Package ‘FactoMineR’

September 9, 2022

Version 2.6

Title Multivariate Exploratory Data Analysis and Data Mining

Author Francois Husson, Julie Josse, Sebastien Le, Jeremy Mazet

Maintainer Francois Husson <francois.husson@agrocampus-ouest.fr>

Depends R (>= 4.0)

Imports car, cluster, DT, ellipse, emmeans, flashClust, graphics, grDevices, lattice, leaps, MASS, multcompView, scatterplot3d, stats, utils, ggplot2, ggrepel

Suggests missMDA, knitr, Factoshiny, markdown

Description Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis. F. Husson, S. Le and J. Pages (2017).

License GPL (>= 2)

URL http://factominer.free.fr

BugReports https://github.com/husson/FactoMineR

Encoding latin1

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-09-09 10:53:01 UTC

R topics documented:

FactoMineR-package .. 3
AovSum ... 4
autoLab ... 5
CA ... 6
CaGalt ... 8
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>catdes</td>
<td>10</td>
</tr>
<tr>
<td>children</td>
<td>11</td>
</tr>
<tr>
<td>coefRV</td>
<td>12</td>
</tr>
<tr>
<td>condes</td>
<td>13</td>
</tr>
<tr>
<td>coord.ellipse</td>
<td>14</td>
</tr>
<tr>
<td>decathlon</td>
<td>15</td>
</tr>
<tr>
<td>descfreq</td>
<td>16</td>
</tr>
<tr>
<td>dimdesc</td>
<td>17</td>
</tr>
<tr>
<td>DMFA</td>
<td>18</td>
</tr>
<tr>
<td>ellipseCA</td>
<td>19</td>
</tr>
<tr>
<td>estim_ncp</td>
<td>21</td>
</tr>
<tr>
<td>FAMD</td>
<td>22</td>
</tr>
<tr>
<td>footsize</td>
<td>23</td>
</tr>
<tr>
<td>geomorphology</td>
<td>24</td>
</tr>
<tr>
<td>GPA</td>
<td>25</td>
</tr>
<tr>
<td>graph.var</td>
<td>26</td>
</tr>
<tr>
<td>HPC</td>
<td>28</td>
</tr>
<tr>
<td>health</td>
<td>30</td>
</tr>
<tr>
<td>HMFA</td>
<td>31</td>
</tr>
<tr>
<td>hobbies</td>
<td>32</td>
</tr>
<tr>
<td>JO</td>
<td>33</td>
</tr>
<tr>
<td>LinearModel</td>
<td>34</td>
</tr>
<tr>
<td>MCA</td>
<td>35</td>
</tr>
<tr>
<td>meansComp</td>
<td>38</td>
</tr>
<tr>
<td>MFA</td>
<td>39</td>
</tr>
<tr>
<td>milk</td>
<td>42</td>
</tr>
<tr>
<td>mortality</td>
<td>42</td>
</tr>
<tr>
<td>PCA</td>
<td>43</td>
</tr>
<tr>
<td>plot.CA</td>
<td>45</td>
</tr>
<tr>
<td>plot.CaGalt</td>
<td>48</td>
</tr>
<tr>
<td>plot.catdes</td>
<td>50</td>
</tr>
<tr>
<td>plot.DMFA</td>
<td>51</td>
</tr>
<tr>
<td>plot.FAMD</td>
<td>52</td>
</tr>
<tr>
<td>plot.GPA</td>
<td>54</td>
</tr>
<tr>
<td>plot.HCPC</td>
<td>55</td>
</tr>
<tr>
<td>plot.HMFA</td>
<td>57</td>
</tr>
<tr>
<td>plot.MCA</td>
<td>58</td>
</tr>
<tr>
<td>plot.meansComp</td>
<td>61</td>
</tr>
<tr>
<td>plot.MFA</td>
<td>62</td>
</tr>
<tr>
<td>plot.PCA</td>
<td>65</td>
</tr>
<tr>
<td>plot.ellipses</td>
<td>68</td>
</tr>
<tr>
<td>plotGPAPartial</td>
<td>70</td>
</tr>
<tr>
<td>plotMFAPartial</td>
<td>71</td>
</tr>
<tr>
<td>poison</td>
<td>73</td>
</tr>
<tr>
<td>poison.text</td>
<td>74</td>
</tr>
<tr>
<td>poulet</td>
<td>74</td>
</tr>
<tr>
<td>predict.CA</td>
<td>75</td>
</tr>
<tr>
<td>predict.FAMD</td>
<td>76</td>
</tr>
</tbody>
</table>
Description

The method proposed in this package are exploratory multivariate methods such as principal component analysis, correspondence analysis or clustering.

Details
AovSum

Analysis of variance with the contrasts sum (the sum of the coefficients is 0)

Description

Analysis of variance with the contrasts sum (the sum of the coefficients is 0)
Test for all the coefficients
Handle missing values

Usage

AovSum(formula, data, na.action = na.omit, ...)

Arguments

formula the formula for the model ’y~x1+x2+x1:x2’
data a data-frame
na.action (where relevant) information returned by model.frame on the special handling of NAs.
... other arguments, cf the function lm
autoLab

Value

Retourne des objets

Ftest a table with the F-tests
Ttest a table with the t-tests

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

aov, lm

Examples

Example two-way anova
data(senso)
res <- AovSum(Score~ Product + Day , data=senso)
res

Example two-way anova with interaction
data(senso)
res2 <- AovSum(Score~ Product + Day + Product : Day, data=senso)
res2

Example ancova
data(footsize)
res3 <- AovSum(footsize ~ size + sex + size : sex, data=footsize)
res3

autoLab Function to better position the labels on the graphs

Description

Function to better position the labels on the graphs.

Usage

autoLab(x, y = NULL, labels = seq(along = x), cex = 1,
method = c("SANN", "GA"),
allowSmallOverlap = FALSE,
trace = FALSE, shadotext = FALSE,
doPlot = TRUE, ...)
Arguments

- **x**: the x-coordinates
- **y**: the y-coordinates
- **labels**: the labels
- **cex**: cex
- **method**: not used
- **allowSmallOverlap**: boolean
- **trace**: boolean
- **shadotext**: boolean
- **doPlot**: boolean
- **...**: further arguments passed to or from other methods

Value

See the text function

CA

Correspondence Analysis (CA)

Description

Performs Correspondence Analysis (CA) including supplementary row and/or column points.

Usage

```r
CA(X, ncp = 5, row.sup = NULL, col.sup = NULL,
   quanti.sup=NULL, quali.sup = NULL, graph = TRUE,
   axes = c(1,2), row.w = NULL, excl=NULL)
```

Arguments

- **X**: a data frame or a table with \(n \) rows and \(p \) columns, i.e. a contingency table
- **ncp**: number of dimensions kept in the results (by default 5)
- **row.sup**: a vector indicating the indexes of the supplementary rows
- **col.sup**: a vector indicating the indexes of the supplementary columns
- **quanti.sup**: a vector indicating the indexes of the supplementary continuous variables
- **quali.sup**: a vector indicating the indexes of the categorical supplementary variables
- **graph**: boolean, if TRUE a graph is displayed
- **axes**: a length 2 vector specifying the components to plot
- **row.w**: an optional row weights (by default, a vector of 1 and each row has a weight equals to its margin); the weights are given only for the active rows
- **excl**: numeric vector indicating the indexes of the "junk" columns (default is NULL). Useful for MCA with excl argument.
Value

Returns a list including:

- `eig` a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
- `col` a list of matrices with all the results for the column variable (coordinates, square cosine, contributions, inertia)
- `row` a list of matrices with all the results for the row variable (coordinates, square cosine, contributions, inertia)
- `col.sup` a list of matrices containing all the results for the supplementary column points (coordinates, square cosine)
- `row.sup` a list of matrices containing all the results for the supplementary row points (coordinates, square cosine)
- `quanti.sup` if `quanti.sup` is not NULL, a matrix containing the results for the supplementary continuous variables (coordinates, square cosine)
- `quali.sup` if `quali.sup` is not NULL, a list of matrices with all the results for the supplementary categorical variables (coordinates of each categories of each variables, v.test which is a criterion with a Normal distribution, square correlation ratio)
- `call` a list with some statistics

Returns the row and column points factor map.
The plot may be improved using the argument `autolab`, modifying the size of the labels or selecting some elements thanks to the `plot.CA` function.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>, Jeremy Mazet

References

See Also

`print.CA`, `summary.CA`, `ellipseCA`, `plot.CA`, `dimdesc`,
Video showing how to perform CA with FactoMineR
Examples

data(children)
res.ca <- CA (children, row.sup = 15:18, col.sup = 6:8)
summary(res.ca)
Ellipses for all the active elements
eLLipseCA(res.ca)
Ellipses around some columns only
ellipseCA(res.ca, ellipse="col", col.col.ell=c(rep("blue",2),rep("transparent",3)),
invisible=c("row.sup","col.sup"))

Not run:
Graphical interface
require(Factoshiny)
res <- Factoshiny(children)
End(Not run)

CaGalt Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt)

Description

Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) aims at expanding correspondence analysis on an aggregated lexical table to the case of several quantitative and categorical variables with the objective of establishing a typology of the variables and a typology of the frequencies from their mutual relationships. To avoid the instability issued from multicollinearity among the contextual variables and limit the influence of noisy measurements, the contextual variables are substituted by their principal components. Validation tests in the form of confidence ellipses for the frequencies and the variables are also proposed.

Usage

CaGalt(Y, X, type="s", conf.ellip=FALSE, nb.ellip=100, level.ventil=0, sx=NULL, graph=TRUE, axes=c(1,2))

Arguments

Y a data frame with n rows (individuals) and p columns (frequencies)
X a data frame with n rows (individuals) and k columns (quantitative or categorical variables)
type the type of variables: "c" or "s" for quantitative variables and "n" for categorical variables. The difference is that for "s" variables are scaled to unit variance (by default, variables are scaled to unit variance)
conf.ellip boolean (FALSE by default), if TRUE, draw confidence ellipses around the frequencies and the variables when "graph" is TRUE
nb.ellip number of bootstrap samples to compute the confidence ellipses (by default 100)
level.ventil proportion corresponding to the level under which the category is ventilated; by default, 0 and no ventilation is done. Available only when type is equal to "n"

sx number of principal components kept from the principal axes analysis of the contextual variables (by default is NULL and all principal components are kept)

graph boolean, if TRUE a graph is displayed

axes a length 2 vector specifying the components to plot

Value

Returns a list including:

eig a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance

ind a list of matrices containing all the results for the individuals (coordinates, square cosine)

freq a list of matrices containing all the results for the frequencies (coordinates, square cosine, contributions)

quanti.var a list of matrices containing all the results for the quantitative variables (coordinates, correlation between variables and axes, square cosine)

quali.var a list of matrices containing all the results for the categorical variables (coordinates of each categories of each variables, square cosine)

ellip a list of matrices containing the coordinates of the frequencies and variables for replicated samples from which the confidence ellipses are constructed

Returns the individuals, the frequencies and the variables factor map. If there are more than 50 frequencies, the first 50 frequencies that have the highest contribution on the 2 dimensions of your plot are drawn. The plots may be improved using the argument autolab, modifying the size of the labels or selecting some elements thanks to the plot.CaGalt function.

Author(s)

Belchin Kostov <badriyan@clinic.ub.es>, Monica Becue-Bertaut, Francois Husson

References

See Also

Not run:
Example with categorical variables
```r
data(health)
res.cagalt<-CaGalt(Y=health[,1:115],X=health[,116:118],type="n")
```  
End(Not run)

catdes

Categories description

Description of the categories of one factor by categorical variables and/or by quantitative variables.

Usage

```r
catdes(donnee,num.var,proba = 0.05, row.w = NULL)
```  
Arguments

- `donnee`: a data frame made up of at least one categorical variables and a set of quantitative variables and/or categorical variables.
- `num.var`: the indice of the variable to characterized.
- `proba`: the significance threshold considered to characterized the category (by default 0.05).
- `row.w`: a vector of integers corresponding to an optional row weights (by default, a vector of 1 for uniform row weights).

