "Sub"), parRange = parRanges[3,], num = 50)
+))

user system elapsed
0.744 0.000 0.745

> head(summary(sR))

<table>
<thead>
<tr>
<th>x</th>
<th>Mean</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
<th>q05</th>
<th>q25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bact0</td>
<td>0.0</td>
<td>0.10</td>
<td>0.000000</td>
<td>0.100000</td>
<td>0.100000</td>
<td>0.100000</td>
</tr>
<tr>
<td>Bact0.5</td>
<td>0.5</td>
<td>0.12</td>
<td>0.112194</td>
<td>0.112689</td>
<td>0.115597</td>
<td>0.116155</td>
</tr>
<tr>
<td>Bact1</td>
<td>1.0</td>
<td>0.12</td>
<td>0.125706</td>
<td>0.126967</td>
<td>0.124532</td>
<td>0.125077</td>
</tr>
<tr>
<td>Bact1.5</td>
<td>1.5</td>
<td>0.14</td>
<td>0.140942</td>
<td>0.143066</td>
<td>0.138834</td>
<td>0.139046</td>
</tr>
<tr>
<td>Bact2</td>
<td>2.0</td>
<td>0.15</td>
<td>0.158026</td>
<td>0.161207</td>
<td>0.154886</td>
<td>0.155196</td>
</tr>
<tr>
<td>Bact2.5</td>
<td>2.5</td>
<td>0.18</td>
<td>0.177181</td>
<td>0.181647</td>
<td>0.172788</td>
<td>0.173221</td>
</tr>
</tbody>
</table>

The results are represented as a data.frame, containing summary information of the value of the sensitivity variable (var) at each time step (x). It is relatively simple to plot the ranges, either as min±sd or using quantiles:

> summ.sR <- summary(sR)
> par(mfrow=c(2, 2))
> plot(summ.sR, xlab = "time, hour", ylab = "molC/m3",
+ legpos = "topright", mfrow = NULL)
> plot(summ.sR, xlab = "time, hour", ylab = "molC/m3", mfrow = NULL,
+ quant = TRUE, col = c("lightblue", "darkblue"), legpos = "topright")
> mtext(outer = TRUE, line = -1.5, side = 3, "Sensitivity to rB", cex = 1.25)
> par(mfrow = c(1, 1))

Sensitivity ranges can also be estimated for a combination of parameters. Here we use all 3 parameters, and select the latin hypercube sampling algorithm.

> Sens2 <- summary(sensRange(func = solveBact, parms = pars,
+ dist = "latin", sensvar = "Bact", parRange = parRanges, num = 100))

> plot(Sens2, main = "Sensitivity gmax,eff,rB", xlab = "time, hour",
+ ylab = "molC/m3")
Figure 2: Sensitivity range for one parameter - see text for R-code

Figure 3: Sensitivity range for a combination of parameters - see text for R-code
4. Local sensitivity

In local sensitivity, the effect of a parameter value in a very small region near its nominal value is estimated. The methods implemented in FME are based on Brun et al. (2001) which should be consulted for details. They are based on so-called “sensitivity functions”.

4.1. Sensitivity functions

Sensitivity functions are generated with sensFun, and estimate the effect of a selection of parameters (here all parameters are selected) on a selection of variables (here only Bact).

```r
> SnsBact <- sensFun(func = solveBact, parms = pars, + sensvar = "Bact", varscale = 1)
> head(SnsBact)
```

They can easily be plotted (Fig. 3):

```r
> plot(SnsBact)
```

4.2. Univariate sensitivity

Based on the sensitivity functions, several summaries are generated, which allow to rank the parameters based on their influence on the selected variables.
> summary(SnsBact)

