Package ‘FSinR’

October 12, 2022

Maintainer Alfonso Jiménez-Vílchez <i52jivia@uco.es>

Type Package

Title Feature Selection

Description Feature subset selection algorithms modularized in search algorithms and measure utilities. Full list and more information available at <https://dicits.ugr.es/software/FSinR/>.

Version 2.0.5

Date 2020-11-16

Repository CRAN

License GPL-3

LazyData false

Imports rpart, neuralnet, class, digest, caret, mlbench, Rdpack, GA, dplyr, tidyr, prodlim, rlang, purrr, e1071

RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown, RSNNS

VignetteBuilder knitr

NeedsCompilation no

Author Alfonso Jiménez-Vílchez [aut, cre], Francisco Aragón-Royón [aut], Adan M. Rodriguez [aut], Antonio Arauzo-Azofra [aut], José Manuel Benítez [aut]

Date/Publication 2020-11-23 10:50:26 UTC

R topics documented:

antColony ... 3
binaryConsistency .. 4
breadthFirst ... 5
topics documented:

chiSquared .. 6
cramer ... 7
deepFirst .. 8
determinationCoefficient .. 9
directFeatureSelection .. 10
directSearchAlgorithm .. 12
featureSelection ... 13
filterEvaluator ... 16
fscore ... 17
gainRatio .. 18
geneticAlgorithm .. 19
giniIndex .. 21
hillClimbing .. 22
hybridFeatureSelection ... 23
hybridSearchAlgorithm ... 25
IEConsistency ... 26
IEPConsistency ... 27
isDataframeContinuous .. 28
isDataframeDiscrete ... 29
Jd ... 29
LasVegas ... 30
LCC .. 31
MDLC .. 32
mutualInformation .. 33
normalizedRelief .. 34
normalizedReliefFeatureSetMeasure 35
relief ... 36
ReliefFeatureSetMeasure ... 37
roughsetConsistency .. 38
searchAlgorithm ... 39
selectDifference .. 41
selectKBest .. 42
selectPercentile .. 43
selectSlope .. 44
selectThreshold ... 45
selectThresholdRange .. 46
sequentialBackwardSelection 47
sequentialFloatingBackwardSelection 48
sequentialFloatingForwardSelection 49
sequentialForwardSelection 50
simulatedAnnealing .. 51
symmetricalUncertain ... 53	
	
tabu ... 54

whaleOptimization ... 56
wrapperEvaluator .. 57

Index 59
antColony

Ant Colony Optimization (Advanced Binary Ant Colony Optimization)

Description
Generates a search function based on the ant colony optimization. This function is called internally within the `searchAlgorithm` function. The Ant Colony Optimization (Advanced Binary Ant Colony Optimization) (Kashef and Nezamabadi-pour 2015) algorithm consists of generating in each iteration a random population of individuals (ants) according to the values of a pheromone matrix (which is updated each iteration according to the paths most followed by the ants) and a heuristic (which determines how good is each path to follow by the ants). The evaluation measure is calculated for each individual. The algorithm ends once the established number of iterations has been reached.

Usage
```r
antColony(
  population = 10,
  iter = 10,
  a = 1,
  b = 1,
  p = 0.2,
  q = 1,
  t0 = 0.2,
  tmin = 0,
  tmax = 1,
  mode = 1,
  verbose = FALSE
)
```

Arguments
- `population`: The number of ants population
- `iter`: The number of iterations
- `a`: Parameter to control the influence of the pheromone (If a=0, no pheromone information is used)
- `b`: Parameter to control the influence of the heuristic (If b=0, the attractiveness of the movements is not taken into account)
- `p`: Rate of pheromone evaporation
- `q`: Constant to determine the amount of pheromone deposited by the best ant. This amount is determined by the Q/F equation (for minimization) where F is the cost of the solution (F/Q for maximization)
- `t0`: Initial pheromone level
- `tmin`: Minimum pheromone value
- `tmax`: Maximum pheromone value
binaryConsistency

Description
Generates an evaluation function that calculates the binary consistency, also known as "Sufficiency test" from FOCUS (Almuallim and Dietterich 1991) (set measure). This function is called internally within the filterEvaluator function.

Usage
binaryConsistency()
Value

Returns a function that is used to generate an evaluation set measure using the binary consistency value for the selected features.

Author(s)

Adan M. Rodriguez

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with Binary Consistency
bc_evaluator <- binaryConsistency()
# Evaluate the features (parameters: dataset, target variable and features)
bc_evaluator(adult, 'Var income', c('Var race', 'Var sex', 'Var education'))

## End(Not run)
```

breadthFirst

Breadth First Search (exhaustive search)

Description

Generates a search function based on the breadth first search. This function is called internally within the `searchAlgorithm` function. Breadth First Search searches the whole features subset in breadth first order (Kozen 1992).

Usage

`breadthFirst()`

Value

Returns a search function that is used to guide the feature selection process.
Author(s)
Adan M. Rodriguez
Francisco Aragón Royón

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function with Breadth first
bfs_search <- breadthFirst()
# Performs the search process directly (parameters: dataset, target variable and evaluator)
bfs_search(iris, 'Species', filter_evaluator)

## End(Not run)
```

chiSquared

Chi squared measure

Description
Generates an evaluation function that calculates the Chi squared value (F.R.S. 1900), evaluating the selected features individually (individual measure). This function is called internally within the `filterEvaluator` function.

Usage

`chiSquared()`

Value
Returns a function that is used to generate an individual evaluation measure using chi squared.
cramer

References

F.R.S. KP (1900). “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.” *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, **50**, 157–175. doi: 10.1080/14786440009463897, https://doi.org/10.1080/14786440009463897.

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Chi squared
chiSquared_evaluator <- chiSquared()
# Evaluate the features (parameters: dataset, target variable and features)
chiSquared_evaluator(iris, 'Species', c('Sepal.Length'))

## End(Not run)
```

cramer Cramer V measure

Description

Generates an evaluation function that calculates Cramer’s V value (Cramer 1946), evaluating features individually (individual measure). This function is called internally within the `filterEvaluator` function.

Usage

cramer()

Value

Returns a function that is used to generate an individual evaluation measure using Cramer V.

References

deepFirst

Examples

```
## Not run:
## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer
cramer_evaluator <- cramer()
# Evaluate the features (parameters: dataset, target variable and features)
cramer_evaluator(iris,'Species',c('Sepal.Length'))
```

depthFirst

Deep First Search (exhaustive search)

Description

Generates a search function based on the deep first search. This function is called internally within the `searchAlgorithm` function. Deep First Search searches the whole features subset in deep first order (Kozen 1992).

Usage

```
depthFirst()
```

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón

References

Examples