Value

Returns a list including:

- `test.chi`: The categorical variables which characterized the factor are listed in ascending order (from the one which characterized the most the factor to the one which significantly characterized with the `proba`.
- `category`: description of each category of the `num.var` by each category of all the categorical variables.
- `quanti.var`: the global description of the `num.var` variable by the quantitative variables with the square correlation coefficient and the p-value of the F-test in a one-way analysis of variance (assuming the hypothesis of homoscedasticy).
- `quanti`: the description of each category of the `num.var` variable by the quantitative variables.
children

Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also
plot.catdes, condes

Examples
data(wine)
catdes(wine, num.var=2)

The data used here is a contingency table that summarizes the answers given by different categories of people to the following question: according to you, what are the reasons that can make hesitate a woman or a couple to have children?

Usage
data(children)

Format
A data frame with 18 rows and 8 columns. Rows represent the different reasons mentioned, columns represent the different categories (education, age) people belong to.

Source
Traitements Statistiques des Enquetes (D. Grange, L. Lebart, eds.) Dunod, 1993

Examples
data(children)
res.ca <- CA(children, row.sup = 15:18, col.sup = 6:8)
Calculate the RV coefficient and test its significance.

Usage

\[\text{coeffRV}(X, Y) \]

Arguments

- \(X \): a matrix with \(n \) rows (individuals) and \(p \) numerous columns (variables)
- \(Y \): a matrix with \(n \) rows (individuals) and \(p \) numerous columns (variables)

Details

Calculates the RV coefficient between \(X \) and \(Y \). It returns also the standardized RV, the expectation, the variance and the skewness under the permutation distribution. These moments are used to approximate the exact distribution of the RV statistic with the Pearson type III approximation and the p-value associated to this test is given.

Value

A list containing the following components:

- \(\text{RV} \): the RV coefficient between the two matrices
- \(\text{RVs} \): the standardized RV coefficients
- \(\text{mean} \): the mean of the RV permutation distribution
- \(\text{variance} \): the variance of the RV permutation distribution
- \(\text{skewness} \): the skewness of the RV permutation distribution
- \(\text{p.value} \): the p-value associated to the test of the significativity of the RV coefficient (with the Pearson type III approximation)

Author(s)

Julie Josse, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

condes

Examples

```r
data(wine)
X <- wine[,3:7]
Y <- wine[,11:20]
coeffRV(X,Y)
```

<table>
<thead>
<tr>
<th>condes</th>
<th>Continuous variable description</th>
</tr>
</thead>
</table>

Description

Description continuous by quantitative variables and/or by categorical variables

Usage

```r
condes(donnee,num.var,weights=NULL,proba = 0.05)
```

Arguments

- **donnee**: a data frame made up of at least one quantitative variable and a set of quantitative variables and/or categorical variables
- **num.var**: the number of the variable to characterized
- **weights**: weights for the individuals; if NULL, all individuals has a weight equals to 1; the sum of the weights can be equal to 1 and then the weights will be multiplied by the number of individuals, the sum can be greater than the number of individuals
- **proba**: the significance threshold considered to characterized the category (by default 0.05)

Value

Returns a list including:

- **quanti**: the description of the `num.var` variable by the quantitative variables. The variables are sorted in ascending order (from the one which characterized the most to the one which significantly characterized with the proba `proba`)
- **quali**: the categorical variables which characterized the continuous variables are listed in ascending order
- **category**: description of the continuous variable `num.var` by each category of all the categorical variables

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

catdes
Examples

data(decathlon)
condes(decathlon, num.var=3)

coord.ellipse

Construct confidence ellipses

Description

Construct confidence ellipses

Usage

coord.ellipse (coord.simul, centre = NULL, axes = c(1, 2),
level.conf = 0.95, npoint = 100, bary = FALSE)

Arguments

coord.simul a data frame containing the coordinates of the individuals for which the confidence ellipses are constructed. This data frame can contain more than 2 variables; the variables taken into account are chosen after. The first column must be a factor which allows to associate one row to an ellipse. The simule object of the result of the simule function correspond to a data frame.

centre a data frame whose columns are the same than those of the coord.simul, and with the coordinates of the centre of each ellipse. This parameter is optional and NULL by default; in this case, the centre of the ellipses is calculated from the data

axes a length 2 vector specifying the components of coord.simul that are taken into account

level.conf confidence level used to construct the ellipses. By default, 0.95

npoint number of points used to draw the ellipses

bary boolean, if bary = TRUE, the coordinates of the ellipse around the barycentre of individuals are calculated

Value

res a data frame with (npoint times the number of ellipses) rows and three columns. The first column is the factor of coord.simul, the two others columns give the coordinates of the ellipses on the two dimensions chosen.

call the parameters of the function chosen

Author(s)

Jeremy Mazet
decathlon

See Also

simule

Examples

```r
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13, graph=FALSE)
aa <- cbind.data.frame(decathlon[,13], res.pca$ind$coord)
bb <- coord.ellipse(aa, bary=TRUE)
plot(res.pca, habillage=13, ellipse=bb)

## To automatically draw ellipses around the barycentres of all the categorical variables
plotellipses(res.pca)
```

decathlon

Performance in decathlon (data)

Description

The data used here refer to athletes’ performance during two sporting events.

Usage

```r
data(decathlon)
```

Format

A data frame with 41 rows and 13 columns: the first ten columns corresponds to the performance of the athletes for the 10 events of the decathlon. The columns 11 and 12 correspond respectively to the rank and the points obtained. The last column is a categorical variable corresponding to the sporting event (2004 Olympic Game or 2004 Decastar)

Source

Department of statistics and computer science, Agrocampus Rennes

Examples

```r
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13)
```
descfreq

Description of frequencies

Description
Description of the rows of a contingency table or of groups of rows of a contingency table

Usage
```
descfreq(donnee, by.quali = NULL, proba = 0.05)
```

Arguments
- `donnee`: a data frame corresponding to a contingency table (quantitative data)
- `by.quali`: a factor used to merge the data from different rows of the contingency table; by default NULL and each row is characterized
- `proba`: the significance threshold considered to characterized the category (by default 0.05)

Value
Returns a list with the characterization of each rows or each group of the by.quali. A test corresponding to the hypergeometric distribution is performed and the probability to observe a more extreme value than the one observed is calculated. For each row (or category), each of the columns characterising the row are sorted in ascending order of p-value.

Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also
- `catdes`, `condes`, `textual`

Examples
```
data(children)
descfreq(children[1:14,1:5])  # desc of rows
descfreq(t(children[1:14,1:5])) # desc of columns
```
Description

This function is designed to point out the variables and the categories that are the most characteristic according to each dimension obtained by a Factor Analysis.

Usage

dimdesc(res, axes = 1:3, proba = 0.05)

Arguments

res an object of class PCA, MCA, CA, MFA or HMFA
axes a vector with the dimensions to describe
proba the significance threshold considered to characterized the dimension (by default 0.05)

Value

Returns a list including:

quanti the description of the dimensions by the quantititative variables. The variables are sorted.
quali the description of the dimensions by the categorical variables

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also

PCA, CA, MCA, MFA, HMFA,
Video showing how to use this function

Examples

data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13, graph=FALSE)
dimdesc(res.pca)
DMFA

Dual Multiple Factor Analysis (DMFA)

Description

Performs Dual Multiple Factor Analysis (DMFA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables.

Usage

```r
DMFA(don, num.fact = ncol(don), scale.unit = TRUE, ncp = 5,
     quanti.sup = NULL, quali.sup = NULL, graph = TRUE, axes=c(1,2))
```

Arguments

don a data frame with \(n \) rows (individuals) and \(p \) columns (numeric variables)
num.fact the number of the categorical variable which allows to make the group of individuals
scale.unit a boolean, if TRUE (value set by default) then data are scaled to unit variance
ncp number of dimensions kept in the results (by default 5)
quanti.sup a vector indicating the indexes of the quantitative supplementary variables
quali.sup a vector indicating the indexes of the categorical supplementary variables
graph boolean, if TRUE a graph is displayed
axes a length 2 vector specifying the components to plot

Value

Returns a list including:

eig a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
var a list of matrices containing all the results for the active variables (coordinates, correlation between variables and axes, square cosine, contributions)
ind a list of matrices containing all the results for the active individuals (coordinates, square cosine, contributions)
ind.sup a list of matrices containing all the results for the supplementary individuals (coordinates, square cosine)
quanti.sup a list of matrices containing all the results for the supplementary quantitative variables (coordinates, correlation between variables and axes)
quali.sup a list of matrices containing all the results for the supplementary categorical variables (coordinates of each categories of each variables, and v.test which is a criterion with a Normal distribution)
svd the result of the singular value decomposition
ellipseCA

var.partiel a list with the partial coordinate of the variables for each group
cor.dim.gr a list with the data centered by group
Xc a list with the results for the groups (coordinate, normalized coordinates, cos2)
group a list with the covariance matrices for each group

Returns the individuals factor map and the variables factor map.

Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also
plot.DMFA, dimdesc

Examples
Example with the famous Fisher’s iris data
res.dmfa = DMFA (iris, num.fact = 5)

ellipseCA Draw confidence ellipses in CA

Description

Draw confidence ellipses in CA around rows and/or columns.

Usage

```r
ellipseCA (x, ellipse=c("col","row"), method="multinomial", nbsample=100,
axes=c(1,2), xlim=NULL, ylim=NULL, col.row="blue", col.col="red",
col.row.ell=col.row, col.col.ell=col.col,
graph.type = c("ggplot","classic"), ggoptions = NULL, ...)
```

Arguments

- **x**: an object of class CA
- **ellipse**: a vector of character that defines which ellipses are drawn
- **method**: the method to construct ellipses (see details below)
- **nbsample**: number of samples drawn to evaluate the stability of the points
- **axes**: a length 2 vector specifying the components to plot
- **xlim**: range for the plotted ‘x’ values, defaulting to the range of the finite values of ’x’
- **ylim**: range for the plotted ‘y’ values, defaulting to the range of the finite values of ’y’
- **col.row**: a color for the rows points
col.col

a color for columns points

col.row.ell

a color for the ellipses of rows points (the color "transparent" can be used if an ellipse should not be drawn)

col.col.ell

a color for the ellipses of columns points (the color "transparent" can be used if an ellipse should not be drawn)

graph.type

a character that gives the type of graph used: "ggplot" or "classic"

ggoptions

a list that gives the graph options when graph.type="ggplot" is used. See the optines and the default values in the details section

... further arguments passed to or from the plot.CA function, such as title, invisible, ...

Details

With method="multinomial", the table X with the active elements is taken as a reference. Then new data tables are drawn in the following way: N (the sum of X) values are drawn from a multinomial distribution with theoretical frequencies equals to the values in the cells divided by N.

With method="boot", the values are bootstrapped row by row: Ni (the sum of row i in the X table) values are taken in a vector with Nij equals to column j (with j varying from 1 to J). Thus nbsample new datasets are drawn and projected as supplementary rows and/or supplementary columns. Then confidence ellipses are drawn for each elements thanks to the nbsample supplementary points.

Value

Returns the factor map with the joint plot of CA with ellipses around some elements.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also

plot.CA, CA

Examples

data(children)
res.ca <- CA (children, col.sup = 6:8, row.sup = 15:18)
Ellipses for all the active elements
ellipseCA(res.ca)
Ellipses around some columns only
ellipseCA(res.ca,ellipse="col",col.col.ell=c(rep("red",2),rep("transparent",3)),
invisible=c("row.sup","col.sup"))
estim_ncp

Estimate the number of components in Principal Component Analysis

Description

Estimate the number of components in PCA.