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>scale</th>
<th>L1</th>
<th>L2</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>gmax</td>
<td>0.50</td>
<td>0.50</td>
<td>29.51</td>
<td>58.88</td>
<td>16.2</td>
<td>-17.1</td>
<td>266.360</td>
<td>101</td>
</tr>
<tr>
<td>eff</td>
<td>0.50</td>
<td>0.50</td>
<td>37.12</td>
<td>62.43</td>
<td>37.1</td>
<td>0.0</td>
<td>268.408</td>
<td>101</td>
</tr>
<tr>
<td>ks</td>
<td>0.50</td>
<td>0.50</td>
<td>0.17</td>
<td>0.37</td>
<td>-0.1</td>
<td>-1.8</td>
<td>0.097</td>
<td>101</td>
</tr>
<tr>
<td>rB</td>
<td>0.01</td>
<td>0.01</td>
<td>3.47</td>
<td>4.65</td>
<td>-3.5</td>
<td>-10.8</td>
<td>0.000</td>
<td>101</td>
</tr>
<tr>
<td>dB</td>
<td>0.01</td>
<td>0.01</td>
<td>2.06</td>
<td>2.98</td>
<td>-2.1</td>
<td>-10.8</td>
<td>0.000</td>
<td>101</td>
</tr>
</tbody>
</table>

Here

- L1 is the L1-norm, \(\sum |S_{ij}|/n\)
- L2 is the L2-norm, \(\sqrt{\sum(S_{ij}^2)/n}\)
- Mean: the mean of the sensitivity functions
- Min: the minimal value of the sensitivity functions
- Max: the maximal value of the sensitivity functions

Sensitivity analysis can also be performed on several variables:

> summary(sensFun(solveBact, pars, varscale = 1), var = TRUE)

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>scale</th>
<th>L1</th>
<th>L2</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>gmax1</td>
<td>0.50</td>
<td>0.50</td>
<td>29.51</td>
<td>58.88</td>
<td>16.2</td>
<td>-1.7e+01</td>
<td>2.7e+02</td>
<td>101</td>
</tr>
<tr>
<td>gmax2</td>
<td>0.50</td>
<td>0.50</td>
<td>48.40</td>
<td>122.95</td>
<td>-48.40</td>
<td>-5.6e+02</td>
<td>0.0e+00</td>
<td>101</td>
</tr>
<tr>
<td>gmax3</td>
<td>0.50</td>
<td>0.50</td>
<td>32.16</td>
<td>65.66</td>
<td>-32.16</td>
<td>-3.0e+02</td>
<td>0.0e+00</td>
<td>101</td>
</tr>
<tr>
<td>eff1</td>
<td>0.50</td>
<td>0.50</td>
<td>37.12</td>
<td>62.43</td>
<td>37.12</td>
<td>0.0e+00</td>
<td>2.7e+02</td>
<td>101</td>
</tr>
<tr>
<td>eff2</td>
<td>0.50</td>
<td>0.50</td>
<td>39.64</td>
<td>102.50</td>
<td>-39.64</td>
<td>-4.8e+02</td>
<td>6.9e-06</td>
<td>101</td>
</tr>
<tr>
<td>eff3</td>
<td>0.50</td>
<td>0.50</td>
<td>30.39</td>
<td>48.31</td>
<td>-2.52</td>
<td>-2.1e+02</td>
<td>3.4e+01</td>
<td>101</td>
</tr>
<tr>
<td>ks1</td>
<td>0.50</td>
<td>0.50</td>
<td>0.17</td>
<td>0.37</td>
<td>-0.10</td>
<td>-1.8e+00</td>
<td>9.7e-02</td>
<td>101</td>
</tr>
<tr>
<td>ks2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.29</td>
<td>0.77</td>
<td>0.29</td>
<td>0.0e+00</td>
<td>3.8e+00</td>
<td>101</td>
</tr>
<tr>
<td>ks3</td>
<td>0.50</td>
<td>0.50</td>
<td>0.19</td>
<td>0.41</td>
<td>0.19</td>
<td>0.0e+00</td>
<td>2.0e+00</td>
<td>101</td>
</tr>
<tr>
<td>rB1</td>
<td>0.01</td>
<td>0.01</td>
<td>3.47</td>
<td>4.65</td>
<td>-3.47</td>
<td>-1.1e+01</td>
<td>0.0e+00</td>
<td>101</td>
</tr>
<tr>
<td>rB2</td>
<td>0.01</td>
<td>0.01</td>
<td>1.59</td>
<td>2.86</td>
<td>1.59</td>
<td>-2.8e-07</td>
<td>1.9e+01</td>
<td>101</td>
</tr>
<tr>
<td>rB3</td>
<td>0.01</td>
<td>0.01</td>
<td>3.19</td>
<td>4.37</td>
<td>-3.19</td>
<td>-8.6e+00</td>
<td>8.3e+00</td>
<td>101</td>
</tr>
<tr>
<td>dB1</td>
<td>0.01</td>
<td>0.01</td>
<td>2.06</td>
<td>2.98</td>
<td>-2.06</td>
<td>-1.1e+01</td>
<td>0.0e+00</td>
<td>101</td>
</tr>
<tr>
<td>dB2</td>
<td>0.01</td>
<td>0.01</td>
<td>1.78</td>
<td>4.54</td>
<td>1.78</td>
<td>0.0e+00</td>
<td>2.1e+01</td>
<td>101</td>
</tr>
<tr>
<td>dB3</td>
<td>0.01</td>
<td>0.01</td>
<td>1.97</td>
<td>2.84</td>
<td>-0.29</td>
<td>-4.1e+00</td>
<td>1.0e+01</td>
<td>101</td>
</tr>
</tbody>
</table>