```
## Not run:
## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
```
determinationCoefficient

filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function with Deep first
dfs_search <- deepFirst()
Performs the search process directly (parameters: dataset, target variable and evaluator)
dfs_search(iris, 'Species', filter_evaluator)

End(Not run)

determinationCoefficient

\textit{R Squared, to continuous features}

Description

Generates an evaluation function that calculates the determinant coefficient (Dodge 2008) of continuous features (set measure). This function is called internally within the \texttt{filterEvaluator} function.

Usage

determinationCoefficient()

Value

Returns a function that is used to generate an evaluation set measure using the R squared value for the selected features.

Author(s)

Adan M. Rodriguez

References

Examples

Not run:

The direct application of this function is an advanced use that consists of using this
function directly to evaluate a set of features
Classification problem

Generate the evaluation function with Determination Coefficient
dc_evaluator <- determinationCoefficient()
Evaluate the features (parameters: dataset, target variable and features)
dc_evaluator(longley, 'Employed', c('GNP', 'Population', 'Year'))
End(Not run)

directFeatureSelection

Direct Feature Selection Process

Description

Performs the direct feature selection process. Given a direct search algorithm and an evaluation method, it uses the direct search algorithm in combination with the evaluation results to guide the feature selection process to an optimal subset.

Usage

\[
\text{directFeatureSelection}(\text{data}, \text{class}, \text{directSearcher}, \text{evaluator})
\]

Arguments

- `data`: A data.frame with the input dataset where the examples are in the rows and the features and the target variable are in the columns. The dataset should be discrete (feature columns are expected to be factors) if the following filter methods are used as evaluation methods: Rough Set Consistency, Binary Consistency, IE Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetrical Uncertain, Gini Index or MDLC. The Jd and F-Score filter methods only work on classification problems with 2 classes in the target variable.

- `class`: The name of the dependent variable

- `directSearcher`: The algorithm to conduct the direct feature search. See `directSearchAlgorithm`.

- `evaluator`: The evaluation method to obtain a measure of the features. The evaluation method can be a filter (see `filterEvaluator`) or a wrapper method (see `wrapperEvaluator`).

Value

A list is returned with the results of the direct feature selection process:

- `bestFeatures`: A vector with all features. Selected features are marked with 1, unselected features are marked with 0.

- `featuresSelected`: The names of the returned features sorted according to the result of the evaluation measure

- `valuePerFeature`: The evaluation measures of the returned features

- `evaluationType`: Type of evaluation based on how the features have been evaluated.

- `evaluationMethod`: Evaluation method used.

- `searchMethod`: Search method used during the feature selection process.

- `target`: A character indicating if the objective of the process is to minimize or maximize the evaluation measure.
directFeatureSelection

numFeatures Number of features in the problem.

xNames Name of the features.

yNames Name of the dependent variable.

time Value of class 'proc_time' containing the user time, system time, and total time of the feature selection process.

Author(s)

Francisco Aragón Royón

References

There are no references for Rd macro `\insertAllCites` on this help page.

Examples

```r
## Not run:

## Examples of the direct feature selection process

## Classification problem with filter

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')
# Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectKBest')
# Runs the direct feature selection process
res <- directFeatureSelection(iris, 'Species', direct_search_method, filter_evaluator)

## Classification problem with wrapper

# Generates the wrapper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn')
# Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectKBest')
# Runs the direct feature selection process
res <- directFeatureSelection(iris, 'Species', direct_search_method, wrapper_evaluator)

## Examples of the direct feature selection process (with parameters)

## Regression problem with filter

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('relief', list(neighbours.count = 4))
# Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectKBest', list(k=2))
# Runs the direct feature selection process
res <- directFeatureSelection(mtcars, 'mpg', direct_search_method, filter_evaluator)

## Regression problem with wrapper
```
Values for the caret trainControl function (resampling parameters)
resamplingParams <- list(method = "cv", repeats = 5)

Values for the caret train function (fitting parameters)
fittingParams <- list(preProc = c("center", "scale"), metric="RMSE",
 tuneGrid = expand.grid(k = 1:12))

Generates the wrapper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)

Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectKBest', list(k=2))

Runs the direct feature selection process
res <- directFeatureSelection(mtcars, 'mpg', direct_search_method, wrapper_evaluator)

End(Not run)

directSearchAlgorithm Direct search algorithm generator

Description

Generates a direct search function. This function in combination with the evaluator composes the feature selection process. Specifically, the result of calling this function is another function that is passed on as a parameter to the directFeatureSelection function. However, you can run this function directly to perform a direct search process.

Usage

directSearchAlgorithm(directSearcher, params = list())

Arguments

directSearcher Name of the direct search algorithm. The available direct search algorithms are:

selectKBest See selectKBest
selectPercentile See selectPercentile
selectThreshold See selectThreshold
selectThresholdRange See selectThresholdRange
selectDifference See selectDifference
selectSlope See selectSlope

params List with the parameters of each direct search method. For more details see each method. Default: empty list.

Value

Returns a direct search function that is used in the feature selection process.
featureSelection 13

Author(s)
Francisco Aragón Royón

References
There are no references for Rd macro \insertAllCites on this help page.

Examples
Not run:
##
Examples of a direct search algorithm generation

direct_search_method_1 <- directSearchAlgorithm('selectKBest')
direct_search_method_2 <- directSearchAlgorithm('selectPercentile')
direct_search_method_3 <- directSearchAlgorithm('selectThreshold')

Examples of a direct search algorithm generation (with parameters)

direct_search_method_1 <- directSearchAlgorithm('selectKBest', list(k=2))
direct_search_method_2 <- directSearchAlgorithm('selectPercentile', list(percentile=25))
direct_search_method_3 <- directSearchAlgorithm('selectThreshold', list(threshold=0.55))

The direct application of this function is an advanced use that consists of using this
function directly to perform a direct search process
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectKBest')
Performs the diret search process directly (parameters: dataset, target variable and evaluator)
direct_search_method(iris, 'Species', filter_evaluator)

End(Not run)

featureSelection Feature Selection Process

Description
Performs the feature selection process. Given a search algorithm and an evaluation method, it uses the search algorithm in combination with the evaluation results to guide the feature selection process to an optimal subset.
Usage

featureSelection(data, class, searcher, evaluator)

Arguments

data A data.frame with the input dataset where the examples are in the rows and the features and the target variable are in the columns. The dataset should be discrete (feature columns are expected to be factors) if the following filter methods are used as evaluation methods: Rough Set Consistency, Binary Consistency, IE Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetrical Uncertain, Gini Index or MDLC. If Ant Colony Optimization is used as a search strategy, the dataset must be numerical since heuristics only work with continuous values. The Jd and F-Score filter methods only work on classification problems with 2 classes in the target variable.

class The name of the dependent variable

searcher The algorithm to guide the search in the feature space. See searchAlgorithm.

evaluator The evaluation method to obtain a measure of the features. The evaluation method can be a filter (see filterEvaluator) or a wrapper method (see wrapperEvaluator).

Value

A list is returned with the results of the feature selection process:

- bestFeatures A vector with all features. Selected features are marked with 1, unselected features are marked with 0.
- bestValue Evaluation measure obtained with the feature selection.
- evaluationType Type of evaluation based on how the features have been evaluated.
- evaluationMethod Evaluation method used.
- measureType Type of evaluation measure.
- searchMethod Search method used during the feature selection process.
- target A character indicating if the objective of the process is to minimize or maximize the evaluation measure.
- numFeatures Number of features in the problem.
- xNames Name of the features.
- yNames Name of the dependent variable.
- time Value of class 'proc_time' containing the user time, system time, and total time of the feature selection process.

Author(s)

Francisco Aragón Royón

References

There are no references for Rd macro \insertAllCites on this help page.
Examples