Usage

```r
estim_ncp(X, ncp.min=0, ncp.max=NULL, scale=TRUE, method="GCV")
```

Arguments

- `X`: a data frame with continuous variables
- `ncp.min`: minimum number of dimensions to interpret, by default 0
- `ncp.max`: maximum number of dimensions to interpret, by default NULL which corresponds to the number of columns minus 2
- `scale`: a boolean, if TRUE (value set by default) then data are scaled to unit variance
- `method`: method used to estimate the number of components, "GCV" for the generalized cross-validation approximation or "Smooth" for the smoothing method (by default "GCV")

Value

Returns `ncp` the best number of dimensions to use (find the minimum or the first local minimum) and the mean error for each dimension tested.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>, Julie Josse <Julie.Josse@agrocampus-ouest.fr>

References

See Also

`PCA`

Examples

```r
data(decathlon)
nb.dim <- estim_ncp(decathlon[,1:10],scale=TRUE)
```
Factor Analysis for Mixed Data

Description

FAMD is a principal component method dedicated to explore data with both continuous and categorical variables. It can be seen roughly as a mixed between PCA and MCA. More precisely, the continuous variables are scaled to unit variance and the categorical variables are transformed into a disjunctive data table (crisp coding) and then scaled using the specific scaling of MCA. This ensures to balance the influence of both continuous and categorical variables in the analysis. It means that both variables are on an equal foot to determine the dimensions of variability. This method allows one to study the similarities between individuals taking into account mixed variables and to study the relationships between all the variables. It also provides graphical outputs such as the representation of the individuals, the correlation circle for the continuous variables and representations of the categories of the categorical variables, and also specific graphs to visualize the associations between both type of variables.

Usage

FAMD(base, ncp = 5, graph = TRUE, sup.var = NULL, ind.sup = NULL, axes = c(1,2), row.w = NULL, tab.disj = NULL)

Arguments

- **base**: a data frame with \(n \) rows (individuals) and \(p \) columns
- **ncp**: number of dimensions kept in the results (by default 5)
- **graph**: boolean, if TRUE a graph is displayed
- **ind.sup**: a vector indicating the indexes of the supplementary individuals
- **sup.var**: a vector indicating the indexes of the supplementary variables
- **axes**: a length 2 vector specifying the components to plot
- **row.w**: an optional row weights (by default, uniform row weights); the weights are given only for the active individuals
- **tab.disj**: object obtained from the imputeFAMD function of the missMDA package that allows to handle missing values

Value

Returns a list including:

- **eig**: a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
- **var**: a list of matrices containing all the results for the variables considered as group (coordinates, square cosine, contributions)
- **ind**: a list of matrices with all the results for the individuals (coordinates, square cosine, contributions)
argument

returns the individuals factor map.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also

print.FAMD, summary.FAMD, plot.FAMD,

Video showing how to perform FAMD with FactoMineR

Examples

```r
## Not run:
data(geomorphology)
res <- FAMD(geomorphology)
summary(res)

## Graphical interface
require(Factoshiny)
res <- Factoshiny(geomorphology)

### with missing values
require(missMDA)
data(ozone)
res.impute <- imputeFAMD(ozone, ncp=3)
res.afdm <- FAMD(ozone,tab.disj=res.impute$tab.disj)

## End(Not run)
```

footsize

Dataset for the covariance analysis (a quantitative variable explained by quantitative (continuous) and qualitative (categorical) variables)
Usage
data(footsize)

Format
Dataset with 84 rows and 3 columns: footsize, size and sex

Examples
data(footsize)
res3 <- AovSum (footsize ~ size + sex + size : sex, data=footsize)
res3

Description
The data used here concern a geomorphology analysis.

Usage
data(geomorphology)

Format
A data frame with 75 rows and 11 columns. Rows represent the individuals, columns represent the different questions. 10 variables are quantitative and one variable is qualitative. The dataset is analysed in: http://www.sciencedirect.com/science/article/pii/S0169555X11006362

Examples
Not run:
data(geomorphology)
res <- FAMD(geomorphology)
plot(res,choix="ind",habillage=4)
End(Not run)
Description

Performs Generalised Procrustes Analysis (GPA) that takes into account missing values.

Usage

```r
GPA(df, tolerance=10^-10, nbiteration=200, scale=TRUE,
    group, name.group = NULL, graph = TRUE, axes = c(1,2))
```

Arguments

- `df`: a data frame with \(n \) rows (individuals) and \(p \) columns (quantitative variables)
- `tolerance`: a threshold with respect to which the algorithm stops, i.e. when the difference between the GPA loss function at step \(n \) and \(n+1 \) is less than tolerance
- `nbiteration`: the maximum number of iterations until the algorithm stops
- `scale`: a boolean, if TRUE (which is the default value) scaling is required
- `group`: a vector indicating the number of variables in each group
- `name.group`: a vector indicating the name of the groups (the groups are successively named group.1, group.2 and so on, by default)
- `graph`: boolean, if TRUE a graph is displayed
- `axes`: a length 2 vector specifying the components to plot

Details

Performs a Generalised Procrustes Analysis (GPA) that takes into account missing values: some data frames of `df` may have non described or non evaluated rows, i.e. rows with missing values only.

The algorithm used here is the one developed by Commandeur.

Value

A list containing the following components:

- `RV`: a matrix of RV coefficients between partial configurations
- `RVs`: a matrix of standardized RV coefficients between partial configurations
- `simi`: a matrix of Procrustes similarity indexes between partial configurations
- `scaling`: a vector of isotropic scaling factors
- `dep`: an array of initial partial configurations
- `consensus`: a matrix of consensus configuration
- `Xfin`: an array of partial configurations after transformations
correlations correlation matrix between initial partial configurations and consensus dimensions
PANOVA a list of "Procrustes Analysis of Variance" tables, per assesor (config), per product (objet), per dimension (dimension)

Author(s)
Elisabeth Morand

References

Examples
Not run:
data(wine)
res.gpa <- GPA(wine[, -(1:2)], group=c(5,3,10,9,2), name.group=c("olf","vis","olfag","gust","ens"))
If you want to construct the partial points for some individuals only
plotGPAPartial (res.gpa)
End(Not run)

graph.var Make graph of variables

Description
Plot the graphs of the variables after a Factor Analysis.

Usage
graph.var(x, axes = c(1, 2),
 xlim = NULL, ylim = NULL, col.sup = "blue",
 col.var = "black", draw="all", label=draw, lim.cos2.var = 0.1,
 cex = 1, title = NULL, new.plot = TRUE, ...)
graph.var

Arguments

- **x**: an object of class PCA, MCA, MFA or HMFA
- **axes**: a length 2 vector specifying the components to plot
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **col.sup**: a color for the quantitative supplementary variables
- **col.var**: a color for the variables
- **draw**: a list of character for the variables which are drawn (by default, all the variables are drawn). You can draw all the active variables by putting "var" and/or all the supplementary variables by putting "quanti.sup" and/or a list with the names of the variables which should be drawn
- **label**: a list of character for the variables which are labelled (by default, all the drawn variables are labelled). You can label all the active variables by putting "var" and/or all the supplementary variables by putting "quanti.sup" and/or a list with the names of the variables which should be labelled
- **lim.cos2.var**: value of the square cosinus under the variables are not drawn
- **cex**: cf. function par in the graphics package
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **new.plot**: boolean, if TRUE, a new graphical device is created
- **...**: further arguments passed to or from other methods

Value

Returns the variables factor map.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

PCA, MFA, MCA, DMFA, HMFA

Examples

data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13, graph = FALSE)
graph.var(res.pca, draw = c("var","Points"),
 label = c("Long.jump", "Points"))
Description

Performs an agglomerative hierarchical clustering on results from a factor analysis. It is possible to cut the tree by clicking at the suggested (or an other) level. Results include paragons, description of the clusters, graphics.

Usage

```r
HCPC(res, nb.clust=0, consol=TRUE, iter.max=10, min=3,
     max=NULL, metric="euclidean", method="ward", order=TRUE,
     graph.scale="inertia", nb.par=5, graph=TRUE, proba=0.05,
     cluster.CA="rows",kk=Inf,description=TRUE,...)
```

Arguments

- `res`: Either the result of a factor analysis or a dataframe.
- `nb.clust`: an integer. If 0, the tree is cut at the level the user clicks on. If -1, the tree is automatically cut at the suggested level (see details). If a (positive) integer, the tree is cut with nb.clusters clusters.
- `consol`: a boolean. If TRUE, a k-means consolidation is performed (consolidation cannot be performed if kk is used and equals a number).
- `iter.max`: An integer. The maximum number of iterations for the consolidation.
- `min`: an integer. The least possible number of clusters suggested.
- `max`: an integer. The higher possible number of clusters suggested; by default the minimum between 10 and the number of individuals divided by 2.
- `metric`: The metric used to built the tree. See `agnes` for details.
- `method`: The method used to built the tree. See `agnes` for details.
- `order`: A boolean. If TRUE, clusters are ordered following their center coordinate on the first axis.
- `graph.scale`: A character string. By default "inertia" and the height of the tree corresponds to the inertia gain, else "sqrt-inertia" the square root of the inertia gain.
- `nb.par`: An integer. The number of edited paragons.
- `graph`: If TRUE, graphics are displayed. If FALSE, no graph are displayed.
- `proba`: The probability used to select axes and variables in catdes (see `catdes` for details).
- `cluster.CA`: A string equals to "rows" or "columns" for the clustering of Correspondence Analysis results.
An integer corresponding to the number of clusters used in a Kmeans preprocessing before the hierarchical clustering; the top of the hierarchical tree is then constructed from this partition. This is very useful if the number of individuals is high. Note that consolidation cannot be performed if kk is different from Inf and some graphics are not drawn. Inf is used by default and no preprocessing is done, all the graphical outputs are then given.

description

boolean; if TRUE the clusters are characterized by the variables and the dimensions

... Other arguments from other methods.

Details

The function first built a hierarchical tree. Then the sum of the within-cluster inertia are calculated for each partition. The suggested partition is the one with the higher relative loss of inertia \((i(\text{clusters } n+1))/i(\text{cluster } n))\).

The absolute loss of inertia \((i(\text{cluster } n)-i(\text{cluster } n+1))\) is plotted with the tree.

If the ascending clustering is constructed from a data-frame with a lot of rows (individuals), it is possible to first perform a partition with kk clusters and then construct the tree from the (weighted) kk clusters.

Value

Returns a list including:

data.clust The original data with a supplementary column called clust containing the partition.

desc.var The description of the classes by the variables. See catdes for details or descfreq if clustering is performed on CA results.

desc.axes The description of the classes by the factors (axes). See catdes for details.

call A list or parameters and internal objects. call$t gives the results for the hierarchical tree; call$bw.before.consol and call$bw.after.consol give the between inertia before consolidation (i.e. for the clustering obtained from the hierarchical tree) and after the consolidation with Kmeans.

desc.ind The paragons (para) and the more typical individuals of each cluster. See details.

Returns the tree and a barplot of the inertia gains, the individual factor map with the tree (3D), the factor map with individuals coloured by cluster (2D).

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>, Guillaume Le Ray, Quentin Molto

See Also

plot.HCPC, catdes,

Video showing how to perform clustering with FactoMineR
Examples

```r
## Not run:
data(iris)
# Principal Component Analysis:
res.pca <- PCA(iris[,1:4], graph=FALSE)
# Clustering, auto nb of clusters:
hc <- HCPC(res.pca, nb.clust=-1)

### Construct a hierarchical tree from a partition (with 10 clusters)
### (useful when the number of individuals is very important)
hc2 <- HCPC(iris[,1:4], kk=10, nb.clust=-1)

## Graphical interface
require(Factoshiny)
res <- Factoshiny(iris[,1:4])

## End(Not run)
```

health

Description

In 1989-1990 the Valencian Institute of Public Health (IVESP) conducted a survey to better know the attitudes and opinions related to health for the non-expert population. The first question included in the questionnaire “What does health mean to you?” required free and spontaneous answers. A priori, the variables Age group (under 21, 21-35, 36-50 and over 50), Health condition (poor, fair, good and very good health) and Gender were considered as possibly conditioning the respondents’ viewpoint on health.