4.3. Bivariate sensitivity

The pairwise relationships in parameter sensitivity is easily assessed by plotting the sensitivity functions using R-function `pairs`, and by calculating the correlation.

> cor(SnsBact[, -(1:2)])
4.4. Monte Carlo runs

Function \texttt{modCRL} runs a Monte Carlo simulation, outputting single variables. This is in contrast to \texttt{sensRange} which outputs vectors of variables, e.g. a time-sequence, or a spatially-dependent variable.

It can be used to test what-if scenarios. Here it is used to calculate the final concentration of bacteria and substrate as a function of the maximal growth rate.
Monte Carlo methods can also be used to see how parameter uncertainties propagate, i.e. to derive the distribution of output variables as a function of parameter distribution. Here the effect of the parameters g_{max} and eff on final bacterial concentration is assessed. The parameter values are generated according to a multi-normal distribution; they are positively correlated (with a correlation = 0.63).

```r
> SF <- function (pars) {
+   out <- solveBact(pars)
+   return(out[nrow(out), 2:3])
+ }
> CRL <- modCRL(func = SF, parms = pars, parRange = parRanges[1,])
> plot(CRL)
```

> CRL2 <- modCRL(func = SF, parms = pars, parMean = c(gmax = 0.5, eff = 0.7),
+ parCovar = matrix(nr = 2, data = c(0.02, 0.02, 0.02, 0.05)),
+ dist = "norm", sensvar = "Bact", num = 150)

Figure 6: Monte carlo analysis - see text for R-code

```
5. Multivariate sensitivity analysis

Based on the sensitivity functions of model variables to selection of parameters, function `collin` calculates the collinearity or identifiability of sets of parameters.

```r
> Coll <- collin(SnsBact)
> Coll

 gmax eff ks rB dB N collinearity
1 1 1 0 0 0 2 2.8
2 1 0 1 1 0 2 9.5
3 1 0 0 1 0 2 1.3
4 1 0 0 0 1 2 1.8
```

Figure 7: Multivariate Monte Carlo analysis - see text for R-code

```r
> pairs(CRL2)
```
The higher the value, the larger the (approximate) linear dependence. This function is mainly useful to derive suitable parameter sets that can be calibrated based on data (see next section).

6. Fitting the model to data

6.1. Data structures

There are two modes of data input:

- **data table (long) format**: this is a two to four column data.frame that contains the **name** of the observed variable (always the FIRST column), the (optional) **value** of the independent variable (default = "time"), the **value of the observation** and the (optional) **value of the error**.
- **crosstable format**: this is a matrix, where each column denotes one dependent (or independent) variable; the column name is the name of the observed variable.

As an example of both formats consider the data, called `Dat` consisting of two observed variables, called "Obs1" and "Obs2", both containing two observations, at time 1 and 2:

<table>
<thead>
<tr>
<th>name</th>
<th>time</th>
<th>val</th>
<th>err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs1</td>
<td>1</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Obs1</td>
<td>2</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>Obs2</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Obs2</td>
<td>2</td>
<td>2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

for the long format and

<table>
<thead>
<tr>
<th>time</th>
<th>Obs1</th>
<th>Obs2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>2</td>
</tr>
</tbody>
</table>

for the crosstable format. Note, that in the latter case it is not possible to provide separate errors per data point.

### 6.2. The model cost function

**FME function** `modCost` estimates the “model cost”, which the sum of (weighted) squared residuals of the model versus the data. This function is central to parameter identifiability analysis, model fitting or running a Markov chain Monte Carlo.

Assume the following model output (in a matrix or `data.frame` called `Mod`:

<table>
<thead>
<tr>
<th>time</th>
<th>Obs1</th>
<th>Obs2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Then the `modCost` will give:

```r
> Dat<- data.frame(name = c("Obs1", "Obs1", "Obs2", "Obs2"),
+ time = c(1, 2, 1, 2), val = c(50, 150, 1, 2),
+ err = c(5, 15, 0.1, 0.2))
> Mod <- data.frame(time = 0:3, Obs1 = rep(4, 4), Obs2 = 1:4)
> modCost(mod = Mod, obs = Dat, y = "val")

$model
[1] 23434

$minlogp```
[1] Inf

$name scale N SSR.unweighted SSR.unscaled SSR
1 Obs1 1 2 23432 23432 23432
2 Obs2 1 2 2 2 2

$residuals
name x obs mod weight res.unweighted res
1 Obs1 1 50 4 1 -46 -46
2 Obs1 2 150 4 1 -146 -146
3 Obs2 1 1 2 1 1 1
4 Obs2 2 2 3 1 1 1

attr(,"class")
[1] "modCost"
in case the residuals are not weighed and

> modCost(mod = Mod, obs = Dat, y = "val", err = "err")

$model
[1] 304.3778

$minlogp
[1] 156.2701

$name scale N SSR.unweighted SSR.unscaled SSR
1 Obs1 1 2 23432 179.3778 179.3778
2 Obs2 1 2 2 125.0000 125.0000

$residuals
name x obs mod weight res.unweighted res
1 Obs1 1 50 4 0.20000000 -46 -9.200000
2 Obs1 2 150 4 0.06666667 -146 -9.733333
3 Obs2 1 1 2 10.00000000 1 10.000000
4 Obs2 2 2 3 5.00000000 1 5.000000

attr(,"class")
[1] "modCost"
in case the residuals are weighed by 1/error.

6.3. Model fitting
Assume the following data set (in crosstable (wide) format):
> Data <- matrix (nc=2,byrow=2,data=
+ c(2, 0.14, 4, 0.21, 6, 0.31, 8, 0.40,
+ 10, 0.69, 12, 0.97, 14, 1.42, 16, 2.0,
+ 18, 3.0, 20, 4.5, 22, 6.5, 24, 9.5,
+ 26, 13.5, 28, 20.5, 30, 29 , 35, 65, 40, 61)
+)
> colnames(Data) <- c("time", "Bact")
> head(Data)

 time Bact
[1,] 2 0.14
[2,] 4 0.21
[3,] 6 0.31
[4,] 8 0.40
[5,] 10 0.69
[6,] 12 0.97

and assume that we want to fit the model parameters \texttt{gmax} and \texttt{eff} to these data.

We first define an objective function that returns the residuals of the model versus the data, as estimated by \texttt{modcost}. Input to the function are the current values of the parameters that need to be finetuned and their names (or position in \texttt{par}).

```r
> Objective <- function(x, parset = names(x)) {
+   pars[parset] <- x
+   tout <- seq(0, 50, by = 0.5)
+   ## output times
+   out <- solveBact(pars, tout)
+   ## Model cost
+   return(modCost(obs = Data, model = out))
+ }
```

First it is instructive to establish which parameters can be identified based on the data set. We assess that by means of the identifiability function \texttt{collin}, selecting only the output variables at the instances when there is an observation.

```r
> Coll <- collin(sF <- sensFun(func = Objective, parms = pars, varscale = 1))
> Coll

  gmax eff ks rB dB N collinearity
1     1    1   1  0  0  0  2    4.5
2     1    0   1  0  0  2  21.1
3     1    0   0  1  0  2   2.1
4     1    0   0  0  1  2   3.7
5     0    1   1  0  0  2   4.5
6     0    1   0  1  0  2   3.3
7     0    1   0  0  1  2   9.2
```
The larger the collinearity value, the less identifiable the parameter based on the data. In general a collinearity value less than about 20 is "identifiable". Below we plot the collinearity as a function of the number of parameters selected. We add a line at the height of 20, the critical value:

```r
> plot(Coll, log = "y")
> abline(h = 20, col = "red")
```