```r
## Not run:

## Examples of the feature selection process
## Classification problem with filter

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')
# Generates the search function
search_method <- searchAlgorithm('hillClimbing')
# Runs the feature selection process
res <- featureSelection(iris, 'Species', search_method, filter_evaluator)

## Classification problem with wrapper

# Generates the wrapper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn')
# Generates the search function
search_method <- searchAlgorithm('hillClimbing')
# Runs the feature selection process
res <- featureSelection(iris, 'Species', search_method, wrapper_evaluator)

## Examples of the feature selection process (with parameters)
## Regression problem with filter

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure', list(iterations = 10))
# Generates the search function
search_method <- searchAlgorithm('hillClimbing', list(repeats=2))
# Runs the feature selection process
res <- featureSelection(mtcars, 'mpg', search_method, filter_evaluator)

## Regression problem with wrapper

# Values for the caret trainControl function (resampling parameters)
resamplingParams <- list(method = "cv", repeats = 5)
# Values for the caret train function (fitting parameters)
fittingParams <- list(preProc = c("center", "scale"), metric="RMSE",
                      tuneGrid = expand.grid(k = c(1:12)))
# Generates the wrapper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)
# Generates the search function
search_method <- searchAlgorithm('geneticAlgorithm',list(popSize=10, maxiter=25, verbose=TRUE))
# Runs the feature selection process
res <- featureSelection(mtcars, 'mpg', search_method, wrapper_evaluator)

## End(Not run)
```
filterEvaluator

Filter measure generator

Description
Generates a filter function to be used as an evaluator in the feature selection process. More specifically, the result of calling this function is another function that is passed on as a parameter to the featureSelection function. However, you can also run this function directly to generate an evaluation measure.

Usage
filterEvaluator(filter, params = list())

Arguments
filter
 Name of the filter method. The available filter methods are:

 binaryConsistency Binary consistency measure. See binaryConsistency
 chiSquared Chi squared measure. See chiSquared
 cramr Cramer V measure. See cramr
 determinationCoefficient R Squared, to continuous features. See determinationCoefficient
 fScore F-score measure. See fScore
 gainRatio The gain ratio measure. See gainRatio
 giniIndex Gini index measure. See giniIndex
 IECConsistency Inconsistent Examples consistency measure. See IECConsistency
 IEPConsistency Inconsistent Examples Pairs consistency measure. See IEPConsistency
 Jd Jd evaluation measure. See Jd
 MDLC MDLC evaluation measure. See MDLC
 mutualInformation The mutual information measure. See mutualInformation
 roughsetConsistency Rough Set consistency measure. See roughsetConsistency
 relief Relief. See relief
 ReliefFeatureSetMeasure Relief Feature Set Measure evaluation measure. See ReliefFeatureSetMeasure
 symmetricalUncertain Symmetrical uncertain measure. See symmetricalUncertain

params
 List with the parameters of each filter method. For more details see each method. Default: empty list.

Value
Returns a filter method that is used to generate an evaluation measure.

Author(s)
Francisco Aragón Royón
References

There are no references for Rd macro \insertAllCites on this help page.

Examples

```r
## Not run:

## Examples of a filter evaluator generation

filter_evaluator_1 <- filterEvaluator('cramer')
filter_evaluator_2 <- filterEvaluator('gainRatio')
filter_evaluator_3 <- filterEvaluator('MDLC')

## Examples of a filter evaluator generation (with parameters)

filter_evaluator_1 <- filterEvaluator('relief', list(neighbours.count=4, sample.size=15))
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure', list(iterations = 10))

## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')
# Evaluates features directly (parameters: dataset, target variable and features)

## End(Not run)
```

fscore

F-score measure

Description

Generates an evaluation function that calculates the F-score approach defined in (Wang et al. 2018) (individual measure). This function is called internally within the `filterEvaluator` function.

Usage

`fscore()`

Value

Returns a function that is used to generate an individual evaluation measure using the F-score.
References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
## function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with F-Score
fscore_evaluator <- fscore()
# Evaluate the features (parameters: dataset, target variable and features)
fscore_evaluator(ToothGrowth, 'supp', c('len'))

## End(Not run)
```

gainRatio

The gain ratio measure

Description

Generates an evaluation function that calculates the gain ratio value (Quinlan 1986-Mar-01), using the information theory (set measure). This function is called internally within the `filterEvaluator` function.

Usage

```
gainRatio()
```

Value

Returns a function that is used to generate an evaluation set measure using the gain ratio value for the selected features.

Author(s)

Adan M. Rodriguez

References

Genetic Algorithm

Generates a search function based on a genetic algorithm. This function is called internally within the `searchAlgorithm` function. The `geneticAlgorithm` method (Yang and Honavar 1998) starts with an initial population of solutions and at each step applies a series of operators to the individuals in order to obtain new and better population of individuals. These operators are selection, crossing and mutation methods. This method uses the GA package implementation (Scrucca 2013) (Scrucca 2017).

Usage

```r
geneticAlgorithm(
  popSize = 20,
  pcrossover = 0.8,
  pmutation = 0.1,
  maxiter = 100,
  run = 100,
  verbose = FALSE
)
```

Arguments

- **popSize**: The population size
- **pcrossover**: The probability of crossover between individuals
- **pmutation**: The probability of mutation between individuals
- **maxiter**: The number of iterations
- **run**: The number of runs
- **verbose**: Whether to print the progress

Description

The `geneticAlgorithm` function is an advanced use that consists of using this function directly to evaluate a set of features. A discrete dataset is used (in this case we use only several discrete columns). The function uses the GA package implementation (Scrucca 2013) (Scrucca 2017).
geneticAlgorithm

<table>
<thead>
<tr>
<th>run</th>
<th>Number of consecutive iterations without fitness improvement to stop the algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbose</td>
<td>Print the partial results in each iteration. This functionality is not available if the objective of the evaluation method is to minimize the target value (e.g. regression methods)</td>
</tr>
</tbody>
</table>

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function with Genetic algorithm
ga_search <- geneticAlgorithm()
# Performs the search process directly (parameters: dataset, target variable and evaluator)
ga_search(iris, 'Species', filter_evaluator)

## End(Not run)
```
giniIndex

Gini index measure

Description

Generates an evaluation function that calculates the gini index (Ceriani and Verme 2012-Sep-01) of discrete features (set measure). This function is called internally within the `filterEvaluator` function.

Usage

`giniIndex()`

Value

Returns a function that is used to generate an evaluation set measure using the Gini index value for the selected features.

Author(s)

Adan M. Rodriguez

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with Gini index
giniIndex_evaluator <- giniIndex()
# Evaluate the features (parameters: dataset, target variable and features)
giniIndex_evaluator(adult,'income',c('race','sex','education'))

## End(Not run)
```
Description

Generates a search function based on the hill climbing method. This function is called internally within the `searchAlgorithm` function. The Hill-Climbing (Russell and Norvig 2009) method starts with a certain set of features and in each iteration it searches among its neighbors to advance towards a better solution. The method ends as soon as no better solutions are found.