Usage

```r
data(health)
```

Format

A data frame with 392 rows and 118 columns. Rows represent the individuals (respondents), columns represent the words used at least 10 times to answer the open-ended question (columns 1 to 115) and respondents’ characteristics (age, health condition and gender)

Examples

```r
## Not run:
data(health)
res.cagalt<-CaGalt(Y=health[,1:115],X=health[,116:118],type="n")

## End(Not run)
```
HMFA

Hierarchical Multiple Factor Analysis

Description

Performs a hierarchical multiple factor analysis, using an object of class `list` of `data.frame`.

Usage

```r
HMFA(X, H, type = rep("s", length(H[[1]])), ncp = 5, graph = TRUE,
     axes = c(1,2), name.group = NULL)
```

Arguments

- `X` a `data.frame`
- `H` a list with one vector for each hierarchical level; in each vector the number of variables or the number of group constituting the group
- `type` the type of variables in each group in the first partition; three possibilities: "c" or "s" for quantitative variables (the difference is that for "s", the variables are scaled in the program), "n" for categorical variables; by default, all the variables are quantitative and the variables are scaled unit
- `ncp` number of dimensions kept in the results (by default 5)
- `graph` boolean, if TRUE a graph is displayed
- `axes` a length 2 vector specifying the components to plot
- `name.group` a list of vector containing the name of the groups for each level of the hierarchy (by default, NULL and the group are named L1.G1, L1.G2 and so on)

Value

Returns a list including:

- `eig` a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
- `group` a list with first a list of matrices with the coordinates of the groups for each level and second a matrix with the canonical correlation (correlation between the coordinates of the individuals and the partial points))
- `ind` a list of matrices with all the results for the active individuals (coordinates, square cosine, contributions)
- `quanti.var` a list of matrices with all the results for the quantitative variables (coordinates, correlation between variables and axes)
- `quali.var` a list of matrices with all the results for the supplementary categorical variables (coordinates of each categories of each variables, and v.test which is a criterion with a Normal distribution)
- `partial` a list of arrays with the coordinates of the partial points for each partition
hobbies

Author(s)

Sebastien Le, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

See Also

print.HMFA, plot.HMFA, dimdesc

Examples

data(wine)
hierar <- list(c(2,5,3,10,9,2), c(4,2))
res.hmfa <- HMFA(wine, H = hierar, type=c("n",rep("s",5)))

Description

The data used here concern a questionnaire on hobbies. We asked to 8403 individuals how answer questions about their hobbies (18 questions). The following four variables were used to label the individuals: sex (male, female), age (15-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86-100), marital status (single, married, widowed, divorced, remarried), profession (manual labourer, unskilled worker, technician, foreman, senior management, employee, other). And finally, a quantitative variable indicates the number of hobbies practised out of the 18 possible choices.

Usage

data(tea)

Format

A data frame with 8403 rows and 23 columns. Rows represent the individuals, columns represent the different questions. The first 18 questions are active ones, and the 4 following ones are supplementary categorical variables and the 23th is a supplementary quantitative variable (the number of activities)
Examples

data(hobbies)
Not run:
res.mca <- MCA(hobbies, quali.sup=19:22, quanti.sup=23, method="Burt")
plot(res.mca, invisible=c("ind", "quali.sup"), hab="quali") ### active var. only
plot(res.mca, invisible=c("var", "quali.sup"), cex=0.5, label="none") ### individuals only
plot(res.mca, invisible=c("ind", "var"), hab="quali") ### supp. qualitative var. only

dimdesc(res.mca)
plotellipses(res.mca, keepvar=1:4)

End(Not run)

JO

Number of medals in athletism during olympic games per country

Description

This data frame is a contingency table with the athletism events (in row) and the countries (in columns). Each cell gives the number of medals obtained during the 5 olympic games from 1992 to 2008 (Barcelona 1992, Atlanta 1996, Sydney 2000, Athens 2004, Beijing 2008).

Usage

data(JO)

Format

A data frame with the 24 events in athletism and in column the 58 countries who obtained at least one medal.

Examples

Not run:
data(JO)
res.ca <- CA(JO)
res.ca <- CA(JO, axes = 3:4)

End(Not run)
LinearModel
Analysis of variance with the contrasts sum (the sum of the coefficients is 0)

Description

Analysis of variance with the contrasts sum (the sum of the coefficients is 0)
Test for all the coefficients
Handle missing values

Usage

```r
LinearModel(formula, data, na.action = na.omit, type = c("II","III", 2, 3),  
selection=c("none","aic","bic"), ...)
```

Arguments

- `formula`
 the formula for the model 'y~x1+x2+x1:x2'
- `data`
 a data-frame
- `na.action`
 (where relevant) information returned by model.frame on the special handling of NAs.
- `type`
 type of test, "II", "III", 2, or 3. Roman numerals are equivalent to the corresponding Arabic numerals.
- `selection`
 a string that defines the model selection according to "BIC" for Bayesian Information Criterion or "AIC" for Akaike Information Criterion; "none", by default, means that there is no selection.
- `...`
 other arguments, cf the function `lm`

Details

The Anova function of the package car is used to calculate the F-tests.
The t-tests are obtained using the contrasts "contr.sum" which means that 'sum to zero contrasts'.
A stepwise procedure (using both backward and forward selections) is performed to select a model if `selection="AIC"` or `selection="BIC"`.

Value

The outputs

- `Ftest`
 a table with the F-tests
- `Ttest`
 a table with the t-tests
- `lmResult`
 the summary of the function `lm`
- `call`
 the matched call
- `lmResultComp`
 the summary of the `lm` function for the complete model (given only if a selection is performed)
- `callComp`
 the matched call for the complete model (given only if a selection is performed)
MCA

Author(s)
Francois Husson <husson@agrocampus-ouest.fr>

See Also
aov, lm, print.LinearModel

Examples
Example two-way anova
data(senso)
res <- LinearModel(Score~ Product + Day , data=senso, selection="none")
res

Example two-way anova with interaction
data(senso)
res2 <- LinearModel(Score~ Product + Day + Product : Day, data=senso, selection="none")
res2

Example two-way anova with selection
data(senso)
res2 <- LinearModel(Score~ Product + Day + Product : Day, data=senso, selection="BIC")
res2

Example ancova
data(footsize)
res3 <- LinearModel(footsize ~ size + sex + size : sex, data=footsize)
res3

MCA

Multiple Correspondence Analysis (MCA)

Description
Performs Multiple Correspondence Analysis (MCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables.
Performs also Specific Multiple Correspondence Analysis with supplementary categories and supplementary categorical variables.
Missing values are treated as an additional level, categories which are rare can be ventilated

Usage
MCA(X, ncp = 5, ind.sup = NULL, quanti.sup = NULL,
 quali.sup = NULL, excl=NULL, graph = TRUE,
 level.ventil = 0, axes = c(1,2), row.w = NULL,
 method="Indicator", na.method="NA", tab.disj=NULL)
Arguments

X a data frame with \(n \) rows (individuals) and \(p \) columns (categorical variables)

ncp number of dimensions kept in the results (by default 5)

ind.sup a vector indicating the indexes of the supplementary individuals

quanti.sup a vector indicating the indexes of the quantitative supplementary variables

quali.sup a vector indicating the indexes of the categorical supplementary variables

excl vector indicating the indexes of the "junk" categories (default is NULL), it can be a vector of the names of the categories or a vector of the indexes in the disjunctive data table

graph boolean, if TRUE a graph is displayed

level.ventil a proportion corresponding to the level under which the category is ventilated; by default, 0 and no ventilation is done

axes a length 2 vector specifying the components to plot

row.w an optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals

method a string corresponding to the name of the method used: "Indicator" (by default) is the CA on the Indicator matrix, "Burt" is the CA on the Burt table. For Burt and the Indicator, the graph of the individuals and the graph of the categories are given

na.method a string corresponding to the name of the method used if there are missing values; available methods are "NA" or "Average" (by default, "NA")

tab.disj optional data.frame corresponding to the disjunctive table used for the analysis; it corresponds to a disjunctive table obtained from imputation method (see package missMDA).

Value

Returns a list including:

eig a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance

var a list of matrices containing all the results for the active variables (coordinates, square cosine, contributions, v.test, square correlation ratio)

ind a list of matrices containing all the results for the active individuals (coordinates, square cosine, contributions)

ind.sup a list of matrices containing all the results for the supplementary individuals (coordinates, square cosine)

quanti.sup a matrix containing the coordinates of the supplementary quantitative variables (the correlation between a variable and an axis is equal to the variable coordinate on the axis)

quali.sup a list of matrices with all the results for the supplementary categorical variables (coordinates of each categories of each variables, square cosine and v.test which is a criterion with a Normal distribution, square correlation ratio)
call a list with some statistics

Returns the graphs of the individuals and categories and the graph with the variables.
The plots may be improved using the argument autolab, modifying the size of the labels or selecting
some elements thanks to the \texttt{plot.MCA} function.

\textbf{Author(s)}

Francois Husson \texttt{<husson@agrocampus-ouest.fr>}, Julie Josse, Jeremy Mazet

\textbf{References}

\textit{Chapman and Hall}.

\textbf{See Also}

\texttt{plotellipses, summary.MCA, print.MCA, plot.MCA, dimdesc,}

Video showing how to perform MCA with FactoMineR

\textbf{Examples}

```r
## Not run:
## Tea example
data(tea)
res.mca <- MCA(tea,quanti.sup=19,quali.sup=20:36)
summary(res.mca)
plot(res.mca,invisible=c("var","quali.sup","quanti.sup"),cex=0.7)
plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"),cex=0.8)
plot(res.mca,invisible=c("quali.sup","quanti.sup"),cex=0.8)
dimdesc(res.mca)
plotellipses(res.mca,keepvar=1:4)
plotellipses(res.mca,keepvar="Tea")

## Hobbies example
data(hobbies)
res.mca <- MCA(hobbies,quali.sup=19:22,quanti.sup=23)
plot(res.mca,invisible=c("ind","quali.sup"),hab="quali")
plot(res.mca,invisible=c("var","quali.sup"),cex=.5,label="none")
plot(res.mca,invisible=c("ind","var"),hab="quali")
dimdesc(res.mca)
plotellipses(res.mca,keepvar=1:4)

## Specific MCA: some categories are supplementary
data (poison)
res <- MCA (poison[,3:8],excl=c(1,3))

## Graphical interface
require(Factoshiny)
res <- Factoshiny(tea)

## Example with missing values : use the missMDA package
```
```r
require(missMDA)
data(vnf)
completed <- imputeMCA(vnf,ncp=2)
res.mca <- MCA(vnf,tab.disj=completed$tab.disj)

## End(Not run)
```

meansComp

Perform pairwise means comparisons

Description

Perform means comparisons and give groups of means that are not significantly different.

Usage

```r
meansComp(object, spec, graph=TRUE, ...)
```

Arguments

- **object**
 A fitted model object that is supported, such as the result of a call to LinearModel, lm or aov.

- **spec**
 A character vector specifying the names of the predictors over which means comparisons are desired. specs may also be a formula or a list (optionally named) of valid specs. Use of formulas is described in the Overview section below.

- **graph**
 Boolean; plot the graph to compare the means.

- **...**
 other arguments, cf the function emmeans.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

plot.meansComp

Examples

```r
data(senso)
res <- LinearModel(Score~ Product + Day , data=senso, selection="none")
meansComp(res,spec="Product")
```

```r
## Not run:
## or equivalently
meansComp(res, ~Product)
```
MFA

and with the sidak correction

```r
meansComp(res,~Product,adjust="sidak")
```

End(Not run)

MFA

Multiple Factor Analysis (MFA)

Description

Performs Multiple Factor Analysis in the sense of Escofier-Pages with supplementary individuals and supplementary groups of variables. Groups of variables can be quantitative, categorical or contingency tables.

Specific Multiple Factor Analysis can be performed using the argument excl.

Missing values in numeric variables are replaced by the column mean.

Missing values in categorical variables are treated as an additional level.