The collinearity index for parameters \texttt{gmax} and \texttt{eff} is small enough to enable estimating both parameters.
> collin(sF, parset = 1:2)

gmax eff ks rB dB N collinearity
1 1 1 0 0 0 2 4.5

We now use function `modFit` to locate the minimum. It includes several fitting procedures; the default one is the Levenberg-Marquardt algorithm.
In the following example, parameters are constrained to be > 0

> print(system.time(Fit <- modFit(p = c(gmax = 0.5, eff = 0.5),
+ f = Objective, lower = c(0.0, 0.0))))

user system elapsed
0.484 0.000 0.485

> summary(Fit)

Parameters:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|----------|
| gmax | 0.3003277| 0.0004744 | 633.1 | <2e-16 ***|
| eff | 0.7006292| 0.0010819 | 647.6 | <2e-16 ***|

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1531 on 15 degrees of freedom

Parameter correlation:

<table>
<thead>
<tr>
<th>gmax</th>
<th>eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-0.9151</td>
</tr>
<tr>
<td>-0.9151</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

The model is run with the original and the best-fit parameters, the model cost function estimated and the model outcome compared to data.

> init <- solveBact(pars)
> pars[c("gmax", "eff")] <- Fit$par
> out <- solveBact(pars)
> Cost <- modCost(obs = Data, model = out)
> Cost

$model
[1] 0.3514637

$minlogp
[1] 15.79769
var

<table>
<thead>
<tr>
<th>name</th>
<th>scale</th>
<th>N</th>
<th>SSR.unweighted</th>
<th>SSR.unscaled</th>
<th>SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bact</td>
<td>1</td>
<td>17</td>
<td>0.3514637</td>
<td>0.3514637</td>
<td>0.3514637</td>
</tr>
</tbody>
</table>

residuals

<table>
<thead>
<tr>
<th>name</th>
<th>x</th>
<th>obs</th>
<th>mod</th>
<th>weight</th>
<th>res.unweighted</th>
<th>res</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bact</td>
<td>2</td>
<td>0.14</td>
<td>0.1460459</td>
<td>1</td>
<td>0.0060458808</td>
<td>0.0060458808</td>
</tr>
<tr>
<td>Bact</td>
<td>4</td>
<td>0.21</td>
<td>0.2132921</td>
<td>1</td>
<td>0.0032921294</td>
<td>0.0032921294</td>
</tr>
<tr>
<td>Bact</td>
<td>6</td>
<td>0.31</td>
<td>0.3115005</td>
<td>1</td>
<td>0.0015004787</td>
<td>0.0015004787</td>
</tr>
<tr>
<td>Bact</td>
<td>8</td>
<td>0.40</td>
<td>0.4549261</td>
<td>1</td>
<td>0.0549260940</td>
<td>0.0549260940</td>
</tr>
<tr>
<td>Bact</td>
<td>10</td>
<td>0.69</td>
<td>0.6643861</td>
<td>1</td>
<td>-0.0256139222</td>
<td>-0.0256139222</td>
</tr>
<tr>
<td>Bact</td>
<td>12</td>
<td>0.97</td>
<td>0.9702790</td>
<td>1</td>
<td>0.0002789821</td>
<td>0.0002789821</td>
</tr>
<tr>
<td>Bact</td>
<td>14</td>
<td>1.42</td>
<td>1.4169922</td>
<td>1</td>
<td>-0.003007835</td>
<td>-0.003007835</td>
</tr>
<tr>
<td>Bact</td>
<td>16</td>
<td>2.00</td>
<td>2.0693334</td>
<td>1</td>
<td>0.0693333545</td>
<td>0.0693333545</td>
</tr>
<tr>
<td>Bact</td>
<td>18</td>
<td>3.00</td>
<td>3.0219120</td>
<td>1</td>
<td>0.0219119828</td>
<td>0.0219119828</td>
</tr>
<tr>
<td>Bact</td>
<td>20</td>
<td>4.50</td>
<td>4.4128138</td>
<td>1</td>
<td>-0.0871862027</td>
<td>-0.0871862027</td>
</tr>
<tr>
<td>Bact</td>
<td>22</td>
<td>6.50</td>
<td>6.4435103</td>
<td>1</td>
<td>-0.056496586</td>
<td>-0.056496586</td>
</tr>
<tr>
<td>Bact</td>
<td>24</td>
<td>9.50</td>
<td>9.4077850</td>
<td>1</td>
<td>-0.0922149567</td>
<td>-0.0922149567</td>
</tr>
<tr>
<td>Bact</td>
<td>26</td>
<td>13.50</td>
<td>13.7335831</td>
<td>1</td>
<td>0.2335831440</td>
<td>0.2335831440</td>
</tr>
<tr>
<td>Bact</td>
<td>28</td>
<td>20.50</td>
<td>20.0429738</td>
<td>1</td>
<td>-0.4570261992</td>
<td>-0.4570261992</td>
</tr>
<tr>
<td>Bact</td>
<td>30</td>
<td>29.00</td>
<td>29.2356341</td>
<td>1</td>
<td>0.2356341099</td>
<td>0.2356341099</td>
</tr>
<tr>
<td>Bact</td>
<td>35</td>
<td>65.00</td>
<td>65.0449092</td>
<td>1</td>
<td>0.0449092090</td>
<td>0.0449092090</td>
</tr>
<tr>
<td>Bact</td>
<td>40</td>
<td>61.00</td>
<td>60.9533704</td>
<td>1</td>
<td>-0.0466295997</td>
<td>-0.0466295997</td>
</tr>
</tbody>
</table>