Usage

`hillClimbing(start = NULL, nneigh = NULL, repeats = 1, verbose = FALSE)`

Arguments

- `start`: Binary vector with the set of initial features.
- `nneigh`: Number of neighbors to evaluate in each iteration of the algorithm. By default: all possibly. It is important to note that a high value of this parameter considerably increases the computation time.
- `repeats`: Number of repetitions of the algorithm.
- `verbose`: Print the partial results in each iteration.

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
## function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function with Hill-Climbing
```
hybridFeatureSelection

hc_search <- hillClimbing()
Performs the search process directly (parameters: dataset, target variable and evaluator)
hc_search(iris, 'Species', filter_evaluator)

End(Not run)

hybridFeatureSelection

Hybrid Feature Selection Process

Description

Performs the hybrid feature selection process. Given a hybrid search algorithm and an two evaluation methods, it uses the hybrid search algorithm in combination with the evaluation results to guide the feature selection process to an optimal subset.

Usage

hybridFeatureSelection(data, class, hybridSearcher, evaluator_1, evaluator_2)

Arguments

data A data.frame with the input dataset where the examples are in the rows and the features and the target variable are in the columns. The dataset should be discrete (feature columns are expected to be factors) if the following filter methods are used as evaluation methods: Rough Set Consistency, Binary Consistency, IE Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetrical Uncertain, Gini Index or MDLC. The Jd and F-Score filter methods only work on classification problems with 2 classes in the target variable.

class The name of the dependent variable

hybridSearcher The algorithm to guide the hybrid search in the feature space. See `hybridSearchAlgorithm`.

evaluator_1 The first evaluation method. This method can be a filter (see `filterEvaluator`) or a wrapper method (see `wrapperEvaluator`).

evaluator_2 The second evaluation method. This method can be a filter (see `filterEvaluator`) or a wrapper method (see `wrapperEvaluator`). If the LCC algorithm is used, the measure must evaluate feature sets.

Value

A list is returned with the results of the hybrid feature selection process:

- **bestFeatures** A vector with all features. Selected features are marked with 1, unselected features are marked with 0.
- **bestValue** Evaluation measure obtained with the feature selection.
- **evaluationType_1** Type of evaluation based on how the features have been evaluated.
- **evaluationMethod_1** Evaluation method used for the first evaluator.
hybridFeatureSelection

- **measureType.1**: Type of evaluation measure for the first evaluator.
- **evaluationType.2**: Type of evaluation based on how the features have been evaluated for the first evaluator.
- **evaluationMethod.2**: Evaluation method used for the second evaluator.
- **measureType.2**: Type of evaluation measure for the second evaluator.
- **searchMethod**: Search method used during the feature selection process for the second evaluator.
- **target**: A character indicating if the objective of the process is to minimize or maximize the evaluation measure.
- **numFeatures**: Number of features in the problem.
- **xNames**: Name of the features.
- **yNames**: Name of the dependent variable.
- **time**: Value of class 'proc_time' containing the user time, system time, and total time of the feature selection process.

Author(s)

Francisco Aragón Royón

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

```r
## Not run:

## Examples of the hybrid feature selection process

## Classification problem with filter

# Generates the first filter evaluation function (individual or set measure)
f_evaluator_1 <- filterEvaluator('determinationCoefficient')

# Generates the second filter evaluation function (mandatory set measure)
f_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function
hybrid_search_method <- hybridSearchAlgorithm('LCC')

# Runs the hybrid feature selection process
res <- hybridFeatureSelection(iris, 'Species', hybrid_search_method, f_evaluator_1, f_evaluator_2)

## Classification problem with wrapper

# Generates the first wrapper evaluation function (individual or set measure)
w_evaluator_1 <- wrapperEvaluator('rf')

# Generates the second wrapper evaluation function (mandatory set measure)
w_evaluator_2 <- wrapperEvaluator('knn')

# Generates the hybrid search function
hybrid_search_method <- hybridSearchAlgorithm('LCC')

# Runs the hybrid feature selection process
```

...
res <- hybridFeatureSelection(iris,'Species',hybrid_search_method,w_evaluator_1,w_evaluator_2)

Classification problem mixed (with filter & wrapper)

Generates the first filter evaluation function (individual or set measure)
f_evaluator <- filterEvaluator('determinationCoefficient')
Generates the second wrapper evaluation function (mandatory set measure)
w_evaluator <- wrapperEvaluator('knn')
Generates the hybrid search function
hybrid_search_method <- hybridSearchAlgorithm('LCC')
Runs the hybrid feature selection process
res <- hybridFeatureSelection(iris,'Species', hybrid_search_method, f_evaluator, w_evaluator)

End(Not run)

hybridSearchAlgorithm Hybrid search algorithm generator

Description

Generates a hybrid search function. This function in combination with the evaluator guides the feature selection process. Specifically, the result of calling this function is another function that is passed on as a parameter to the `featureSelection` function. However, you can run this function directly to perform a search process in the features space.

Usage

```r
hybridSearchAlgorithm(hybridSearcher, params = list())
```

Arguments

- `hybridSearcher` Name of the hybrid search algorithm. The available hybrid search algorithms are:
 - LCC Linear Consistency-Constrained algorithm (LCC). See [LCC](#).
- `params` List with the parameters of each hybrid search method. For more details see each method. Default: empty list.

Value

Returns a hybrid search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón
References

There are no references for Rd macro \insertAllCites on this help page.

Examples

```r
## Not run:
## Examples of a hybrid search algorithm generation
hybrid_search_method <- hybridSearchAlgorithm('LCC')

## Examples of a hybrid search algorithm generation (with parameters)
hybrid_search_method <- hybridSearchAlgorithm('LCC', list(threshold = 0.8))

## The direct application of this function is an advanced use that consists of using this
## function directly to perform a hybrid search process on a feature space
## Classification problem

# Generates the first filter evaluation function (individual or set measure)
filter_evaluator_1 <- filterEvaluator('determinationCoefficient')
# Generates the second filter evaluation function (mandatory set measure)
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function
hybrid_search_method <- hybridSearchAlgorithm('LCC')
# Run the search process directly (params: dataset, target variable, evaluator1 & evaluator2)
hybrid_search_method(iris, 'Species', filter_evaluator_1, filter_evaluator_2)
```

<table>
<thead>
<tr>
<th>IEConsistency</th>
<th>Inconsistent Examples consistency measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Generates an evaluation function that calculates the inconsistent examples consistency value (Dash and Liu 2003-dec), using hash tables (set measure). This function is called internally within the `filterEvaluator` function.

Usage

IEConsistency()
Value

Returns a function that is used to generate an evaluation set measure using the inconsistent examples consistency value for the selected features.

Author(s)

Adan M. Rodriguez

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## Classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with IE Consistency
IEC_evaluator <- IEPConsistency()
# Evaluate the features (parameters: dataset, target variable and features)
IEC_evaluator(adult,"Var income","Var race","Var sex","Var education")
## End(Not run)
```

Description

Generates an evaluation function that calculates the inconsistent examples pairs consistency value, using hash tables (Arauzo-Azofra et al. 2007-feb) (set measure). This function is called internally within the `filterEvaluator` function.