Usage

```r
MFA (base, group, type = rep("s",length(group)), excl = NULL, 
ind.sup = NULL, ncp = 5, name.group = NULL, 
num.group.sup = NULL, graph = TRUE, weight.col.mfa = NULL, 
row.w = NULL, axes = c(1,2), tab.comp=NULL)
```

Arguments

- **base**: a data frame with *n* rows (individuals) and *p* columns (variables)
- **group**: a vector with the number of variables in each group
- **type**: the type of variables in each group; four possibilities: "c" or "s" for quantitative variables (the difference is that for "s" variables are scaled to unit variance), "n" for categorical variables and "f" for frequencies (from a contingency tables); by default, all variables are quantitative and scaled to unit variance
- **excl**: an argument that may possible to exclude categories of active variables of categorical variable groups. NULL by default, it is a list with indexes of categories that are excluded per group
- **ind.sup**: a vector indicating the indexes of the supplementary individuals
- **ncp**: number of dimensions kept in the results (by default 5)
- **name.group**: a vector containing the name of the groups (by default, NULL and the group are named group.1, group.2 and so on)
- **num.group.sup**: the indexes of the illustrative groups (by default, NULL and no group are illustrative)
- **graph**: boolean, if TRUE a graph is displayed
- **weight.col.mfa**: vector of weights, useful for HMFA method (by default, NULL and an MFA is performed)
row.w: an optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals
axes: a length 2 vector specifying the components to plot
tab.comp: object obtained from the imputeMFA function of the missMDA package that allows to handle missing values

Value
summary.quali: a summary of the results for the categorical variables
summary.quanti: a summary of the results for the quantitative variables
separate.analyses: the results for the separate analyses
eig: a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance
group: a list of matrices containing all the results for the groups (Lg and RV coefficients, coordinates, square cosine, contributions, distance to the origin, the correlations between each group and each factor)
rapport.inertie: inertia ratio
ind: a list of matrices containing all the results for the active individuals (coordinates, square cosine, contributions)
ind.sup: a list of matrices containing all the results for the supplementary individuals (coordinates, square cosine)
quanti.var: a list of matrices containing all the results for the quantitative variables (coordinates, correlation between variables and axes, contribution, cos2)
quali.var: a list of matrices containing all the results for categorical variables (coordinates of each categories of each variables, contribution and v.test which is a criterion with a Normal distribution)
freq: a list of matrices containing all the results for the frequencies (coordinates, contribution, cos2)
quanti.var.sup: a list of matrices containing all the results for the supplementary quantitative variables (coordinates, correlation between variables and axes, cos2)
quali.var.sup: a list of matrices containing all the results for the supplementary categorical variables (coordinates of each categories of each variables, cos2 and v.test which is a criterion with a Normal distribution)
freq.sup: a list of matrices containing all the results for the supplementary frequencies (coordinates, cos2)
partial.axes: a list of matrices containing all the results for the partial axes (coordinates, correlation between variables and axes, correlation between partial axes)
global.pca: the result of the analysis when it is considered as a unique weighted PCA

Returns the individuals factor map, the variables factor map and the groups factor map. The plots may be improved using the argument autolab, modifying the size of the labels or selecting some elements thanks to the plot.MFA function.
Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>, J. Mazet

References

See Also
print.MFA, summary.MFA, plot.MFA, dimdesc,
Video showing how to perform MFA with FactoMineR

Examples
Not run:
data(wine)
res <- MFA(wine, group=c(2,5,3,10,9,2), type=c("n",rep("s",5)),
ncp=5, name.group=c("orig","olf","vis","olfag","gust","ens"),
num.group.sup=c(1,6))
summary(res)
barplot(res$eig[,1],main="Eigenvalues",names.arg=1:nrow(res$eig))

Confidence ellipses around categories per variable
plotellipses(res)
plotellipses(res,keepvar="Label") ## for 1 variable

Interactive graph
liste = plotMFApartial(res)
plot(res,choix="ind",habillage = "Terroir")

####Example with groups of categorical variables
data (poison)
MFA(poison, group=c(2,2,5,6), type=c("s","n","n","n"),
name.group=c("desc","desc2","symptom","eat"),
num.group.sup=1:2)

####Example with groups of frequency tables
data(mortality)
res<-MFA(mortality,group=c(9,9),type=c("f","f"),
name.group=c("1979","2006"))

Graphical interface
require(Factoshiny)
res <- Factoshiny(wine)

with missing values
require(missMDA)
mortality

Description

The cause of mortality in France in 1979 and 2006.

Usage

data(mortality)

Format

A data frame with 62 rows (the different causes of death) and 18 columns. Each column corresponds to an age interval (15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85-94, 95 and more) in a year. The 9 first columns correspond to data in 1979 and the 9 last columns to data in 2006. In each cell, the counts of deaths for a cause of death in an age interval (in a year) is given.
PCA

Principal Component Analysis (PCA)

Description

Performs Principal Component Analysis (PCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables. Missing values are replaced by the column mean.

Usage

PCA(X, scale.unit = TRUE, ncp = 5, ind.sup = NULL, quanti.sup = NULL, quali.sup = NULL, row.w = NULL, col.w = NULL, graph = TRUE, axes = c(1,2))

Arguments

X a data frame with n rows (individuals) and p columns (numeric variables)
ncp number of dimensions kept in the results (by default 5)
scale.unit a boolean, if TRUE (value set by default) then data are scaled to unit variance
ind.sup a vector indicating the indexes of the supplementary individuals
quanti.sup a vector indicating the indexes of the quantitative supplementary variables
quali.sup a vector indicating the indexes of the categorical supplementary variables
row.w an optional row weights (by default, a vector of 1 for uniform row weights); the weights are given only for the active individuals
col.w an optional column weights (by default, uniform column weights); the weights are given only for the active variables
graph boolean, if TRUE a graph is displayed
axes a length 2 vector specifying the components to plot
Value

Returns a list including:

- **eig**: a matrix containing all the eigenvalues, the percentage of variance and the cumulative percentage of variance.
- **var**: a list of matrices containing all the results for the active variables (coordinates, correlation between variables and axes, square cosine, contributions).
- **ind**: a list of matrices containing all the results for the active individuals (coordinates, square cosine, contributions).
- **ind.sup**: a list of matrices containing all the results for the supplementary individuals (coordinates, square cosine).
- **quanti.sup**: a list of matrices containing all the results for the supplementary quantitative variables (coordinates, correlation between variables and axes).
- **quali.sup**: a list of matrices containing all the results for the supplementary categorical variables (coordinates of each categories of each variables, v.test which is a criterion with a Normal distribution, and eta2 which is the square correlation corefficient between a qualitative variable and a dimension).

Returns the individuals factor map and the variables factor map.
The plots may be improved using the argument autolab, modifying the size of the labels or selecting some elements thanks to the `plot.PCA` function.

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>, Jeremy Mazet

References

See Also

- `print.PCA`, `summary.PCA`, `plot.PCA`, `dimdesc`.
- Video showing how to perform PCA with FactoMineR

Examples

data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13)
plot of the eigenvalues
barplot(res.pca$eig[,1],main="Eigenvalues",names.arg=1:nrow(res.pca$eig))
summary(res.pca)
plot(res.pca,choix="ind",habillage=13)
Not run:
To describe the dimensions
dimdesc(res.pca, axes = 1:2)
To draw ellipses around the categories of the 13th variable (which is categorical)
plot.CA

Graphical interface
require(Factoshiny)
res <- Factoshiny(decathlon)

Example with missing data
use package missMDA
require(missMDA)
data(orange)
b <- estim_ncpPCA(orange, ncp.min=0, ncp.max=5, method.cv="Kfold", nbsim=50)
imputed <- imputePCA(orange, ncp=b$ncp)
res.pca <- PCA(imputed$completeObs)

End(Not run)

plot.CA

Draw the Correspondence Analysis (CA) graphs

Description

Draw the Correspondence Analysis (CA) graphs.

Usage

```r
## S3 method for class 'CA'
plot(x, axes = c(1, 2),
     xlim = NULL, ylim = NULL,
     invisible = c("none", "row", "col", "row.sup", "col.sup", "quali.sup"),
     choix = c("CA", "quanti.sup"),
     col.row = "blue", col.col = "red",
     col.row.sup = "darkblue", col.col.sup = "darkred",
     col.quali.sup = "magenta", col.quanti.sup = "blue",
     label = c("all", "none", "row", "row.sup", "col", "col.sup", "quali.sup"),
     title = NULL, palette = NULL, autoLab = c("auto", "yes", "no"),
     new.plot = FALSE, selectRow = NULL, selectCol = NULL,
     unselect = 0.7, shadowtext = FALSE, habillage = "none",
     legend = list(bty = "y", x = "topleft"),
     graph.type = c("ggplot", "classic"), ggoptions = NULL, ...)
```

Arguments

- `x` an object of class CA
- `axes` a length 2 vector specifying the components to plot
- `xlim` range for the plotted `x` values, defaulting to the range of the finite values of `x`
- `ylim` range for the plotted `y` values, defaulting to the range of the finite values of `y`
- `invisible` string indicating if some points should be unlabelled ("row", "col", "row.sup", "col.sup", "quali.sup")
choix the graph to plot ("CA" for the CA map, "quanti.sup" for the supplementary quantitative variables)
col.row a color for the rows points
col.col a color for columns points
col.row.sup a color for the supplementary rows points
col.col.sup a color for supplementary columns points
col.QUALI.sup a color for the supplementary categorical variables
col.quanti.sup a color for the supplementary quantitative variables
label a list of character for the elements which are labelled (by default, all the elements are labelled ("row", "row.sup", "col", "col.sup", "quali.sup")
title string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
palette the color palette used to draw the points. By default colors are chosen. If you want to define the colors: palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25)))
autoLab if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap
new.plot boolean, if TRUE, a new graphical device is created
selectRow a selection of the rows that are drawn; see the details section
selectCol a selection of the columns that are drawn; see the details section
unselect may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect="grey60")
shadowtext boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program)
habilillage color the individuals among a categorical variable (give the number of the categorical supplementary variable or its name)
legend a list of arguments that defines the legend if needed (when individuals are drawn according to a variable); see the arguments of the function legend
graph.type a character that gives the type of graph used: "ggplot" or "classic"
ggoptions a list that gives the graph options when graph.type="ggplot" is used. See the options and the default values in the details section
...

Details

The argument autoLab = "yes" is time-consuming if there are many labels that overlap. In this case, you can modify the size of the characters in order to have less overlapping, using for example cex=0.7.
The `selectRow` and `selectCol` arguments can be used in order to select a part of the elements that are drawn. For example, you can use:

- `selectRow = 1:5` and then the rows 1 to 5 are drawn.
- `select = c("name1","name5")` and then the rows that have the names `name1` and `name5` are drawn.
- `select = "coord 10"` and then the 10 rows (10 active and 10 supplementaries) that have the highest (squared) coordinates on the 2 chosen dimensions are drawn.
- `select = "contrib 10"` and then the 10 rows (10 active) that have the highest contribution on the 2 dimensions of your plot are drawn.
- `select = "cos2 5"` and then the 5 rows (5 actives and 5 supplementaries) that have the highest cos2 on the 2 dimensions of your plot are drawn.
- `select = "dist 8"` and then the 8 rows (8 actives and 8 supplementaries) that have the highest distance to the center of gravity are drawn.

Value

Returns the factor map with the joint plot of CA.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

CA

Examples

```r
data(children)
res.ca <- CA (children, col.sup = 6:8, row.sup = 15:18)
## select rows and columns that have a cos2 greater than 0.8
plot(res.ca, selectCol="cos2 0.8", selectRow="cos2 0.8")

## Not run:
## You can modify the ggplot graphs as usual with ggplot2
require(ggplot2)
gr <- plot(res.ca)
gr + theme(panel.grid.major = element_blank(),
          plot.title=element_text(size=14, color="blue"),
          axis.title = element_text(size=12, color="red"))
## End(Not run)
```
Description

Plot the graphs for a Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt).

