

R Package FME: Inverse Modelling, Sensitivity, Monte Carlo – Applied to a Nonlinear Model

Karline Soetaert
NIOZ Yerseke
The Netherlands

Abstract

R package **FME** ([Soetaert and Petzoldt 2010](#)) contains functions for model calibration, sensitivity, identifiability, and Monte Carlo analysis of nonlinear models.

This vignette (vignette("FMEother")), applies the **FME** functions to a simple nonlinear model.

A similar vignette (vignette("FMEdyna")), applies the functions to a dynamic simulation model, solved with integration routines from package **deSolve**

A third vignette, (vignette("FMEsteady")), applies **FME** to a partial differential equation, solved with a steady-state solver from package **rootSolve**

vignette("FMEmcmc") tests the Markov chain Monte Carlo (MCMC) implementation

Keywords: steady-state models, differential equations, fitting, sensitivity, Monte Carlo, identifiability, R.

1. Fitting a Monod function

1.1. The model

This example is discussed in ([Laine 2008](#)) (who quotes Berthoux and Brown, 2002. Statistics for environmental engineers, CRC Press).

The following model:

\[
y = \theta_1 \cdot \frac{x}{x + \theta_2} + \epsilon
\]

\[
\epsilon \sim N(0, \sigma^2)
\]

is fitted to data.

1.2. Implementation in R

> require(FME)

First we input the observations
> Obs <- data.frame(x=c(28, 55, 83, 110, 138, 225, 375), # mg COD/l
+ y=c(0.053,0.06,0.112,0.105,0.099,0.122,0.125)) # 1/hour

The Monod model returns a data.frame, with elements x and y:

> Model <- function(p, x) return(data.frame(x = x, y = p[1]*x/(x+p[2])))

1.3. Fitting the model to data

We first fit the model to the data. Function `Residuals` estimates the deviances of model versus the data.

> Residuals <- function(p) (Obs$y - Model(p, Obs$x)$y)

This function is input to `modFit` which fits the model to the observations.

> print(system.time(
+ P <- modFit(f = Residuals, p = c(0.1, 1))
+))

 user system elapsed
 0.01 0.00 0.01

We can estimate and print the summary of fit

> sP <- summary(P)
> sP

Parameters:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| [1,] | 0.14542 | 0.01564 | 9.296 | 0.000242 *** |
| [2,] | 49.05292 | 17.91196| 2.739 | 0.040862 * |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01278 on 5 degrees of freedom

Parameter correlation:

<table>
<thead>
<tr>
<th>[,1]</th>
<th>[,2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1.0000</td>
</tr>
<tr>
<td>[2,]</td>
<td>0.8926</td>
</tr>
</tbody>
</table>

We also plot the residual sum of squares, the residuals and the best-fit model

> x <- 0:375
1.4. MCMC analysis

We then run an MCMC analysis. The -scaled- parameter covariances returned from the `summary` function are used as estimate of the proposal covariances (`jump`). Scaling is as in (Gelman, Varlin, Stern, and Rubin 2004).

For the initial model variance (`var0`) we use the residual mean squares also returned by the `summary` function. We give equal weight to prior and modeled mean squares (`wvar0=1`)

The MCMC method adopted here is the Metropolis-Hastings algorithm; the MCMC is run for 3000 steps; we use the best-fit parameter set (`P$par`) to initiate the chain (`p`). A lower bound (0) is imposed on the parameters (`lower`).

```r
> Covar <- sP$cov.scaled * 2.4^2/2
> s2prior <- sP$modVariance
> print(system.time(
+ MCMC <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 3000,
```

Figure 1: Fit diagnostics of the Monod function - see text for R-code
number of accepted runs: 1034 out of 3000 (34.46667%)
user system elapsed
0.70 0.02 0.71

By toggling on covariance adaptation (updatecov and delayed rejection (ntrydr), the acceptance rate is increased:

> print(system.time(
+ MCMC <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 3000,
+ ntrydr = 3, var0 = s2prior, wvar0 = 1, updatecov = 100, lower = c(0, 0))
+))

number of accepted runs: 2376 out of 3000 (79.2%)
user system elapsed
1.86 0.02 1.88

> MCMC$count

 dr_steps Alfasteps num_accepted num_covupdate
 3230 14844 2376 29

The plotted results demonstrate (near-) convergence of the chain.

> plot(MCMC, Full = TRUE)

The posterior distribution of the parameters, the sum of squares and the model’s error standard deviation.

> hist(MCMC, Full = TRUE, col = "darkblue")

The pairs plot shows the relationship between the two parameters

> pairs(MCMC)

The parameter correlation and covariances from the MCMC results can be calculated and compared with the results obtained by the fitting algorithm.

> cor(MCMC$pars)

 p1 p2
p1 1.0000000 0.9404786
p2 0.9404786 1.0000000

> cov(MCMC$pars)
Figure 2: The mcmc - see text for R-code
Figure 3: Hist plot - see text for R-code
Figure 4: Pairs plot - see text for R-code
FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

p1 p2
p1 0.0005655076 0.7840551
p2 0.7840550928 1229.0142162

> sPS$cov.scaled

[,1] [,2]
[1,] 0.0002447075 0.2501157
[2,] 0.2501156864 320.8381373

The Raftery and Lewis’s diagnostic from package coda gives more information on the number
of runs that is actually needed. First the MCMC results need to be converted to an object
of type mcmc, as used in coda.

> MC <- as.mcmc(MCMC$pars)
> raftery.diag(MC)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

Also interesting is function cumuplot from coda:

> cumuplot(MC)

1.5. Predictive inference including only parameter uncertainty

The predictive posterior distribution of the model, corresponding to the parameter uncer-
tainty, is easily estimated by running function sensRange, using a randomly selected subset
of the parameters in the chain (MCMC$pars); we use the default of 100 parameter combinations.

> sR<-sensRange(parInput=MCMC$pars,func=Model,x=1:375)

The distribution is plotted and the data added to the plot:

> plot(summary(sR), quant = TRUE)
> points(Obs)

1.6. Predictive inference including also measurement error

There is an other source of error, which is not captured by the senRange method, i.e. the
one corresponding to the measurement error, as represented by the sampled values of \(\sigma^2 \).

This can be estimated by adding normally distribution noise, \(\xi \sim N(0, I\sigma^2) \) to the model pre-
dictions produced by the parameters from the MCMC chain. Of course, the \(\sigma \) and parameter
sets used must be compatible.

First we need to extract the parameter sets that were effectively used to produce the output
in sR. This information is kept as an attribute in the output:
Figure 5: Cumulative quantile plot - see text for R-code
Figure 6: Predictive envelopes of the model, only assuming parameter noise - see text for R-code
> pset <- attributes(sR)$pset

Then randomly distributed noise is added; note that the first two columns are parameters; `ivar` points only to the variables.

> nout <- nrow(sR)
> sR2 <- sR
> ivar <- 3:ncol(sR)
> error <- rnorm(nout, mean = 0, sd = sqrt(MCMC$sig[pset]))
> sR2[,ivar] <- sR2[,ivar] + error

> plot(summary(sR2), quant=TRUE)
> points(Obs)
2. Finally

This vignette was made with Sweave (Leisch 2002).

References

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: http://www.nioz.nl