Usage

```r
IEPConsistency()
```

Value

Returns a function that is used to generate an evaluation set measure using the inconsistent examples pairs consistency value for the selected features.
isDataframeContinuous

Description

Estimate if all variables in a data frame are continuous

Usage

isDataframeContinuous(dataframe)

Arguments

dataframe • A data frame

Value

• True if all variables are continuous, False otherwise

Author(s)

Alfonso Jiménez Vílchez
isDataframeDiscrete

Examples

```r
isDataframeContinuous(mtcars)
isDataframeContinuous(iris)
```

Description

Estimate if all variables in a data frame are discrete

Usage

```r
isDataframeDiscrete(dataframe)
```

Arguments

- `dataframe`: A data frame

Value

- True if all variables are discrete, False otherwise

Author(s)

Alfonso Jiménez Vilchez

Examples

```r
isDataframeDiscrete(mtcars)
isDataframeDiscrete(iris)
```

Jd

Jd evaluation measure

Description

Generates an evaluation function that applies the discriminant function designed by Narendra and Fukunaga (Narendra and Fukunaga 1977-sep) to generate an evaluation measure for a set of features (set measure). This function is called internally within the `filterEvaluator` function.

Usage

```r
Jd()
```
Value

Returns a function that is used to generate an evaluation set measure using the Jd.

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with JD
Jd_evaluator <- Jd()
# Evaluate the features (parametes: dataset, target variable and features)
Jd_evaluator(ToothGrowth, 'supp', c('len', 'dose'))

## End(Not run)
```

Description

Generates a search function based on Las Vegas algorithm. This function is called internally within the `searchAlgorithm` function. The LasVegas method (Liu and Setiono 1996) starts with a certain set of features and in each step a new set is randomly generated, if the new set is better it is saved as the best solution. The algorithm ends when there are no improvements in a certain number of iterations.

Usage

```r
LasVegas(start = NULL, K = 50, verbose = FALSE)
```

Arguments

- **start**: Binary vector with the set of initial features (1: selected and 0: unselected) for the algorithm
- **K**: The maximum number of iterations without improvement to finalize the algorithm
- **verbose**: Print the partial results in each iteration
Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function with Las Vegas
LV_search <- LasVegas()
# Performs the search process directly (parameters: dataset, target variable and evaluator)
LV_search(iris, 'Species', filter_evaluator)

## End(Not run)
```

LCC

Linear Consistency-Constrained algorithm

Description

Generates a hybrid search function based on Linear Consistency-Constrained algorithm described in (Shin and Xu 2009). The algorithm combines two evaluation measures, the first evaluates each feature individually, and the second measure evaluate feature sets.

Usage

LCC(threshold = 0.9)

Arguments

<table>
<thead>
<tr>
<th>threshold</th>
<th>Threshold</th>
</tr>
</thead>
</table>
MDLC

Value

Returns a hybrid search function that is used to guide the feature selection process.

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
## function directly and performing a hybrid search process in a feature space
## Classification problem

# Generates the first filter evaluation function (individual or set measure)
filter_evaluator_1 <- filterEvaluator('determinationCoefficient')
# Generates the second filter evaluation function (mandatory set measure)
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function with LCC
LCC_hybrid_search <- LCC()
# Run the search process directly (params: dataset, target variable, evaluator1 & evaluator2)
LCC_hybrid_search(iris, 'Species', filter_evaluator_1, filter_evaluator_2)

## End(Not run)
```

MDLC

MDLC evaluation measure

Description

Generates an evaluation function that applies the Minimum-Description_Length-Criterion (MDLC) (Sheinvald et al. 1990-jun) to generate an evaluation measure for a set of features (set measure). This function is called internally within the `filterEvaluator` function.

Usage

`MDLC()`

Value

Returns a function that is used to generate an evaluation set measure using MDLC value for the selected features.
mutualInformation

Author(s)
Alfonso Jiménez-Vilchez

References

Examples
Not run:
The direct application of this function is an advanced use that consists of using this
function directly to evaluate a set of features
Classification problem

A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

Generate the evaluation function with MDLC
MDLC_evaluator <- MDLC()
Evaluate the features (parameters: dataset, target variable and features)
MDLC_evaluator(adult,'income',c('race','sex','education'))

End(Not run)

mutualInformation The mutual information measure

Description
Generates an evaluation function that calculates the mutual information value, using the information theory (Qian and Shu 2015) (set measure). This function is called internally within the filterEvaluator function.

Usage
mutualInformation()

Value
Returns a function that is used to generate an evaluation set measure using the mutual information value for the selected features.

Author(s)
Adan M. Rodriguez
References

Neurocomputing, 168, 210–220. doi: 10.1016/j.neucom.2015.05.105.

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## Classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with Cramer
mi_evaluator <- mutualInformation()
# Evaluate the features (parameters: dataset, target variable and features)
mi_evaluator(adult,"Var income","Var race","Var sex","Var education")

## End(Not run)
```

normalizedRelief

Description

Generates an evaluation function that calculates a measure of the set of features between 0 and 1 with relief (individual measure). The relief algorithm (Kira and Rendell 1992) finds weights of continuous and discrete attributes basing on a distance between instances. Adapted from Piotr Romanski’s Fselector package (Romanski and Kotthoff 2018). This function is called internally within the `filterEvaluator` function.

Usage

```r
normalizedRelief(neighbours.count = 5, sample.size = 10)
```

Arguments

- `neighbours.count`:
 - number of neighbours to find for every sampled instance

- `sample.size`:
 - number of instances to sample

Details

relief classification and regression continuous and discrete data
Value

Returns a function that is used to generate an individual evaluation measure using relief

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this
## function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer
relief_evaluator <- normalizedRelief()
# Evaluate the features (parameters: dataset, target variable and features)
relief_evaluator(iris, 'Species', c('Sepal.Length'))

## End(Not run)
```

normalizedReliefFeatureSetMeasure

Relief Feature Set Measure evaluation measure

Description

Generates an evaluation function that applies Feature set measure based on Relief (set measure). Described in (Arauzo-Azofra et al. 2004-1). This function is called internally within the `filterEvaluator` function.

Usage

`normalizedReliefFeatureSetMeasure(iterations = 5, kNeightbours = 4)`

Arguments

- `iterations` Number of iterations
- `kNeightbours` Number of neighbours
Value

Returns a function that is used to generate an evaluation set measure (between -1 and 1) using RFSM value for the selected features.

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer
RFSM_evaluator <- ReliefFeatureSetMeasure()
# Evaluate the features (parameters: dataset, target variable and features)
RFSM_evaluator(iris,'Species',c('Sepal.Length','Sepal.Width','Petal.Length','Petal.Width'))
## End(Not run)
```

relief

Relief

Description

Generates an evaluation function that calculates a measure of the set of features with relief (individual measure). The relief algorithm (Kira and Rendell 1992) finds weights of continuous and discrete attributes basing on a distance between instances. Adapted from Piotr Romanski’s Fselector package (Romanski and Kotthoff 2018). This function is called internally within the `filterEvaluator` function.

