Package ‘FREEtree’

October 12, 2022

Type Package

Title Tree Method for High Dimensional Longitudinal Data

Version 0.1.0

Description This tree-based method deals with high dimensional longitudinal data with correlated features through the use of a piecewise random effect model. FREE tree also exploits the network structure of the features, by first clustering them using Weighted Gene Co-expression Network Analysis (‘WGCNA’). It then conducts a screening step within each cluster of features and a selecting step among the surviving features, which provides a relatively unbiased way to do feature selection. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREE tree delivers easily interpretable results while improving computational efficiency.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports glmertree, pre, WGCNA, MASS

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

NeedsCompilation no

Author Yuancheng Xu [aut], Athanasse Zafirov [cre], Christina Ramirez [aut], Dan Kojis [aut], Min Tan [aut], Mike Alvarez [aut]

Maintainer Athanasse Zafirov <zafirov@gmail.com>

Repository CRAN

Date/Publication 2020-06-25 15:00:03 UTC
R topics documented:

data ... 2
FREEtree .. 13
FREEtree_PC ... 15
FREEtree_time ... 17
get_split_names ... 18

Index

20

data

A dataset containing simulated feature long and wide data. The last six columns contain outcome variable, patient ID, treatment, time and time squared features.

Description

A dataset containing simulated feature long and wide data. The last six columns contain outcome variable, patient ID, treatment, time and time squared features.

Usage
data

Format

A data frame with 100 rows and 406 variables:

rand_int control variable (not used)
time time trend variable (1 to 6)
time2 squared time trend variable
treatment binary treatment feature
patient patient ID for 20 patients
y outcome variable
V1 simulated feature correlated to varying degrees
V2 simulated feature correlated to varying degrees
V3 simulated feature correlated to varying degrees
V4 simulated feature correlated to varying degrees
V5 simulated feature correlated to varying degrees
V6 simulated feature correlated to varying degrees
V7 simulated feature correlated to varying degrees
V8 simulated feature correlated to varying degrees
V9 simulated feature correlated to varying degrees
V10 simulated feature correlated to varying degrees
V11 simulated feature correlated to varying degrees
V12 simulated feature correlated to varying degrees
V13 simulated feature correlated to varying degrees
V14 simulated feature correlated to varying degrees
V15 simulated feature correlated to varying degrees
V16 simulated feature correlated to varying degrees
V17 simulated feature correlated to varying degrees
V18 simulated feature correlated to varying degrees
V19 simulated feature correlated to varying degrees
V20 simulated feature correlated to varying degrees
V21 simulated feature correlated to varying degrees
V22 simulated feature correlated to varying degrees
V23 simulated feature correlated to varying degrees
V24 simulated feature correlated to varying degrees
V25 simulated feature correlated to varying degrees
V26 simulated feature correlated to varying degrees
V27 simulated feature correlated to varying degrees
V28 simulated feature correlated to varying degrees
V29 simulated feature correlated to varying degrees
V30 simulated feature correlated to varying degrees
V31 simulated feature correlated to varying degrees
V32 simulated feature correlated to varying degrees
V33 simulated feature correlated to varying degrees
V34 simulated feature correlated to varying degrees
V35 simulated feature correlated to varying degrees
V36 simulated feature correlated to varying degrees
V37 simulated feature correlated to varying degrees
V38 simulated feature correlated to varying degrees
V39 simulated feature correlated to varying degrees
V40 simulated feature correlated to varying degrees
V41 simulated feature correlated to varying degrees
V42 simulated feature correlated to varying degrees
V43 simulated feature correlated to varying degrees
V44 simulated feature correlated to varying degrees
V45 simulated feature correlated to varying degrees
V46 simulated feature correlated to varying degrees
V47 simulated feature correlated to varying degrees
V48 simulated feature correlated to varying degrees
V49 simulated feature correlated to varying degrees
V50 simulated feature correlated to varying degrees
V51 simulated feature correlated to varying degrees
V52 simulated feature correlated to varying degrees
V53 simulated feature correlated to varying degrees
V54 simulated feature correlated to varying degrees
V55 simulated feature correlated to varying degrees
V56 simulated feature correlated to varying degrees
V57 simulated feature correlated to varying degrees
V58 simulated feature correlated to varying degrees
V59 simulated feature correlated to varying degrees
V60 simulated feature correlated to varying degrees
V61 simulated feature correlated to varying degrees
V62 simulated feature correlated to varying degrees
V63 simulated feature correlated to varying degrees
V64 simulated feature correlated to varying degrees
V65 simulated feature correlated to varying degrees
V66 simulated feature correlated to varying degrees
V67 simulated feature correlated to varying degrees
V68 simulated feature correlated to varying degrees
V69 simulated feature correlated to varying degrees
V70 simulated feature correlated to varying degrees
V71 simulated feature correlated to varying degrees
V72 simulated feature correlated to varying degrees
V73 simulated feature correlated to varying degrees
V74 simulated feature correlated to varying degrees
V75 simulated feature correlated to varying degrees
V76 simulated feature correlated to varying degrees
V77 simulated feature correlated to varying degrees
V78 simulated feature correlated to varying degrees
V79 simulated feature correlated to varying degrees
V80 simulated feature correlated to varying degrees
V81 simulated feature correlated to varying degrees
V82 simulated feature correlated to varying degrees
V83 simulated feature correlated to varying degrees
V84 simulated feature correlated to varying degrees
V85 simulated feature correlated to varying degrees
V86 simulated feature correlated to varying degrees
V87 simulated feature correlated to varying degrees
V88 simulated feature correlated to varying degrees
V89 simulated feature correlated to varying degrees
V90 simulated feature correlated to varying degrees
V91 simulated feature correlated to varying degrees
V92 simulated feature correlated to varying degrees
V93 simulated feature correlated to varying degrees
V94 simulated feature correlated to varying degrees
V95 simulated feature correlated to varying degrees
V96 simulated feature correlated to varying degrees
V97 simulated feature correlated to varying degrees
V98 simulated feature correlated to varying degrees
V99 simulated feature correlated to varying degrees
V100 simulated feature correlated to varying degrees
V101 simulated feature correlated to varying degrees
V102 simulated feature correlated to varying degrees
V103 simulated feature correlated to varying degrees
V104 simulated feature correlated to varying degrees
V105 simulated feature correlated to varying degrees
V106 simulated feature correlated to varying degrees
V107 simulated feature correlated to varying degrees
V108 simulated feature correlated to varying degrees
V109 simulated feature correlated to varying degrees
V110 simulated feature correlated to varying degrees
V111 simulated feature correlated to varying degrees
V112 simulated feature correlated to varying degrees
V113 simulated feature correlated to varying degrees
V114 simulated feature correlated to varying degrees
V115 simulated feature correlated to varying degrees
V116 simulated feature correlated to varying degrees
V117 simulated feature correlated to varying degrees
V118 simulated feature correlated to varying degrees
V119 simulated feature correlated to varying degrees
V120 simulated feature correlated to varying degrees
V121 simulated feature correlated to varying degrees
V122 simulated feature correlated to varying degrees
V123 simulated feature correlated to varying degrees
V124 simulated feature correlated to varying degrees
V125 simulated feature correlated to varying degrees
V126 simulated feature correlated to varying degrees
V127 simulated feature correlated to varying degrees
V128 simulated feature correlated to varying degrees
V129 simulated feature correlated to varying degrees
V130 simulated feature correlated to varying degrees
V131 simulated feature correlated to varying degrees
V132 simulated feature correlated to varying degrees
V133 simulated feature correlated to varying degrees
V134 simulated feature correlated to varying degrees
V135 simulated feature correlated to varying degrees
V136 simulated feature correlated to varying degrees
V137 simulated feature correlated to varying degrees
V138 simulated feature correlated to varying degrees
V139 simulated feature correlated to varying degrees
V140 simulated feature correlated to varying degrees
V141 simulated feature correlated to varying degrees
V142 simulated feature correlated to varying degrees
V143 simulated feature correlated to varying degrees
V144 simulated feature correlated to varying degrees
V145 simulated feature correlated to varying degrees
V146 simulated feature correlated to varying degrees
V147 simulated feature correlated to varying degrees
V148 simulated feature correlated to varying degrees
V149 simulated feature correlated to varying degrees
V150 simulated feature correlated to varying degrees
V151 simulated feature correlated to varying degrees
V152 simulated feature correlated to varying degrees
V153 simulated feature correlated to varying degrees
V154 simulated feature correlated to varying degrees
V155 simulated feature correlated to varying degrees
V156 simulated feature correlated to varying degrees
V157 simulated feature correlated to varying degrees
V158 simulated feature correlated to varying degrees
data