attr(,"class")
[1] "modCost"

> plot(out, init, xlab = "time, hour", ylab = "molC/m3", lwd = 2,
+ obs = Data, obspar = list(cex = 2, pch = 18))
> legend ("bottomright", lwd = 2, col = 1:2, lty = 1:2, c("fitted", "original"))

Finally, model residuals are plotted:

> plot(Cost, xlab = "time", ylab = ", main = "residuals")"

7. Markov chain Monte Carlo

We can use the results of the fit to run a MCMC (Gelman, Varlin, Stern, and Rubin 2004). Function `modMCMC` implements the delayed rejection (DR) adaptive Metropolis (AM) algorithm (Haario et al. 2006).

The `summary` method of the best fit returns several useful values:

- The model variance `modVariance` is used as the initial model error variance (`var0`) in the MCMC. In each MCMC step, `1/model variance` is drawn from a gamma function with parameters `rate` and `shape`, calculated as: `shape = 0.5*N * (1 + pvar0)`, and
Figure 9: Fitting the model to data - see text for R-code

Figure 10: Model-data residuals - see text for R-code
rate = 0.5 * (pvar0*N*var0 + SS)) and where SS is the current sum of squared residuals, N is the number of data points and pVar0 is a weighing parameter, argument of function modMCMC.