Usage

```r
relief(neighbours.count = 5, sample.size = 10)
```

Arguments

- `neighbours.count` • number of neighbours to find for every sampled instance
- `sample.size` • number of instances to sample
ReliefFeatureSetMeasure

Details

relief classification and regression continuous and discrete data

Value

Returns a function that is used to generate an individual evaluation measure using relief

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

Not run:

The direct application of this function is an advanced use that consists of using this
function directly to individually evaluate a set of features
Classification problem

Generate the evaluation function with Cramer
relief_evaluator <- relief()
Evaluate the features (parameters: dataset, target variable and features)
relief_evaluator(iris,'Species',c('Sepal.Length'))

End(Not run)
Arguments

- **iterations**: Number of iterations
- **kNeightbours**: Number of neighbours

Value

Returns a function that is used to generate an evaluation set measure (between -1 and 1) using RFSM value for the selected features.

Author(s)

Alfonso Jiménez-Vilchez

References

Examples

```r
## Not run:
## The direct application of this function is an advanced use that consists of using this function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer
RFSM_evaluator <- ReliefFeatureSetMeasure()
# Evaluate the features (parameters: dataset, target variable and features)

## End(Not run)
```

roughsetConsistency Rough Set consistency measure

Description

Generates an evaluation function that calculates the rough sets consistency value (Pawlak 1982-october) (Pawlak 1991), using hash tables (set measure). This function is called internally within the `filterEvaluator` function.

Usage

`roughsetConsistency()`
Value

Returns a function that is used to generate an evaluation set measure using the rough sets consistency value for the selected features.

Author(s)

Adan M. Rodriguez

References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with Rough Set Consistency
rsc_evaluator <- roughsetConsistency()
# Evaluate the features (parameters: dataset, target variable and features)
rsc_evaluator(adult,"Var income",c("Var race","Var sex","Var education"))

## End(Not run)
```

searchAlgorithm (Search algorithm generator)

Description

Generates a search function. This function in combination with the evaluator guides the feature selection process. Specifically, the result of calling this function is another function that is passed on as a parameter to the `featureSelection` function. However, you can run this function directly to perform a search process in the features space.

Usage

```r
searchAlgorithm(searcher, params = list())
```
searchAlgorithm

Arguments

searcher Name of the search algorithm. The available search algorithms are:

- **antColony** Ant colony optimization (ACO). See `antColony`
- **breadthFirst** Breadth first search. See `breadthFirst`
- **deepFirst** Deep first search. See `deepFirst`
- **geneticAlgorithm** Genetic algorithm (GA). See `geneticAlgorithm`
- **hillClimbing** Hill-Climbing (HC). See `hillClimbing`
- **LasVegas** Las Vegas (LV). See `LasVegas`
- **sequentialBackwardSelection** Sequential backward selection (sbs). See `sequentialBackwardSelection`
- **sequentialFloatingForwardSelection** Sequential floating forward selection (sffs).
 See `sequentialFloatingForwardSelection`
- **sequentialFloatingBackwardSelection** Sequential floating backward selection (sfbs). See `sequentialFloatingBackwardSelection`
- **sequentialForwardSelection** Sequential forward selection (sfs). See `sequentialForwardSelection`
- **simulatedAnnealing** Simulated annealing (SA). See `simulatedAnnealing`
- **tabu** Tabu search (TS). See `tabu`
- **whaleOptimization** Whale optimization algorithm (WOA). See `whaleOptimization`

params List with the parameters of each search method. For more details see each method. Default: empty list.

Value

Returns a search function that is used to guide the feature selection process

Author(s)

Francisco Aragón Royón

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

```r
## Not run:

## Examples of a search algorithm generation

search_method_1 <- searchAlgorithm('antColony')
search_method_2 <- searchAlgorithm('sequentialBackwardSelection')
search_method_3 <- searchAlgorithm('tabu')

## Examples of a search algorithm generation (with parameters)

search_method_1 <- searchAlgorithm('antColony', list(population=25, iter=50, verbose=TRUE))
search_method_2 <- searchAlgorithm('sequentialBackwardSelection', list(stop=TRUE))
```
search_method_3 <- searchAlgorithm('tabu', list(intensification=1, iterIntensification=25))

The direct application of this function is an advanced use that consists of using this function directly to perform a search process on a feature space
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function
search_method <- searchAlgorithm('hillClimbing')
Performs the search process directly (parameters: dataset, target variable and evaluator)
search_method(iris, 'Species', filter_evaluator)

End(Not run)

selectDifference
Select difference

Description

Generates a direct search function that selects features (in descending order from the best evaluation measure to the lowest) until evaluation difference is over a threshold (The features evaluation is individual). This function is called internally within the `directSearchAlgorithm` function.

Usage

```r
selectDifference(d.threshold = 0.2)
```

Arguments

- `d.threshold`
 - Number between 0 and 1, to calculate the slope

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez
Francisco Aragón Royón
selectKBest

Examples

Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a direct search process
Classification problem

Generates the filter evaluation function
defilter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the direct search function with difference
defsd_direct_search <- selectDifference()

Performs the direct search process directly (parameters: dataset, target variable and evaluator)
sd_direct_search(iris, 'Species', filter_evaluator)

End(Not run)

selectKBest(k = 1)

Arguments

k Number (positive integer) of returned features

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez
Francisco Aragón Royón
Examples

Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a direct search process
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the direct search function with k-best
skb_direct_search <- selectKBest()
Performs the direct search process directly (parameters: dataset, target variable and evaluator)
skb_direct_search(iris, 'Species', filter_evaluator)

End(Not run)

selectPercentile Select Percentile

Description

Generates a direct search function that selects a fraction, given as a percentage, of the total number
of available features (The features evaluation is individual). This function is called internally within
the `directSearchAlgorithm` function.

Usage

selectPercentile(percentile = 80)

Arguments

percentile Number (positive integer) between 0 and 100

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez
Francisco Aragón Royón
Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the direct search function with percentile
sp_direct_search <- selectPercentile()
# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
sp_direct_search(iris, 'Species', filter_evaluator)

## End(Not run)
```

selectSlope

Select slope

Description

Generates a direct search function that selects features (in descending order from the best evaluation measure to the lowest) until the slope to the next feature is over a threshold (The features evaluation is individual). The slope is calculated as: \(\text{s.threshold} / \text{(number of features)} \). This function is called internally within the `directSearchAlgorithm` function.