V159 simulated feature correlated to varying degrees
V160 simulated feature correlated to varying degrees
V161 simulated feature correlated to varying degrees
V162 simulated feature correlated to varying degrees
V163 simulated feature correlated to varying degrees
V164 simulated feature correlated to varying degrees
V165 simulated feature correlated to varying degrees
V166 simulated feature correlated to varying degrees
V167 simulated feature correlated to varying degrees
V168 simulated feature correlated to varying degrees
V169 simulated feature correlated to varying degrees
V170 simulated feature correlated to varying degrees
V171 simulated feature correlated to varying degrees
V172 simulated feature correlated to varying degrees
V173 simulated feature correlated to varying degrees
V174 simulated feature correlated to varying degrees
V175 simulated feature correlated to varying degrees
V176 simulated feature correlated to varying degrees
V177 simulated feature correlated to varying degrees
V178 simulated feature correlated to varying degrees
V179 simulated feature correlated to varying degrees
V180 simulated feature correlated to varying degrees
V181 simulated feature correlated to varying degrees
V182 simulated feature correlated to varying degrees
V183 simulated feature correlated to varying degrees
V184 simulated feature correlated to varying degrees
V185 simulated feature correlated to varying degrees
V186 simulated feature correlated to varying degrees
V187 simulated feature correlated to varying degrees
V188 simulated feature correlated to varying degrees
V189 simulated feature correlated to varying degrees
V190 simulated feature correlated to varying degrees
V191 simulated feature correlated to varying degrees
V192 simulated feature correlated to varying degrees
V193 simulated feature correlated to varying degrees
V194 simulated feature correlated to varying degrees
V195 simulated feature correlated to varying degrees
Data simulated feature correlated to varying degrees