- The best-fit parameters are used as initial parameter values for the MCMC (p).
- The parameter covariance returned by the summary method, scaled with $2.4^2/\text{length}(p)$, gives a suitable covariance matrix, for generating new parameter values (jump).

```R
> SF<-summary(Fit)
> SF

Parameters:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| gmax     | 0.3003277  | 0.0004744 | 633.1     | <2e-16 *** |
| eff      | 0.7006292  | 0.0010819 | 647.6     | <2e-16 *** |

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1531 on 15 degrees of freedom

Parameter correlation:

<table>
<thead>
<tr>
<th>gmax</th>
<th>eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>gmax</td>
<td>1.0000</td>
</tr>
<tr>
<td>eff</td>
<td>-0.9151</td>
</tr>
</tbody>
</table>

> SF[]

$\text{residuals}$

<table>
<thead>
<tr>
<th>Bact</th>
<th>Bact</th>
<th>Bact</th>
<th>Bact</th>
<th>Bact</th>
<th>Bact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0060458808</td>
<td>0.0032921294</td>
<td>0.0015004787</td>
<td>0.0549260940</td>
<td>-0.0256139222</td>
<td></td>
</tr>
<tr>
<td>0.0002789821</td>
<td>-0.0030078355</td>
<td>0.0693333545</td>
<td>0.0219119828</td>
<td>-0.0871862027</td>
<td></td>
</tr>
<tr>
<td>-0.0564896586</td>
<td>-0.0922149567</td>
<td>0.2335831440</td>
<td>-0.4570261992</td>
<td>0.2356341099</td>
<td></td>
</tr>
<tr>
<td>0.0449092090</td>
<td>-0.0466295997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{residualVariance}$

[1] 0.02343091

$\text{sigma}$

[1] 0.1530716

$\text{modVariance}$

[1] 0.02067434
$df
[1] 2 15

$cov.unscaled
    gmax    eff
  gmax 9.604612e-06 -2.004621e-05
  eff  -2.004621e-05  4.995866e-05

$cov.scaled
    gmax    eff
  gmax 2.250448e-07 -4.697011e-07
  eff  -4.697011e-07  1.170577e-06

$info
[1] 1

$niter
[1] 7

$stopmess
[1] "ok"

-par
  Estimate Std. Error  t value Pr(>|t|)
  gmax 0.3003277 0.0004743889 633.0833 1.274438e-34
  eff  0.7006292 0.0010819321 647.5722 9.076393e-35

> Var0 <- SF$modVariance
> covIni <- SF$cov.scaled * 2.4^2 / 2
> MCMC <- modMCMC(p = coef(Fit), f = Objective, jump = covIni,
>                  var0 = Var0, wvar0 = 1)

number of accepted runs: 350 out of 1000 (35%)

The plot method shows the trace of the parameters and, in Full is TRUE, also the model function.

> plot(MCMC, Full = TRUE)

The pairs method plots both parameters as a function of one another:

> pairs(MCMC)

The MCMC output can be used in the functions from the coda package:

> MC <- as.mcmc(MCMC$pars)
Figure 11: MCMC parameter values per iteration - see text for R-code

Figure 12: Pairs plot of MCMC results. See text for R-code
Figure 13: cumulative quantile plot from the MCMC run as from package coda - see text for R-code

```r
> cumuplot(MC)
```

Finally, we compare the covariances based on generated parameters with the ones from the fit:

```r
> cov(MCMC$pars)

 gmax eff
 gmax 1.853814e-07 -3.950395e-07
 eff -3.950395e-07 1.019139e-06

> covIni

 gmax eff
 gmax 6.481291e-07 -1.352739e-06
 eff -1.352739e-06 3.371262e-06
```

### 8. Distributions

Parameter values can be generated according to 4 different distributions: Grid, Uniform, Normal, Latinhyper:

```r
> par(mfrow = c(2, 2))
> Minmax <- data.frame(min = c(1, 2), max = c(2, 3))
> rownames(Minmax) <- c("par1", "par2")
> Mean <- c(par1 = 1.5, par2 = 2.5)
> Covar <- matrix(nr = 2, data = c(2, 2, 2, 3))
```
2.8
1.8
1.4
1.2
1.6
2
1.8
1.6
2.4
11x104
par2
par2
1.0
1.0
1.2
1.0
55x296
●
61x355
●
67x321
●
68x333
●
68x336
●
70x321
●
74x187
Latin hypercube
●
81x309
> plot(Unif(Minmax, 100), main = "Unif", xlim = c(1, 2), ylim = c(2, 3))
> plot(Grid(Minmax, 100), main = "Grid", xlim = c(1, 2), ylim = c(2, 3))
> plot(Latinhyper(Minmax, 5), main = "Latin hypercube", xlim = c(1, 2),
+    ylim = c(2, 3))
> grid()
> plot(Norm(parMean = Mean, parCovar = Covar, num = 1000),
+       main = "multi normal")

9. Examples

Several examples are present in subdirectory examples of the package. They include, a.o.:

- **BOD02_FME.R**, a 1-D model of oxygen dynamics in a river. This model consists of two coupled partial differential equations, which are solved to steady-state.
• `ccl4model_FME.R`. Here the functions are applied to “ccl4model”, one of the models included in package `deSolve`. This is a model that has been written in FORTRAN.

• `Omexdia_FME.R`. Here the functions are applied to a model implemented in `simecol`, an object-oriented framework for ecological modeling (Petzoldt and Rinke 2007), more specifically in package `simecolModels` (Petzoldt and Soetaert 2008). The omexdia model is a 1-D diagenetic model.

• `O2profile_FME.R`. This contains a simple model of oxygen, diffusing along a spatial gradient, with imposed upper and lower boundary concentration.

10. Finally

This vignette is made with Sweave (Leisch 2002).
Table 1: Summary of the functions in package FME

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensFun</td>
<td>Sensitivity functions</td>
</tr>
<tr>
<td>sensRange</td>
<td>Sensitivity ranges</td>
</tr>
<tr>
<td>modCost</td>
<td>Estimates cost functions</td>
</tr>
<tr>
<td>modFit</td>
<td>Fits a model to data</td>
</tr>
<tr>
<td>modMCMC</td>
<td>Runs a Markov chain Monte Carlo</td>
</tr>
<tr>
<td>collin</td>
<td>Estimates collinearity based on sensitivity functions</td>
</tr>
<tr>
<td>Grid, Norm, Unif, Latinhyper</td>
<td>Generates parameter sets based on grid, normal, uniform or latin hypercube design</td>
</tr>
</tbody>
</table>

Table 2: Summary of the methods in package FME

<table>
<thead>
<tr>
<th>Method</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>modFit</td>
<td>Summary statistics, including parameter std deviations, significance, parameter correlation</td>
</tr>
<tr>
<td>deviance</td>
<td>modFit</td>
<td>Model deviance (sum of squared residuals)</td>
</tr>
<tr>
<td>coef</td>
<td>modFit</td>
<td>Values of fitted parameters</td>
</tr>
<tr>
<td>residuals</td>
<td>modFit</td>
<td>Residuals of model and data</td>
</tr>
<tr>
<td>df.residual</td>
<td>modFit</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>plot</td>
<td>modFit</td>
<td>Plots results of the fitting</td>
</tr>
<tr>
<td>print.summary</td>
<td>modFit</td>
<td>Printout of model summary</td>
</tr>
<tr>
<td>plot</td>
<td>modCost</td>
<td>Plots model-data residuals</td>
</tr>
<tr>
<td>summary</td>
<td>modMCMC</td>
<td>Summary statistics of sampled parameters</td>
</tr>
<tr>
<td>plot</td>
<td>modMCMC</td>
<td>Plots all sampled parameters</td>
</tr>
<tr>
<td>pairs</td>
<td>modMCMC</td>
<td>Pairwise plots all sampled parameters</td>
</tr>
<tr>
<td>hist</td>
<td>modMCMC</td>
<td>Histogram of all sampled parameters</td>
</tr>
<tr>
<td>summary</td>
<td>sensFun</td>
<td>Summary statistics of sensitivity functions</td>
</tr>
<tr>
<td>plot</td>
<td>sensFun</td>
<td>Plots sensitivity functions</td>
</tr>
<tr>
<td>pairs</td>
<td>sensFun</td>
<td>Pairwise plots of sensitivity functions</td>
</tr>
<tr>
<td>print.summary</td>
<td>sensFun</td>
<td>Prints summary of sensitivity functions</td>
</tr>
<tr>
<td>plot.summary</td>
<td>sensFun</td>
<td>Plots summary of sensitivity functions</td>
</tr>
<tr>
<td>summary</td>
<td>sensRange</td>
<td>Summary statistics of sensitivity range</td>
</tr>
<tr>
<td>plot</td>
<td>sensRange</td>
<td>Plots sensitivity ranges</td>
</tr>
<tr>
<td>plot.summary</td>
<td>sensRange</td>
<td>Plots summary of sensitivity ranges</td>
</tr>
<tr>
<td>print</td>
<td>collin</td>
<td>Prints collinearity results</td>
</tr>
<tr>
<td>plot</td>
<td>collin</td>
<td>Plots collinearity results</td>
</tr>
</tbody>
</table>
References


Affiliation:
Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: *http://www.nioz.nl*