Usage

```r
selectSlope(s.threshold = 1.5)
```

Arguments

- `s.threshold`
 - Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez
selectThreshold

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the direct search function with slope
ss_direct_search <- selectSlope()
# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
ss_direct_search(iris, 'Species', filter_evaluator)

## End(Not run)
```

selectThreshold | Select threshold

Description

Generates a direct search function that selects the features whose evaluation is over/under a user given threshold (It depends on the method that generates the evaluation measure. For example: under for regression methods, over for classification methods, etc.)(The features evaluation is individual). Features that do not satisfy the threshold, will be removed. This function is called internally within the `directSearchAlgorithm` function.

Usage

```r
selectThreshold(threshold = 0.1)
```

Arguments

- `threshold` • Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez
Francisco Aragón Royón
selectThresholdRange

Select threshold range

Description

Generates a direct search function that selects the features whose evaluation is over a threshold, where this threshold is given as: \(((\min - \max) \times \text{p.threshold}) + \max\) (The features evaluation is individual). This function is called internally within the directSearchAlgorithm function.

Usage

```r
selectThresholdRange(p.threshold = 0.8)
```

Arguments

- `p.threshold` • Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodríguez
Francisco Aragón Royón
Examples

Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a direct search process
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the direct search function with threshold range
str_direct_search <- selectThresholdRange()
Performs the direct search process directly (parameters: dataset, target variable and evaluator)
str_direct_search(iris, 'Species', filter_evaluator)

End(Not run)

sequentialBackwardSelection

Sequential Backward Selection

Description

Generates a search function based on sequential backward selection. This function is called internally within the searchAlgorithm function. The SBS method (Marill and Green 1963-02) starts with all the features and removes a single feature at each step with a view to improving the evaluation of the set.

Usage

sequentialBackwardSelection(stopCriterion = -1, stop = FALSE)

Arguments

stopCriterion Define a maximum number of iterations. Disabled if the value is -1 (default: -1)
stop If true, the function stops if next iteration does not improve current results (default: FALSE)

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Adan M. Rodriguez
Alfonso Jiménez-Vilchez
Francisco Aragón Royón
References

Examples

```r
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function with sbs
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function
sbs_search <- sequentialBackwardSelection()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
sbs_search(iris, 'Species', filter_evaluator)

## End(Not run)
```

```r
sequentialFloatingBackwardSelection

Sequential Floating Backward Selection

Description

Generates a search function based on sequential floating backward selection. This function is called internally within the `searchAlgorithm` function. The sfbs method (Pudil et al. 1994) starts with all the features and removes a single feature at each step with a view to improving the evaluation of the set. In addition, it checks whether adding any of the removed features, improve the value of the set.

Usage

`sequentialFloatingBackwardSelection()`

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragón Royón
References


Examples

```r
Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a search process in a feature space
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function with sfbs
sfbs_search <- sequentialFloatingBackwardSelection()

Performs the search process directly (parameters: dataset, target variable and evaluator)
sfbs_search(iris, 'Species', filter_evaluator)

End(Not run)
```

### sequentialFloatingForwardSelection

#### Sequential Floating Forward Selection

**Description**

Generates a search function based on sequential floating forward selection. This function is called internally within the `searchAlgorithm` function. The sffs method (Pudil et al. 1994) starts with an empty set of features and add a single feature at each step with a view to improving the evaluation of the set. In addition, it checks whether removing any of the included features, improve the value of the set.

**Usage**

```r
sequentialFloatingForwardSelection()
```

**Value**

Returns a search function that is used to guide the feature selection process.

**Author(s)**

Adan M. Rodriguez
Francisco Aragón Royón
References


Examples

```r
Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a search process in a feature space
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function with sffs
sffs_search <- sequentialFloatingForwardSelection()
Performs the search process directly (parameters: dataset, target variable and evaluator)
sffs_search(iris, 'Species', filter_evaluator)

End(Not run)
```

### sequentialForwardSelection

*Sequential Forward Selection*

Description

Generates a search function based on sequential forward selection. This function is called internally within the `searchAlgorithm` function. The SFS method (Whitney 1971-sep) starts with an empty set of features and add a single feature at each step with a view to improving the evaluation of the set.

Usage

```r
sequentialForwardSelection(stopCriterion = -1, stop = FALSE)
```

Arguments

- `stopCriterion`: Define a maximum number of iterations. Disabled if the value is -1 (default: -1)
- `stop`: If true, the function stops if next iteration does not improve current results (default: FALSE)

Value

Returns a search function that is used to guide the feature selection process.
simulatedAnnealing

Author(s)
Adan M. Rodriguez
Alfonso Jiménez-Vilchez
Francisco Aragón Royón

References

Examples
## Not run:
## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function with sfs
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function
sfs_search <- sequentialForwardSelection()
# Performs the search process directly (parameters: dataset, target variable and evaluator)
sfs_search(iris, 'Species', filter_evaluator)
## End(Not run)

Description
Generates a search function based on simulated annealing. This function is called internally within the searchAlgorithm function. The simulatedAnnealing method (Kirkpatrick et al. 1983) starts with a certain set of features and in each iteration modifies an element of the previous feature vector and decreases the temperature. If the energy of the new feature vector is better than that of the old vector, it is accepted and moved towards it, otherwise it is moved towards the new vector according to an acceptance probability. The algorithm ends when the minimum temperature has been reached. Additionally, a number of internal iterations can be performed within each iteration of the algorithm. In this case, the same temperature value of the outer iteration is used for the inner iterations.

Usage
simulatedAnnealing(
  start = NULL,
  temperature = 1,
simulatedAnnealing

```r
temperature_min = 0.01,
reduction = 0.6,
innerIter = 1,
verbose = FALSE
```

**Arguments**

- `start` Binary vector with the set of initial features
- `temperature` Temperature initial
- `temperature_min` Temperature to stops in the outer loop
- `reduction` Temperature reduction in the outer loop
- `innerIter` Number of iterations of inner loop. By default no inner iterations are established
- `verbose` Print the partial results in each iteration

**Value**

Returns a search function that is used to guide the feature selection process.

**Author(s)**

Francisco Aragón Royón

**References**


**Examples**

```r
Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a search process in a feature space
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function with Simulated annealing
sa_search <- simulatedAnnealing()

Performs the search process directly (parameters: dataset, target variable and evaluator)
sa_search(iris, 'Species', filter_evaluator)

End(Not run)
```
symmetricalUncertain

Description

Generates an evaluation function that calculates the symmetrical uncertain value (Witten and Frank 2005), using the information theory (set measure). This function is called internally within the filterEvaluator function.

Usage

symmetricalUncertain()

Value

Returns a function that is used to generate an evaluation set measure using the symmetrical uncertain value for the selected features.

Author(s)

Adan M. Rodriguez

References


Examples

## Not run:
## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## Classification problem

# A discrete dataset is used (in this case we use only several discrete columns)
adult <- adult[,c(4,9,10,15)]

# Generate the evaluation function with Symmetrical Uncertain
su_evaluator <- symmetricalUncertain()

# Evaluate the features (parameters: dataset, target variable and features)
su_evaluator(adult,'income',c('race','sex','education'))

## End(Not run)
**Description**

Generates a search function based on the tabu search. This function is called internally within the `searchAlgorithm` function. The Tabu Search (Glover 1986-may) (Glover 1989) method starts with a certain set of features and in each iteration it searches among its neighbors to advance towards a better solution. The method has a memory (tabu list) that prevents returning to recently visited neighbors. The method ends when a certain number of iterations are performed, or when a certain number of iterations are performed without improvement, or when there are no possible neighbors. Once the method is finished, an intensification phase can be carried out that begins in the space of the best solutions found, or a diversification phase can be carried out in which solutions not previously visited are explored.