V196 simulated feature correlated to varying degrees
V197 simulated feature correlated to varying degrees
V198 simulated feature correlated to varying degrees
V199 simulated feature correlated to varying degrees
V200 simulated feature correlated to varying degrees
V201 simulated feature correlated to varying degrees
V202 simulated feature correlated to varying degrees
V203 simulated feature correlated to varying degrees
V204 simulated feature correlated to varying degrees
V205 simulated feature correlated to varying degrees
V206 simulated feature correlated to varying degrees
V207 simulated feature correlated to varying degrees
V208 simulated feature correlated to varying degrees
V209 simulated feature correlated to varying degrees
V210 simulated feature correlated to varying degrees
V211 simulated feature correlated to varying degrees
V212 simulated feature correlated to varying degrees
V213 simulated feature correlated to varying degrees
V214 simulated feature correlated to varying degrees
V215 simulated feature correlated to varying degrees
V216 simulated feature correlated to varying degrees
V217 simulated feature correlated to varying degrees
V218 simulated feature correlated to varying degrees
V219 simulated feature correlated to varying degrees
V220 simulated feature correlated to varying degrees
V221 simulated feature correlated to varying degrees
V222 simulated feature correlated to varying degrees
V223 simulated feature correlated to varying degrees
V224 simulated feature correlated to varying degrees
V225 simulated feature correlated to varying degrees
V226 simulated feature correlated to varying degrees
V227 simulated feature correlated to varying degrees
V228 simulated feature correlated to varying degrees
V229 simulated feature correlated to varying degrees
V230 simulated feature correlated to varying degrees
V231 simulated feature correlated to varying degrees
V232 simulated feature correlated to varying degrees
V233 simulated feature correlated to varying degrees
V234 simulated feature correlated to varying degrees
V235 simulated feature correlated to varying degrees
V236 simulated feature correlated to varying degrees
V237 simulated feature correlated to varying degrees
V238 simulated feature correlated to varying degrees
V239 simulated feature correlated to varying degrees
V240 simulated feature correlated to varying degrees
V241 simulated feature correlated to varying degrees
V242 simulated feature correlated to varying degrees
V243 simulated feature correlated to varying degrees
V244 simulated feature correlated to varying degrees
V245 simulated feature correlated to varying degrees
V246 simulated feature correlated to varying degrees
V247 simulated feature correlated to varying degrees
V248 simulated feature correlated to varying degrees
V249 simulated feature correlated to varying degrees
V250 simulated feature correlated to varying degrees
V251 simulated feature correlated to varying degrees
V252 simulated feature correlated to varying degrees
V253 simulated feature correlated to varying degrees
V254 simulated feature correlated to varying degrees
V255 simulated feature correlated to varying degrees
V256 simulated feature correlated to varying degrees
V257 simulated feature correlated to varying degrees
V258 simulated feature correlated to varying degrees
V259 simulated feature correlated to varying degrees
V260 simulated feature correlated to varying degrees
V261 simulated feature correlated to varying degrees
V262 simulated feature correlated to varying degrees
V263 simulated feature correlated to varying degrees
V264 simulated feature correlated to varying degrees
V265 simulated feature correlated to varying degrees
V266 simulated feature correlated to varying degrees
V267 simulated feature correlated to varying degrees
V268 simulated feature correlated to varying degrees
V269 simulated feature correlated to varying degrees
V270 simulated feature correlated to varying degrees
V271 simulated feature correlated to varying degrees
V272 simulated feature correlated to varying degrees
V273 simulated feature correlated to varying degrees
V274 simulated feature correlated to varying degrees
V275 simulated feature correlated to varying degrees
V276 simulated feature correlated to varying degrees
V277 simulated feature correlated to varying degrees
V278 simulated feature correlated to varying degrees
V279 simulated feature correlated to varying degrees
V280 simulated feature correlated to varying degrees
V281 simulated feature correlated to varying degrees
V282 simulated feature correlated to varying degrees
V283 simulated feature correlated to varying degrees
V284 simulated feature correlated to varying degrees
V285 simulated feature correlated to varying degrees
V286 simulated feature correlated to varying degrees
V287 simulated feature correlated to varying degrees
V288 simulated feature correlated to varying degrees
V289 simulated feature correlated to varying degrees
V290 simulated feature correlated to varying degrees
V291 simulated feature correlated to varying degrees
V292 simulated feature correlated to varying degrees
V293 simulated feature correlated to varying degrees
V294 simulated feature correlated to varying degrees
V295 simulated feature correlated to varying degrees
V296 simulated feature correlated to varying degrees
V297 simulated feature correlated to varying degrees
V298 simulated feature correlated to varying degrees
V299 simulated feature correlated to varying degrees
V300 simulated feature correlated to varying degrees
V301 simulated feature correlated to varying degrees
V302 simulated feature correlated to varying degrees
V303 simulated feature correlated to varying degrees
V304 simulated feature correlated to varying degrees
V305 simulated feature correlated to varying degrees
V306 simulated feature correlated to varying degrees
V307 simulated feature correlated to varying degrees
V308 simulated feature correlated to varying degrees
V309 simulated feature correlated to varying degrees
V310 simulated feature correlated to varying degrees
V311 simulated feature correlated to varying degrees
V312 simulated feature correlated to varying degrees
V313 simulated feature correlated to varying degrees
V314 simulated feature correlated to varying degrees
V315 simulated feature correlated to varying degrees
V316 simulated feature correlated to varying degrees
V317 simulated feature correlated to varying degrees
V318 simulated feature correlated to varying degrees
V319 simulated feature correlated to varying degrees
V320 simulated feature correlated to varying degrees
V321 simulated feature correlated to varying degrees
V322 simulated feature correlated to varying degrees
V323 simulated feature correlated to varying degrees
V324 simulated feature correlated to varying degrees
V325 simulated feature correlated to varying degrees
V326 simulated feature correlated to varying degrees
V327 simulated feature correlated to varying degrees
V328 simulated feature correlated to varying degrees
V329 simulated feature correlated to varying degrees
V330 simulated feature correlated to varying degrees
V331 simulated feature correlated to varying degrees
V332 simulated feature correlated to varying degrees
V333 simulated feature correlated to varying degrees
V334 simulated feature correlated to varying degrees
V335 simulated feature correlated to varying degrees
V336 simulated feature correlated to varying degrees
V337 simulated feature correlated to varying degrees
V338 simulated feature correlated to varying degrees
V339 simulated feature correlated to varying degrees
V340 simulated feature correlated to varying degrees
V341 simulated feature correlated to varying degrees
V342 simulated feature correlated to varying degrees
V343 simulated feature correlated to varying degrees
V344 simulated feature correlated to varying degrees
V345 simulated feature correlated to varying degrees
V346 simulated feature correlated to varying degrees
V347 simulated feature correlated to varying degrees
V348 simulated feature correlated to varying degrees
V349 simulated feature correlated to varying degrees
V350 simulated feature correlated to varying degrees
V351 simulated feature correlated to varying degrees
V352 simulated feature correlated to varying degrees
V353 simulated feature correlated to varying degrees
V354 simulated feature correlated to varying degrees
V355 simulated feature correlated to varying degrees
V356 simulated feature correlated to varying degrees
V357 simulated feature correlated to varying degrees
V358 simulated feature correlated to varying degrees
V359 simulated feature correlated to varying degrees
V360 simulated feature correlated to varying degrees
V361 simulated feature correlated to varying degrees
V362 simulated feature correlated to varying degrees
V363 simulated feature correlated to varying degrees
V364 simulated feature correlated to varying degrees
V365 simulated feature correlated to varying degrees
V366 simulated feature correlated to varying degrees
V367 simulated feature correlated to varying degrees
V368 simulated feature correlated to varying degrees
V369 simulated feature correlated to varying degrees
V370 simulated feature correlated to varying degrees
V371 simulated feature correlated to varying degrees
V372 simulated feature correlated to varying degrees
V373 simulated feature correlated to varying degrees
V374 simulated feature correlated to varying degrees
V375 simulated feature correlated to varying degrees
V376 simulated feature correlated to varying degrees
V377 simulated feature correlated to varying degrees
V378 simulated feature correlated to varying degrees
V379 simulated feature correlated to varying degrees
V380 simulated feature correlated to varying degrees
FREEtree