Usage

```r
## S3 method for class 'CaGalt'
plot(x, axes = c(1, 2), choix = c("ind", "freq", "quali.var", "quanti.var"), conf.ellip = FALSE, contr.ellipse = 3, xlim = NULL, ylim = NULL, col.ind = "black", col.freq = "darkred", col.quali = "blue", col.quanti = "blue", label = TRUE, lim.cos2.var = 0, title = NULL, palette = NULL, autoLab = c("auto", "yes", "no"), new.plot = FALSE, select = NULL, unselect = 0.7, shadowtext = FALSE, ...)
```

Arguments

- `x`: an object of class CaGalt
- `axes`: a length 2 vector specifying the components to plot
- `choix`: the graph to plot ("ind" for the individuals, "freq" for the frequencies, "quali.var" for the categorical variables, "quanti.var" for the quantitative variables)
- `conf.ellip`: boolean (FALSE by default), if TRUE, draw ellipses around the frequencies and the variables
- `contr.ellipse`: the confidence ellipses were drawn for the frequencies with a contribution higher than X times of mean contribution on the 2 dimensions of your plot (by default 3)
- `xlim`: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- `ylim`: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- `col.ind`: a color for the individuals (by default "black")
- `col.freq`: a color for the frequencies (by default "darkred")
- `col.quali`: a color for the categories of categorical variables (by default "blue")
- `col.quanti`: a color for the quantitative variables (by default "blue")
- `label`: the labels are drawn (by default TRUE)
- `lim.cos2.var`: value of the square cosinus under the variables are not drawn
- `title`: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- `palette`: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,9,len=25)))

Example Usage

```r
# S3 method for class 'CaGalt'
plot(x, axes = c(1, 2), choix = c("ind", "freq", "quali.var", "quanti.var"),
     conf.ellip = FALSE, contr.ellipse = 3, xlim = NULL, ylim = NULL, col.ind = "black",
     col.freq = "darkred", col.quali = "blue", col.quanti = "blue", label = TRUE,
     lim.cos2.var = 0, title = NULL, palette = NULL,
     autoLab = c("auto", "yes", "no"), new.plot = FALSE, select = NULL,
     unselect = 0.7, shadowtext = FALSE, ...)
```
autoLab if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap

new.plot boolean, if TRUE, a new graphical device is created

select a selection of the elements that are drawn; see the details section

unselect may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect="grey60")

shadowtext boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program)

... further arguments passed to or from other methods, such as cex, cex.main, ...

Details

The argument autoLab = "yes" is time-consuming if there are many labels that overlap. In this case, you can modify the size of the characters in order to have less overlapping, using for example cex=0.7. The select argument can be used in order to select a part of the elements (individuals if you draw the graph of individuals, or variables if you draw the graph of variabless) that are drawn. For example, you can use: select = 1:5 and then the elements 1:5 are drawn. select = c("name1","name5") and then the elements that have the names name1 and name5 are drawn. select = "coord 10" and then the 10 elements that have the highest (squared) coordinates on the 2 chosen dimensions are drawn. select = "contrib 10" and then the 10 elements that have the highest contribution on the 2 dimensions of your plot are drawn (available only when frequencies are drawn). select = "cos2 5" and then the 5 elements that have the highest cos2 on the 2 dimensions of your plot are drawn.

Value

Returns the individuals, the frequencies and the variables factor map.

Author(s)

Belchin Kostov <badriyan@clinic.ub.es>, Monica Becue-Bertaut, Francois Husson

See Also

CaGalt

Examples

```r
## Not run:
data(health)
res.cagalt<-CaGalt(Y=health[,1:115],X=health[,116:118],type="n")
plot(res.cagalt,choix="quali.var",conf.ellip=TRUE,axes=c(1,4))

## Selection of some individuals, categories and frequencies
```
plot.catdes

Plots for description of clusters (catdes)

Description

Plots a graph from a catdes output.

Usage

```r
## S3 method for class 'catdes'
plot(x, show="all", output=c("figure","dt"), level=0.01, sort=NULL,
col.upper="indianred2", col.lower="royalblue1", numchar = 10,
barplot = FALSE, cex.names=1, ...)
```

Arguments

- **x**: A catdes object, see `catdes` for details.
- **show**: a string. If "quali", only the categorical variables are used. If "quanti", only the quantitative variables are used. If "all", both quali and quanti are used. If "quanti.var" is used the characterization of the quantitative variables is given; if "test.chi2" is used the characterization of the qualitative variables is given.
- **output**: string: "dt" for a datatable or "figure" for a figure
- **level**: a positive float. Indicates a critical value the p-value.
- **sort**: NULL (default) or an integer between 1 and the number of clusters or a character (the name of a group). If it is an integer or the name of a group, the features are sorted according to their significances in the construction of the given cluster.
- **col.upper**: The color used for under-represented features.
- **col.lower**: The color used for over-represented features.
- **numchar**: number of characters for the labels
- **barplot**: a boolean; if true a barplot per category is drawn, else a table
- **cex.names**: the magnification to be used for the names
- **...**: further arguments passed to or from other methods
Value

if barplot is true, a barplot is drawn per category with variables that significantly describe the category.
If barplot is false; it returns a grid. The rows stand for the clusters and the columns for the significant variables. A cell colored in col.lower (resp. col.upper) i.e. by default in blue (resp. red) for a quantitative variable means that the average value of the variable in the given cluster is significantly lower (resp. higher) than in the overall data. A cell colored in col.lower (resp. col.upper) for a categorical variable means that the given value of the variable is significantly under-represented (resp. over-represented) in the given cluster than in the overall data. The degree of transparency of the color also indicates the significance of the difference between the behavior of the variable in the given cluster and in the overall data. Indeed, the more transparent the cell is, the less significant the difference is.

Author(s)

Guillaume Le Ray, Camille Chanial, Elise Dumas, Francois Husson <husson@agrocampus-ouest.fr>

See Also

catdes

Examples

Not run:
data(wine)
res.c=catdes(wine, num.var=2)
plot(res.c)
End(Not run)

Description

Plot the graphs for a Principal Component Analysis (DMFA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables.

Usage

```r
## S3 method for class 'DMFA'
plot(x, axes = c(1, 2), choix = "ind", label="all",
     lim.cos2.var = 0., xlim=NULL, ylim=NULL, title = NULL,
     palette = NULL, new.plot = FALSE,
     autoLab = c("auto","yes","no"), ...)
```
Arguments

- **x**: an object of class DMFA
- **axes**: a length 2 vector specifying the components to plot
- **choix**: the graph to plot ("ind" for the individuals, "var" for the variables)
- **label**: a list of character for the elements which are labelled (by default, all the elements are labelled ("ind", "ind.sup", "quali", "var", "quanti.sup"))
- **lim.cos2.var**: value of the square cosinus under the variables are not drawn
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **palette**: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25))
- **new.plot**: boolean, if TRUE, a new graphical device is created
- **autoLab**: if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap
- **...**: further arguments passed to or from other methods

Value

Returns the individuals factor map and the variables factor map, the partial variables representation and the groups factor map.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

DMFA
Usage

```r
## S3 method for class 'FAMD'
plot(x, choix = c("ind","var","quanti","quali"), axes = c(1, 2),
     lab.var = TRUE, lab.ind = TRUE, habillage = "none", col.lab = FALSE,
     col.hab = NULL, invisible = NULL, lim.cos2.var = 0., xlim = NULL,
     ylim = NULL, title = NULL, palette=NULL, autoLab = c("auto","yes","no"),
     new.plot = FALSE, select = NULL, unselect = 0.7, shadowtext = FALSE,
     legend = list(bty = "y", x = "topleft"),
     graph.type = c("ggplot","classic"), ggoptions = NULL, ...)
```

Arguments

- `x`: an object of class FAMD
- `choix`: a string corresponding to the graph that you want to do ("ind" for the individual or categorical variables graph, "var" for all the variables (quantitative and categorical), "quanti" for the correlation circle)
- `axes`: a length 2 vector specifying the components to plot
- `lab.var`: boolean indicating if the labelled of the variables should be drawn on the map
- `lab.ind`: boolean indicating if the labelled of the individuals should be drawn on the map
- `habillage`: string corresponding to the color which are used. If "ind", one color is used for each individual else if it is the name or the position of a categorical variable, it colors according to the different categories of this variable
- `col.lab`: boolean indicating if the labelled should be colored
- `col.hab`: vector indicating the colors to use to labelled the rows or columns elements chosen in habillage
- `invisible`: list of string: for choix ="ind", the individuals can be omit (invisible = "ind"), or supplementary individuals (invisible = "ind.sup") or the center of gravity of the categorical variables (invisible = "quali"); if invisible = c("ind","ind.sup"), just the centers of gravity are drawn
- `lim.cos2.var`: value of the square cosinus under the variables are not drawn
- `xlim`: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- `ylim`: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- `title`: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- `palette`: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25))
- `autoLab`: if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap
- `new.plot`: boolean, if TRUE, a new graphical device is created
- `select`: a selection of the elements that are drawn; see the details section
unselect may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect="grey60")

shadowtext boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program)

legend a list of arguments that defines the legend if needed (when individuals are drawn according to a variable); see the arguments of the function legend

graph.type a character that gives the type of graph used: "ggplot" or "classic"

ggoptions a list that gives the graph options when graph.type="ggplot" is used. See the optines and the default values in the details section

... further arguments passed to or from other methods, such as cex, cex.main, ...

Value
Returns the individuals factor map and the variables factor map.

Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also
FAMD

Examples

```r
## Not run:
data(geomorphology)
res <- FAMD(geomorphology)
plot(res,choix="ind",habillage=4)
## End(Not run)
```

S3 method for class 'GPA'
plot(x, axes = c(1, 2),
 lab.ind.moy = TRUE, habillage = "ind",
 partial = "all", chrono = FALSE, xlim = NULL, ylim = NULL,
 cex = 1, title = NULL, palette = NULL, ...)

Description
Draw the General Procrustes Analysis (GPA) map.

Usage

```r
## S3 method for class 'GPA'
plot(x, axes = c(1, 2),
     lab.ind.moy = TRUE, habillage = "ind",
     partial = "all", chrono = FALSE, xlim = NULL, ylim = NULL,
     cex = 1, title = NULL, palette = NULL, ...)
```
Arguments

- **x**: an object of class GPA
- **axes**: a length 2 vector specifying the components to plot
- **lab.ind.moy**: boolean, if TRUE, the label of the mean points are drawn
- **habillage**: string corresponding to the color which are used. If "ind", one color is used for each individual; if "group" the individuals are colored according to the group
- **partial**: list of the individuals or of the center of gravity for which the partial points should be drawn (by default, partial = "none" and no partial points are drawn)
- **chrono**: boolean, if TRUE, the partial points of a same point are linked (useful when groups correspond to different moment)
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **cex**: cf. function `par` in the `graphics` package
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **palette**: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: `palette=palette(c("black","red","blue"));` or you can use: `palette=palette(rainbow(30)),` or in black and white for example: `palette=palette(gray(seq(0,.9,len=25))`... further arguments passed to or from other methods

Value

Returns the General Procrustes Analysis map.

Author(s)

Elisabeth Morand, Francois Husson <François.Husson@agrocampus-ouest.fr>

See Also

- **GPA**

plot.HCPC

Plots for Hierarchical Classification on Principle Components (HCPC) results

Description

Plots graphs from a HCPC result: tree, barplot of inertia gains and first factor map with or without the tree, in 2 or 3 dimensions.
Usage

S3 method for class 'HCPC'
plot(x, axes=c(1,2), choice="3D.map", rect=TRUE,
 draw.tree=TRUE, ind.names=TRUE, t.level="all", title=NULL,
 new.plot=FALSE, max.plot=15, tree.barplot=TRUE,
 centers.plot=FALSE, ...)

