Package ‘FPDclustering’

August 23, 2017

Type Package
Title PD-Clustering and Factor PD-Clustering
Version 1.2
Date 2017-08-23
Author Cristina Tortora and Paul D. McNicholas
Maintainer Cristina Tortora <grikris1@gmail.com>
Description Probabilistic distance clustering (PD-clustering) is an iterative, distribution free, probabilistic clustering method. PD-clustering assigns units to a cluster according to their probability of membership, under the constraint that the product of the probability and the distance of each point to any cluster centre is a constant. PD-clustering is a flexible method that can be used with non-spherical clusters, outliers, or noisy data. Facto PD-clustering (FPDC) is a recently proposed factor clustering method that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion. It works on high dimensional datasets.

Depends ThreeWay
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-08-23 18:08:58 UTC

R topics documented:

asymmetric20 .. 2
asymmetric3 .. 2
FPDC ... 3
outliers ... 5
PDclust ... 5
Silh ... 6
TuckerFactors ... 8

Index 10
Description
Each cluster has been generated according to a multivariate asymmetric Gaussian distribution, with shape=20, covariance matrix equal to the identity matrix and randomly generated centres.

Usage
data(asymmetric20)

Format
A data frame with 800 observations on the following 101 variables. The first variable is the membership.

Source
Generated with R using the package sn (The skew-normal and skew-t distributions), function rsn

Examples
data(asymmetric20)
plot(asymmetric20[,2:3])

Description
Each cluster has been generated according to a multivariate asymmetric Gaussian distribution, with shape=3, covariance matrix equal to the identity matrix and randomly generated centres.

Usage
data(asymmetric3)

Format
A data frame with 800 observations on 101 variables. The first variable is the membership labels.

Source
Generated with R using the package sn (The skew-normal and skew-t distributions), function rsn
FPDC

Examples

```r
data(asymmetric3)
plot(asymmetric3[,2:3])
```

FPDC

Factor probabilistic distance clustering

Description

An implementation of FPDC, a probabilistic factor clustering algorithm that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion.

Usage

```r
FPDC(data = NULL, k = 2, nf = 2, nu = 2)
```

Arguments

- `data`: A matrix or data frame such that rows correspond to observations and columns correspond to variables.
- `k`: A numerical parameter giving the number of clusters.
- `nf`: A numerical parameter giving the number of factors for variables.
- `nu`: A numerical parameter giving the number of factors for units.

Value

A list with components

- `label`: A vector of integers indicating the cluster membership for each unit.
- `centers`: A matrix of cluster centers.
- `probability`: A matrix of probability of each point belonging to each cluster.
- `JDF`: The value of the Joint distance function.
- `iter`: The number of iterations.
- `explained`: The explained variability.

Author(s)

Cristina Tortora and Paul D. McNicholas
References

See Also

PDclust

Examples

```r
## Not run:
# Asymmetric data set clustering example (with shape=3).
data('asymmetric3')
x<-asymmetric3[-1]
fpdas3=FPDC(x,4,3,3)
table(asymmetric3[-1],fpdas3$label)
Silh(fpdas3$probability)

## End(Not run)

## Not run:
# Asymmetric data set clustering example (with shape=20).
data('asymmetric20')
x<-asymmetric20[-1]
fpdas20=FPDC(x,4,3,3)
table(asymmetric20[-1],fpdas20$label)
Silh(fpdas20$probability)

## End(Not run)

## Not run:
# Clustering example with outliers.
data('outliers')
x<-outliers[-1]
fpdout=FPDC(x,4,5,4)
table(outliers[-1],fpdout$label)
Silh(fpdout$probability)

## End(Not run)
```
outliers

Data set with outliers

Description

Each cluster has been generated according to a multivariate Gaussian distribution, with centers c randomly generated. For each cluster, 20% of uniform distributed outliers have been generated at a distance included in $\max(x-c)$ and $\max(x-c)+5$ form the center.

Usage

```r
data(outliers)
```

Format

A data frame with 960 observations on the following 101 variables. The first variable corresponds to the membership.