V381 simulated feature correlated to varying degrees
V382 simulated feature correlated to varying degrees
V383 simulated feature correlated to varying degrees
V384 simulated feature correlated to varying degrees
V385 simulated feature correlated to varying degrees
V386 simulated feature correlated to varying degrees
V387 simulated feature correlated to varying degrees
V388 simulated feature correlated to varying degrees
V389 simulated feature correlated to varying degrees
V390 simulated feature correlated to varying degrees
V391 simulated feature correlated to varying degrees
V392 simulated feature correlated to varying degrees
V393 simulated feature correlated to varying degrees
V394 simulated feature correlated to varying degrees
V395 simulated feature correlated to varying degrees
V396 simulated feature correlated to varying degrees
V397 simulated feature correlated to varying degrees
V398 simulated feature correlated to varying degrees
V399 simulated feature correlated to varying degrees
V400 simulated feature correlated to varying degrees

FREEtree

Initial FREEtree call which then calls actual FREEtree methods depending on parameters being passed through.

Description

Initial FREEtree call which then calls actual FREEtree methods depending on parameters being passed through.

Usage

FREEtree(
 data,
 fixed_regress = NULL,
 fixed_split = NULL,
 var_select = NULL,
 power = 6,
 minModuleSize = 1,
 cluster,
 maxdepth_factor_screen = 0.04,
maxdepth_factor_select = 0.5,
Fuzzy = TRUE,
minsize_multiplier = 5,
alpha_screen = 0.2,
alpha_select = 0.2,
alpha_predict = 0.05
)

Arguments

data
data to train or test FREEtree on.

fixed_regress
user specified char vector of regressors that will never be screened out; if fixed_regress = NULL, method uses PC as regressor at screening step.

fixed_split
user specified char vector of features to be used in splitting with certainty.

var_select
a char vector containing features to be selected. These features will be clustered by WGCNA and the chosen ones will be used in regression and splitting.

power
soft thresholding power parameter of WGCNA.

minModuleSize
WGCNA's minimum module size parameter.

cluster
the variable name of each cluster (in terms of random effect) using glmer's implementation.

maxdepth_factor_screen
when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth_factor_screen*(features in that module). Default is 0.04.

maxdepth_factor_select
Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6. for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of the split_var (fixed+chosen ones).

Fuzzy
boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if Fuzzy=FALSE, first screen within non-grey modules and then select the final non-grey features within the selected ones from each non-grey module; Use this final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you want to protect grey features.

minsize_multiplier
At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don’t have to be so careful. Note that when tuning the parameters, larger alpha and smaller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease alpha and decrease minsize_multiplier at the same time.
alpha_screen alpha used in screening step.
alpha_select alpha used in selection step.
alpha_predict alpha used in prediction step.

Value

a glmertree object (trained tree).