**Usage**

```r
tabu(
 start = NULL,
 numNeigh = NULL,
 tamTabuList = 5,
 iter = 100,
 iterNoImprovement = NULL,
 intensification = NULL,
 iterIntensification = 50,
 interPercentaje = 75,
 tamIntermediateMemory = 5,
 diversification = NULL,
 iterDiversification = 50,
 forgetTabuList = TRUE,
 verbose = FALSE
)
```

**Arguments**

- **start**
  - Binary vector with the set of initial features
- **numNeigh**
  - The number of neighbors to consider in each iteration. By default: all possible. It is important to note that a high value of this parameter considerably increases the computation time.
- **tamTabuList**
  - The size of the tabu list. By default: 5
- **iter**
  - The number of iterations of the algorithm. By default: 100
- **iterNoImprovement**
  - Number of iterations without improvement to start/reset the intensification/diversification phase. By default, it is not taken into account (all iterations are performed)
- **intensification**
  - Number of times the intensification phase is applied. None by default
iterIntensification
Number of iterations of the intensification phase

interPercentage
Percentage of the most significant features to be taken into account in the intensification phase

tamIntermediateMemory
Number of best solutions saved in the intermediate memory

diversification
Number of times the diversification phase is applied. None by default

iterDiversification
Number of iterations of the diversification phase

forgetTabuList
Forget tabu list for intensification/diversification phases. By default: TRUE

verbose
Print the partial results in each iteration

Value
Returns a search function that is used to guide the feature selection process.

Author(s)
Francisco Aragón Royón

References


Examples
## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

# Generates the search function wit Tabu search
ts_search <- tabu()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
ts_search(iris, 'Species', filter_evaluator)

## End(Not run)
Description
Generates a search function based on the whale optimization algorithm. This function is called internally within the `searchAlgorithm` function. Binary Whale Optimization Algorithm (Kumar and Kumar 2018-Oct-16) is an algorithm that simulates the social behavior of humpback whales. This algorithm employs a binary version of the bubble-net hunting strategy. The algorithm starts with an initial population of individuals, and in each iteration updates the individuals according to several possible actions: Encircling prey, Bubble-net attacking or Search for prey.

Usage

whaleOptimization(population = 10, iter = 10, verbose = FALSE)

Arguments

- **population**: The number of whales population
- **iter**: The number of iterations of the algorithm
- **verbose**: Print the partial results in each iteration

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragón Royón

References


Examples

```r
Not run:

The direct application of this function is an advanced use that consists of using this
function directly and performing a search process in a feature space
Classification problem

Generates the filter evaluation function
filter_evaluator <- filterEvaluator('determinationCoefficient')

Generates the search function with WOA
```
wrapperEvaluator

Description

Generates a wrapper function to be used as an evaluator (Kohavi and John 1997) in the feature selection process, given a learner algorithm and related customizable parameters (from Jed Wing et al. 2018). More specifically, the result of calling this function is another function that is passed on as a parameter to the featureSelection function. However, you can also run this function directly to generate an evaluation measure.

Usage

wrapperEvaluator(learner, resamplingParams = list(), fittingParams = list())

Arguments

learner Learner to be used. The models available are the models available in caret: http://topepo.github.io/caret/available-models.html

resamplingParams Control parameters for evaluating the impact of model tuning parameters. The arguments are the same as those of the caret trainControl function. By default an empty list. In this case the default caret values are used for resampling and fitting.

fittingParams Control parameters for choose the best model across the parameters. The arguments are the same as those of the caret train function (minus the parameters: x, y, form, data, method and trainControl). By default an empty list. In this case the default caret values are used for resampling and fitting.

Details
generaWrapper

Value

Returns a wrapper function that is used to generate an evaluation measure

Author(s)

Alfonso Jiménez-Vilchez
Francisco Aragón Royón
References


Examples

## Not run:

## Examples of a wrapper evaluator generation

wrapper_evaluator_1 <- wrapperEvaluator('knn')
wrapper_evaluator_2 <- wrapperEvaluator('mlp')
wrapper_evaluator_3 <- wrapperEvaluator('randomForest')

## Examples of a wrapper evaluator generation (with parameters)

# Values for the caret trainControl function (resampling parameters)
resamplingParams <- list(method = "repeatedcv", repeats = 3)
# Values for the caret train function (fitting parameters)
fittingParams <- list(preProc = c("center", "scale"), metric="Accuracy",
                      tuneGrid = expand.grid(k = c(1:12)))

wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)

## The direct application of this function is an advanced use that consists of using this
## function directly to evaluate a set of features
## Classification problem

# Generates the wrapper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn')
# Evaluates features directly (parameters: dataset, target variable and features)
wrapper_evaluator(iris,'Species',c('Sepal.Length','Sepal.Width','Petal.Length','Petal.Width'))

## End(Not run)
Index

antColony, 3, 40
binaryConsistency, 4, 16
breadthFirst, 5, 40
chiSquared, 6, 16
cramer, 7, 16
deepFirst, 8, 40
determinationCoefficient, 9, 16
directFeatureSelection, 10, 12
directSearchAlgorithm, 10, 12, 41–46
featureSelection, 13, 16, 25, 29, 39, 57
filterEvaluator, 4, 6, 7, 9, 10, 14, 16, 17, 18, 21, 23, 26, 27, 29, 32–38, 53
fscore, 16, 17
gainRatio, 16, 18
geneticAlgorithm, 19, 40
giniIndex, 16, 21
hillClimbing, 22, 40
hybridFeatureSelection, 23
hybridSearchAlgorithm, 23, 25
IEConsistency, 16, 26
IEPConsistency, 27
isDataframeContinuous, 28
isDataframeDiscrete, 29
Jd, 16, 29
LasVegas, 30, 40
LCC, 25, 31

MDLC, 16, 32
mutualInformation, 16, 33

normalizedRelief, 34
normalizedReliefFeatureSetMeasure, 35

relief, 16, 36
ReliefFeatureSetMeasure, 16, 37
roughsetConsistency, 16, 38

searchAlgorithm, 3, 5, 8, 14, 19, 22, 30, 39, 47–51, 54, 56
selectDifference, 12, 41
selectKBest, 12, 42
selectPercentile, 12, 43
selectSlope, 12, 44
selectThreshold, 12, 45
selectThresholdRange, 12, 46
sequentialBackwardSelection, 40, 47
sequentialFloatingBackwardSelection, 40, 48
sequentialFloatingForwardSelection, 40, 49
sequentialForwardSelection, 40, 50
simulatedAnnealing, 40, 51
symmetricalUncertain, 16, 53

tabu, 40, 54

whaleOptimization, 40, 56
wrapperEvaluator, 10, 14, 23, 57