Source

generated with R

Examples

```r
data(outliers)
plot(outliers[,2:3])
```

PDclust

Probabilistic Distance Clustering

Description

Probabilistic distance clustering (PD-clustering) is an iterative, distribution free, probabilistic clustering method. PD clustering assigns units to a cluster according to their probability of membership, under the constraint that the product of the probability and the distance of each point to any cluster centre is a constant.

Usage

```r
PDclust(data = NULL, k = 2)
```

Arguments

- `data` A matrix or data frame such that rows correspond to observations and columns correspond to variables.
- `k` A numerical parameter giving the number of clusters.
Value

A list with components

- **label**: A vector of integers indicating the cluster membership for each unit
- **centers**: A matrix of cluster centers
- **probability**: A matrix of probability of each point belonging to each cluster
- **JDF**: The value of the Joint distance function
- **iter**: The number of iterations

Author(s)

Cristina Tortora and Paul D. McNicholas

References

Examples

```r
# Normally generated clusters
c1 = c(1, 1, 1, 1)
c2 = c(-1, -1, -1, -1)
c3 = c(-1, -1, 1, 1)
n = 200
x1 = cbind(rnorm(n, c1[1]), rnorm(n, c1[2]), rnorm(n, c1[3]), rnorm(n, c1[4]))
x2 = cbind(rnorm(n, c2[1]), rnorm(n, c2[2]), rnorm(n, c2[3]), rnorm(n, c2[4]))
x3 = cbind(rnorm(n, c3[1]), rnorm(n, c3[2]), rnorm(n, c3[3]), rnorm(n, c3[4]))
x = rbind(x1, x2, x3)
pdn = PDClust(x)
plot(x[, 1:2], col = pdn$label)
plot(x[, 3:4], col = pdn$label)
```

Silh

Probabilistic silhouette plot

Description

Graphical tool to see how well each point belongs to the cluster.

Usage

```r
Silh(p)
```

Arguments

- **p**: A matrix of probabilities such that rows correspond to observations and columns correspond to clusters.
Details

The probabilistic silhouettes are an adaptation of the ones proposed by Menardi(2011) according to the following formula:

\[db_{si} = \frac{\log(p_{im_k}/p_{im_1})}{\max_{i}|\log(p_{im_k}/p_{im_1})|} \]

where \(m_k \) is such that \(x_i \) belongs to cluster \(k \) and \(m_1 \) is such that \(p_{im_1} \) is maximum for \(m \) different from \(m_k \).

Value

Probabilistic silhouette plot

Author(s)

Cristina Tortora

References

Examples

```r
## Not run:
# Asymmetric data set silhouette example (with shape=3).
data('asymmetric3')
x<-asymmetric3[-1]
fpdas3=FPC(x,L-1)
Silh(fpdas3$probability)

## End(Not run)

## Not run:
# Asymmetric data set shiluette example (with shape=20).
data('asymmetric20')
x<-asymmetric20[-1]
fpdas20=FPC(x,4,3,3)
Silh(fpdas20$probability)

## End(Not run)

## Not run:
# Shiluette example with outliers.
data('outliers')
x<-outliers[-1]
fpdout=FPC(x,4,4,3)
Silh(fpdout$probability)

## End(Not run)
```
TuckerFactors

Choice of the number of Tucker 3 factors

Description
An empirical way of choosing the number of factors. The algorithm returns a graph and a table representing the explained variability varying the number of factors.

Usage
TuckerFactors(data = NULL, nc = 2)

Arguments
- data: A matrix or data frame such that rows correspond to observations and columns correspond to variables.
- nc: A numerical parameter giving the number of clusters

Value
A table containing the explained variability varying the number of factors for units (column) and for variables (row) and a plot

Author(s)
Cristina Tortora

References

See Also
T3

Examples
```r
## Not run:
# Asymmetric data set example (with shape=3).
data("asymmetric3")
xp=TuckerFactors(asymmetric3[,1], nc = 4)
```
End(Not run)

Not run:
Asymmetric data set example (with shape=20).
data('asymmetric20')
xp=TuckerFactors(asymmetric20[,,-1], nc = 4)

End(Not run)
Index

asymmetric2 0, 2
asymmetric3, 2

FPDC, 3

outliers, 5

PDclust, 4, 5

Silh, 6

T3, 8

TuckerFactors, 8