Arguments

x A HCPC object, see HCPC for details.
axes a two integers vector. Defines the axes of the factor map to plot.
choice A string. "tree" plots the tree. "bar" plots bars of inertia gains. "map" plots a
 factor map, individuals colored by cluster. "3D.map" plots the same factor map,
 individuals colored by cluster, the tree above.
rect a boolean. If TRUE, rectangles are drawn around clusters if choice = "tree".
tree.barplot a boolean. If TRUE, the barplot of intra inertia losses is added on the tree graph.
draw.tree A boolean. If TRUE, the tree is projected on the factor map if choice = "map".
ind.names A boolean. If TRUE, the individuals names are added on the factor map when
 choice="3D.map" or choice="map"
t.level Either a positive integer or a string. A positive integer indicates the starting
 level to plot the tree on the map when draw.tree=TRUE. If "all", the whole tree
 is plotted. If "centers", it draws the tree starting t the centers of the clusters.
title a string. Title of the graph. NULL by default and a title is automatically defined
centers.plot a boolean. If TRUE, the centers of clusters are drawn on the 3D factor maps.
new.plot a boolean. If TRUE, the plot is done in a new window.
max.plot The max for the bar plot
... Other arguments from other methods.

Value

Returns the chosen plot.

Author(s)

Guillaume Le Ray, Quentin Molto, Francois Husson <husson@agrocampus-ouest.fr>

See Also

HCPC

Examples

data(iris)
Clustering, auto nb of clusters:
res.hcpc=HCPC(iris[1:4], nb.clust=3)
3D graph from a different point of view:
plot(res.hcpc, choice="3D.map", angle=60)
plot.HMFA

Draw the Hierarchical Multiple Factor Analysis (HMFA) graphs

Description

Draw the Hierarchical Multiple Factor Analysis (HMFA) graphs

Usage

```r
## S3 method for class 'HMFA'
plot(x, axes = c(1,2),num=6, choix = "ind",
     lab.grpe = TRUE, lab.var = TRUE, lab.ind.moy = TRUE,
     invisible = NULL, lim.cos2.var = 0.,
     xlim = NULL, ylim = NULL, cex = 1, title = NULL, new.plot = FALSE, ...)
```

Arguments

- **x**: an object of class HMFA
- **axes**: a length 2 vector specifying the components to plot
- **num**: number of graphs in a same windows
- **choix**: a string corresponding to the graph that you want to do ("ind" for the individual or categorical variables graph, "var" for the quantitative variables graph, "axes" for the graph of the partial axes, "group" for the groups representation)
- **lab.grpe**: boolean, if TRUE, the label of the groups are drawn
- **lab.var**: boolean, if TRUE, the label of the variables are drawn
- **lab.ind.moy**: boolean, if TRUE, the label of the mean points are drawn
- **invisible**: list of string: for choix = "ind", the individuals can be omit (invisible = "ind"), or the centers of gravity of the categorical variables (invisible= "quali")
- **lim.cos2.var**: value of the square cosinus under with the points are not drawn
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **cex**: cf. function `par` in the `graphics` package
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **new.plot**: boolean, if TRUE, a new graphical device is created
- **...**: further arguments passed to or from other methods

Value

Returns the individuals factor map and the variables factor map.

Author(s)

Jeremy Mazet, Francois Husson <Francois.Husson@agrocampus-ouest.fr>
plot.MCA

Draw the Multiple Correspondence Analysis (MCA) graphs

Description

Draw the Multiple Correspondence Analysis (MCA) graphs.

Usage

```r
## S3 method for class 'MCA'
plot(x, axes = c(1, 2), choix = c("ind", "var", "quanti.sup"),
     xlim = NULL, ylim = NULL,
     invisible = c("none", "ind", "var", "ind.sup", "quali.sup", "quanti.sup"),
     col.ind = "black", col.var = "red", col.quali.sup = "darkgreen",
     col.ind.sup = "blue", col.quanti.sup = "blue",
     label = c("all", "none", "ind", "var", "ind.sup", "quali.sup", "quanti.sup"),
     title = NULL, habillage = "none",
     palette = NULL, autoLab = c("auto", "yes", "no"), new.plot = FALSE,
     select = NULL, selectMod = NULL, unselect = 0.7,
     shadowtext = FALSE, legend = list(bty = "y", x = "topleft"),
     graph.type = c("ggplot", "classic"), ggoptions = NULL, ...)
```

Arguments

- **x**: an object of class MCA
- **axes**: a length 2 vector specifying the components to plot
- **choix**: the graph to plot ("ind" for the individuals and the categories, "var" for the variables, "quanti.sup" for the supplementary quantitative variables)
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **invisible**: string indicating if some points should not be drawn ("ind", "var", "ind.sup", "quali.sup", "quanti.sup")
- **col.ind**: a color for the individuals, if color ="none" the label is not written

Examples

```r
data(wine)
hierar <- list(c(2,5,3,10,9,2), c(4,2))
res.hmfa <- HMFA(wine, H = hierar, type = c("n", rep("s", 5)), graph = FALSE)
plot(res.hmfa, invisible = "quali")
plot(res.hmfa, invisible = "ind")
```
col.var a color for the categories of categorical variables, if color = "none" the label is not written

col.quali.sup a color for the categorical supplementary variables, if color = "none" the label is not written

col.ind.sup a color for the supplementary individuals only if there is not habillage, if color = "none" the label is not written

col.quanti.sup a color for the supplementary quantitative variables, if color = "none" the label is not written

label print the labels of the points; "all" print all the labels; may be a vector with "ind" (for the individuals), "ind.sup" (for the supplementary individuals), "var" (for the active categories), "quali.sup" "var" (for the supplementary categories)

title string corresponding to the title of the graph you draw (by default NULL and a title is chosen)

habillage string corresponding to the color which are used. If "none", one color is used for the individual, another one for the categorical variables; if "quali", one color is used for each categorical variables; else if it is the position of a categorical variable, it colors according to the different categories of this variable

palette the color palette used to draw the points. By default colors are chosen. If you want to define the colors : palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25)))

autoLab if autoLab = "auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap

new.plot boolean, if TRUE, a new graphical device is created

select a selection of the elements that are drawn; see the details section

selectMod a selection of the categories that are drawn; see the details section

unselect may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect = "grey60")

shadowtext boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program)

legend a list of arguments that defines the legend if needed (when individuals are drawn according to a variable); see the arguments of the function legend

graph.type a character that gives the type of graph used: "ggplot" or "classic"

ggoptions a list that gives the graph options when graph.type="ggplot" is used. See the options and the default values in the details section

... further arguments passed to or from other methods, such as cex, cex.main, ...

Details

The argument autoLab = "yes" is time-consuming if there are many labels that overlap. In this case, you can modify the size of the characters in order to have less overlapping, using for example
The `select` argument can be used in order to select a part of the elements (individuals if you draw the graph of individuals, or variables if you draw the graph of variables) that are drawn. For example, you can use:

- `select = 1:5` and then the elements 1:5 are drawn.
- `select = c("name1","name5")` and then the elements that have the names name1 and name5 are drawn.
- `select = "coord 10"` and then the 10 elements that have the highest (squared) coordinates on the 2 chosen dimensions are drawn.
- `select = "contrib 10"` and then the 10 elements that have the highest contribution on the 2 dimensions of your plot are drawn.
- `select = "cos2 5"` and then the 5 elements that have the highest cos2 on the 2 dimensions of your plot are drawn.
- `select = "dist 8"` and then the 8 elements that have the highest distance to the center of gravity are drawn.

The `selectMod` argument can be used in order to select the categories that are drawn.

Value

Returns the individuals factor map and the variables factor map.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

`MCA`

Examples

data (poison)
res.mca = MCA (poison, quali.sup = 3:4, quanti.sup = 1:2, graph=FALSE)
plot(res.mca,invisible=c("var","quali.sup"))
plot(res.mca,invisible="ind")
plot(res.mca,choix="var")
plot(res.mca,invisible=c("ind"), selectMod="cos2 10")
Not run:
plot(res.mca, selectMod="cos2 5", select="cos2 5")

You can modify the ggplot graphs as usual with ggplot2
require(ggplot2)
gr <- plot(res.mca)
gr + theme(panel.grid.major = element_blank(),
plot.title=element_text(size=14, color="blue"),
axis.title = element_text(size=12, color="red"))

End(Not run)
plot.meansComp

Description

Plot the graphs for the means comparisons.

Usage

S3 method for class 'meansComp'
plot(x, ...)

Arguments

x an object of class meansComp.

... further arguments passed to or from other methods, such as ggplot, ...

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

meansComp

Examples

data(senso)
res <- LinearModel(Score~ Product + Day, data=senso, selection="none")
meansComp(res,spec="Product")

Not run:
or equivalently
meansComp(res,~Product)

and with the sidak correction
meansComp(res,~Product,adjust="sidak")

End(Not run)
Description

Draw the Multiple Factor Analysis (MFA) graphs.

Usage

S3 method for class 'MFA'
plot(x, axes = c(1, 2), choix = c("ind","var","group","axes","freq"),
 ellipse=NULL, ellipse.par=NULL,
 lab.grpe=TRUE, lab.var=TRUE, lab.ind=TRUE,
 lab.par=FALSE, lab.col=TRUE, ncp=2, habillage="group", col.hab=NULL,
 invisible = c("none","ind","ind.sup","quanti","quanti.sup",
 "quali","quali.sup","row","row.sup","col","col.sup"),
 partial = NULL, lim.cos2.var = 0.,
 chrono = FALSE, xlim = NULL, ylim = NULL,
 title = NULL, palette = NULL,
 autoLab = c("auto","yes","no"), new.plot = FALSE,
 select = NULL, unselect = 0.7, shadowtext = FALSE,
 legend = list(bty = "y", x = "topleft"),
 graph.type = c("ggplot","classic"), ggoptions = NULL, ...)

Arguments

x an object of class MFA

choix a string corresponding to the graph that you want to do ("ind" for the individual
or categorical variables graph, "var" for the quantitative variables graph, "freq"
for the frequence or contingency tables, "axes" for the graph of the partial axes,
"group" for the groups representation)

axes a length 2 vector specifying the components to plot

ellipse boolean (NULL by default), if not null, draw ellipses around the individuals,
and use the results of coord.ellipse

ellipse.par boolean (NULL by default), if not null, draw ellipses around the partial individ-
uals, and use the results of coord.ellipse

lab.grpe boolean, if TRUE, the labels of the groups are drawn

lab.var boolean, if TRUE, the labels of the variables are drawn

lab.ind boolean, if TRUE, the labels of the mean points are drawn

lab.par boolean, if TRUE, the labels of the partial points are drawn

lab.col boolean, if TRUE, the labels of the columns for the contingency tables are drawn

ncp number of principal components drawn for the separate analyses for the graph
of the partial axes
habillage
string corresponding to the color which are used. If "ind", one color is used for each individual; if "group" the individuals are colored according to the group; else if it is the name or the position of a categorical variable, it colors according to the different categories of this variable.

col.hab
the colors to use. By default, colors are chosen.

invisible
list of string; for choix ="ind", the individuals can be omit (invisible = "ind"), or supplementary individuals (invisible="ind.sup") or the center of gravity of the categorical variables (invisible= "quali" or "quali.sup" for the supplementary categories); if invisible = c("ind","ind.sup"), just the centers of gravity are drawn; if choix="var", invisible="quanti" suppress the active variable and invisible = "quanti.sup" suppress the supplementary variables.

partial
list of the individuals or of the center of gravity for which the partial points should be drawn (by default, partial = NULL and no partial points are drawn).

lim.cos2.var
value of the square cosinus under with the points are not drawn.

chrono
boolean, if TRUE, the partial points of a same point are linked (useful when groups correspond to different moment).

xlim
range for the plotted 'x' values, defaulting to the range of the finite values of 'x'.

ylim
range for the plotted 'y' values, defaulting to the range of the finite values of 'y'.

title
string corresponding to the title of the graph you draw (by default NULL and a title is chosen).

palette
the color palette used to draw the points. By default colors are chosen. If you want to define the colors : palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25))).

autoLab
if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap.

new.plot
boolean, if TRUE, a new graphical device is created.

select
a selection of the elements that are drawn; see the details section.

unselect
may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect="grey60")

shadowtext
boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program).

legend
a list of arguments that defines the legend if needed (when individuals are drawn according to a variable); see the arguments of the function legend.

graph.type
a character that gives the type of graph used: "ggplot" or "classic".

ggoptions
a list that gives the graph options when graph.type="ggplot" is used. See the options and the default values in the details section.