Examples

locate example data file
dataf <- system.file("data/data.RData", package="FREEtree")
mytree = FREEtree(data,fixed_regress=c("time","time2"), fixed_split=c("treatment"),
 var_select=paste("V",1:200,sep=""), minModuleSize = 5,
 cluster="patient", Fuzzy=TRUE, maxdepth_factor_select = 0.5,
 maxdepth_factor_screen = 0.04, minsize_multiplier = 5,
 alpha_screen = 0.2, alpha_select=0.2, alpha_predict=0.05)

FREEtree_PC

Version of FREEtree called when fixed_regress is NULL, uses principal components (PC) as regressors for non-grey modules.

Description

Version of FREEtree called when fixed_regress is NULL, uses principal components (PC) as regressors for non-grey modules.

Usage

FREEtree_PC(
 data,
 fixed_split,
 var_select,
 power,
 minModuleSize,
 cluster,
 maxdepth_factor_screen,
 maxdepth_factor_select,
 Fuzzy,
 minsize_multiplier,
 alpha_screen,
 alpha_select,
 alpha_predict
)
Arguments

- **data**
 - data to train or test FREEtree on.

- **fixed_split**
 - user specified char vector of features to be used in splitting with certainty.

- **var_select**
 - a char vector containing features to be selected. These features will be clustered by WGCNA and the chosen ones will be used in regression and splitting.

- **power**
 - soft thresholding power parameter of WGCNA.

- **minModuleSize**
 - WGCNA’s minimum module size parameter.

- **cluster**
 - the variable name of each cluster (in terms of random effect) using glmer’s implementation.

- **maxdepth_factor_screen**
 - when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth_factor_screen*(features in that module). Default is 0.04.

- **maxdepth_factor_select**
 - Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6 for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of the split_var (fixed+chosen ones).

- **Fuzzy**
 - boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if Fuzzy= FALSE, first screen within non-grey modules and then select the final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you want to protect grey features.

- **minsize_multiplier**
 - At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don’t have to be so careful. Note that when tuning the parameters, larger alpha and samller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease alpha and decrease minsize_multiplier at the same time.

- **alpha_screen**
 - alpha used in screening step.

- **alpha_select**
 - alpha used in selection step.

- **alpha_predict**
 - alpha used in prediction step.

Value

a glmertree object (trained tree). dictionary with keys=name of color,values=names of features of that color
FREEtree_time

Version of FREEtree called when var_select and fixed_regress are specified.

Description

Version of FREEtree called when var_select and fixed_regress are specified.

Usage

FREEtree_time(
 data,
 fixed_regress,
 fixed_split,
 var_select,
 power,
 minModuleSize,
 cluster,
 maxdepth_factor_screen,
 maxdepth_factor_select,
 Fuzzy,
 minsize_multiplier,
 alpha_screen,
 alpha_select,
 alpha_predict
)

Arguments

- **data**: data to train or test FREEtree on.
- **fixed_regress**: user specified char vector of regressors that will never be screened out; if fixed_regress = NULL, method uses PC as regressor at screening step.
- **fixed_split**: user specified char vector of features to be used in splitting with certainty.
- **var_select**: a char vector containing features to be selected. These features will be clustered by WGCNA and the chosen ones will be used in regression and splitting.
- **power**: soft thresholding power parameter of WGCNA.
- **minModuleSize**: minimum possible module size parameter of WGCNA.
- **cluster**: the variable name of each cluster (in terms of random effect) using glmer's implementation.
- **maxdepth_factor_screen**: when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth_factor_screen*(features in that module). Default is 0.04.
maxdepth_factor_select
Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6. for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of the split_var (fixed+chosen ones).

Fuzzy
boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if Fuzzy= FALSE, first screen within non-grey modules and then select the final non-grey features within the selected ones from each non-grey module; Use this final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you want to protect grey features.

minsize_multiplier
At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don’t have to be so careful. Note that when tuning the parameters, larger alpha and samller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease alpha and decrease minsize_multiplier at the same time.

alpha_screen
alpha used in screening step.
alpha_select
alpha used in selection step.
alpha_predict
alpha used in prediction step.

Value
a glmertree object (trained tree). dictionary’ with keys= name of color, values= names of features of that color

get_split_names
Method for extracting names of splitting features used in a tree.

Description
Method for extracting names of splitting features used in a tree.

Usage
get_split_names(tree, data)

Arguments

 tree a tree object.
 data train or test set.
get_split_names

Value

names of splitting features extracted from tree object.
Index

* datasets
 data, 2

data, 2

FREEtree, 13
FREEtree_PC, 15
FREEtree_time, 17

get_split_names, 18