... further arguments passed to or from other methods, such as cex, cex.main, ...
Details

The argument `autoLab = "yes"` is time-consuming if there are many labels that overlap. In this case, you can modify the size of the characters in order to have less overlapping, using for example `cex=0.7`.

The `select` argument can be used in order to select a part of the elements (individuals if you draw the graph of individuals, or variables if you draw the graph of variables) that are drawn. For example, you can use:

- `select = 1:5` and then the elements 1:5 are drawn.
- `select = c("name1","name5")` and then the elements that have the names `name1` and `name5` are drawn.
- `select = "coord 10"` and then the 10 elements (individuals, variables, frequencies) that have the highest (squared) coordinates on the 2 chosen dimensions are drawn.
- `select = "contrib 10"` and then the 10 elements (individuals, variables, frequencies) that have the highest contribution on the 2 dimensions of your plot are drawn.
- `select = "cos2 5"` and then the 5 elements (individuals, variables, frequencies) that have the highest cos2 on the 2 dimensions of your plot are drawn.
- `selectMod = "contrib 5",` the 5 categories that contribute the most to the two dimensions are drawn.
- `selectMod = "cos2 0.5",` the categories that have a cos2 greater than 0.5 on the two dimensions are drawn.
- `selectMod = "v.test 2",` the categories that have a v.test higher than the value on one of the two dimensions are drawn.

Value

Returns the individuals factor map and the variables factor map.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>, Jeremy Mazet

See Also

- `MFA`

Examples

```r
## Not run:
data(wine)
res <- MFA(wine,group=c(2,5,3,10,9,2),type=c("n",rep("s",5)),ncp=5,
  name.group=c("orig","olf","vis","olfag","gust","ens"),
  num.group.sup=c(1,6),graph=FALSE)
plot(res, choix = "ind")
plot(res, choix = "ind", partial="all")
plot(res, choix = "ind", habillage="Label")
plot(res, choix = "var", habillage="group")
plot(res, choix = "axes")
data(wine)
```
res <- MFA(wine, group=c(2,5,3,10,9,2), type=c("n",rep("s",5)),
ncp=5, name.group=c("orig","olf","vis","olfag","gust","ens"),
num.group.sup=c(1,6))
summary(res)
barplot(res$eig[,1],main="Eigenvalues",names.arg=1:nrow(res$eig))

Confidence ellipses around categories per variable
plotellipses(res)
plotellipses(res,keepvar="Label") ## for 1 variable

Interactive graph
liste = plotMFApartial(res)
plot(res,choix="ind",habillage = "Terroir")

###Example with groups of categorical variables
data (poison)
MFA(poison, group=c(2,2,5,6), type=c("s","n","n","n"),
name.group=c("desc","desc2","symptom","eat"),
num.group.sup=1:2)

###Example with groups of frequency tables
data(mortality)
res<-MFA(mortality,group=c(9,9),type=c("f","f"),
name.group=c("1979","2006"))

End(Not run)

###Description
Plot the graphs for a Principal Component Analysis (PCA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables.

###Usage
```r
## S3 method for class 'PCA'
plot(x, axes = c(1, 2), choix = c("ind","var","varcor"),
ellipse = NULL, xlim = NULL, ylim = NULL, habillage="none",
col.hab = NULL, col.ind="black", col.ind.sup="blue",
col.quali="magenta", col.quanti.sup="blue", col.var="black",
label = c("all","none","ind","ind.sup","quali","var","quanti.sup"),
invisible = c("none","ind","ind.sup","quali","var","quanti.sup"),
lim.cos2.var = 0., title = NULL, palette=NULL,
autoLab = c("auto","yes","no"), new.plot = FALSE, select = NULL,
unselect = 0.7, shadowtext = FALSE, legend = list(bty = "y", x = "topleft"),
graph.type = c("ggplot","classic"), ggoptions = NULL, ...)
```
Arguments

x
an object of class PCA

axes
a length 2 vector specifying the components to plot

choix
the graph to plot ("ind" for the individuals, "var" for the variables, "varcor" for a graph with the correlation circle when scale.unit=FALSE)

ellipse
boolean (NULL by default), if not null, draw ellipses around the individuals, and use the results of coord.ellipse

xlim
range for the plotted 'x' values, defaulting to the range of the finite values of 'x'

ylim
range for the plotted 'y' values, defaulting to the range of the finite values of 'y'

habillage
give no color for the individuals ("none"), a color for each individual ("y"), or color the individuals among a categorical variable (give the number of the categorical variable)

col.hab
a vector with the color to use for the individuals

col.ind
a color for the individuals only if there is not habillage

col.ind.sup
a color for the supplementary individuals only if there is not habillage

col.quali
a color for the categories of categorical variables only if there is not habillage

col.quanti.sup
a color for the quantitative supplementary variables

col.var
a color for the variables

label
a list of character for the elements which are labelled (by default, all the elements are labelled ("ind", "ind.sup", "quali", "var", "quanti.sup"))

invisible
string indicating if some points should not be drawn ("ind", "ind.sup" or "quali" for the individual graph and "var" or "quanti.sup" for the correlation circle graph)

lim.cos2.var
value of the square cosinus under the variables are not drawn

title
string corresponding to the title of the graph you draw (by default NULL and a title is chosen)

palette
the color palette used to draw the points. By default colors are chosen. If you want to define the colors : palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25))

autoLab
if autoLab="auto", autoLab is equal to "yes" if there are less than 50 elements and "no" otherwise; if "yes", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap

new.plot
boolean, if TRUE, a new graphical device is created; only used when graph.type="classic"

select
a selection of the elements that are drawn; see the details section

unselect
may be either a value between 0 and 1 that gives the transparency of the unselected objects (if unselect=1 the transparency is total and the elements are not drawn, if unselect=0 the elements are drawn as usual but without any label) or may be a color (for example unselect="grey60")

shadowtext
boolean; if true put a shadow on the labels (rectangles are written under the labels which may lead to difficulties to modify the graph with another program); only used when graph.type="classic"
legend

a list of arguments that defines the legend if needed (when individuals are drawn according to a variable); see the arguments of the function legend

graph.type

a character that gives the type of graph used: "ggplot" or "classic"

ggoptions

a list that gives the graph options when graph.type="ggplot" is used. See the options and the default values in the details section

... further arguments passed to or from other methods, such as cex, cex.main, ...

Details

The argument autoLab = "yes" is time-consuming if there are many labels that overlap. In this case, you can modify the size of the characters in order to have less overlapping, using for example cex=0.7.

The select argument can be used in order to select a part of the elements (individuals if you draw the graph of individuals, or variables if you draw the graph of variables) that are drawn. For example, you can use:

select = 1:5 and then the elements 1:5 are drawn.
select = c("name1", "name5") and then the elements that have the names name1 and name5 are drawn.
select = "coord 10" and then the 10 elements that have the highest (squared) coordinates on the 2 chosen dimensions are drawn.
select = "contrib 10" and then the 10 elements that have the highest contribution on the 2 dimensions of your plot are drawn.
select = "cos2 5" and then the 5 elements that have the highest cos2 on the 2 dimensions of your plot are drawn.
select = "dist 8" and then the 8 elements that have the highest distance to the center of gravity are drawn.

ggoptions is a list that gives some ggplot2 options when the graph.type="ggplot" is used. Use for instance ggoptions(list(size=3, title.size=10, bg.color="orange")) if you want to modify the size of the points and labels, the title size and the background color.

Below you can see the options and the default values:

size = 4, #label size (point size = size/3)
point.shape = 19, #points shape
line.lty = 2, #origin linetypes (0="blank", 1="solid", 2="dashed", 3="dotted",...)
line.lwd = 0, #origin lines width
line.color = "black", #origin lines color
segment.lty = 1, #arrow linetypes (0="blank", 1="solid", 2="dashed", 3="dotted",...)
segment.lwd = 0, #arrow width
circle.lty = 1, #circle linetypes (0="blank", 1="solid", 2="dashed", 3="dotted",...)
circle.lwd = 0, #circle width
circle.color = "black", #circle color
low.col.quanti = "blue", #for quantitative variables, low color to be used
high.col.quanti = "red3", #for quantitative variables, high color to be used

Value

Returns the individuals factor map and the variables factor map.
Author(s)
Francois Husson <husson@agrocampus-ouest.fr>

See Also
PCA

Examples

data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13)
plot(res.pca, habillage = 13, cex=0.8)
Not run:
plot(res.pca, habillage = "cos2")
plot(res.pca, habillage = "100m")
plot(res.pca, habillage = c("Competition","100m"))
End(Not run)
To automatically draw ellipses around the barycentres of the categorical variables
plotellipses(res.pca)

Not run:
Selection of some individuals
plot(res.pca,select="contrib 7") # plot the 7 individuals with the highest contribution
plot(res.pca,select="cos2 0.8") # plot the individuals with cos2 greater than 0.8
plot(res.pca,select="cos2 5") # plot the 5 individuals with the highest cos2
plot(res.pca,choix="var",select="cos2 0.6") # plot the variables with cos2 greater than 0.6

plot(res.pca,habillage="100m",
 ggoptions=list(low.col.quanti="grey90",high.col.quanti="grey10"),legend=list(x="bottom"))

You can modify the ggplot graphs as usual with ggplot2
require(ggplot2)
gr <- plot(res.pca)
gr + theme(panel.grid.major = element_blank(),
 plot.title=element_text(size=14, color="blue"),
 axis.title = element_text(size=12, color="red"))

To draw classical R graphs
plot(res.pca, graph.type = "classic")

End(Not run)

plotellipses

Draw confidence ellipses around the categories

Description
Draw confidence ellipses around the categories.
Usage

```
plotellipses(model, keepvar = "all", axes = c(1, 2), means=TRUE, level = 0.95,
magnify = 2, cex = 1, pch = 20, pch.means=15, type = c("g","p"),
keepnames = TRUE, namescat = NULL, xlim=NULL, ylim=NULL, lwd=1,
label="all", autoLab=c("auto","yes","no"),
graph.type = c("ggplot","classic"), ...)
```

Arguments

- `model` an object of class MCA or PCA or MFA
- `keepvar` a boolean or numeric vector of indexes of variables or a character vector of names of variables. If keepvar is "all", "quali" or "quali.sup" variables which are plotted are all the categorical variables, only those which are used to compute the dimensions (active variables) or only the supplementary categorical variables. If keepvar is a numeric vector of indexes or a character vector of names of variables, only relevant variables are plotted.
- `axes` a length 2 vector specifying the components to plot
- `means` boolean which indicates if the confidence ellipses are for (the coordinates of) the means of the categories (the empirical variance is divided by the number of observations) or for (the coordinates of) the observations of the categories
- `level` the confidence level for the ellipses
- `magnify` numeric which control how the level names are magnified. A value of 2 means that the level names have character expansion equal to two times cex
- `cex` cf. function `par` in the `graphics` package
- `pch` plotting character for coordinates, cf. function `par` in the `graphics` package
- `pch.means` plotting character for means, cf. function `par` in the `graphics` package
- `type` cf. function `xyplot` in the `lattice` package
- `keepnames` a boolean or numeric vector of indexes of variables or a character vector of names of variables. If keepnames is TRUE, names of levels are taken from the (modified) dataset extracted from modele, if FALSE trimming names is done. When trimming, names of levels are taken from the (modified) dataset extracted from modele, then, the corresponding number of characters of names of original variables plus 1 is removed. If keepnames is a vector of indexes or names, trimming is done on all variables excepted whose in keepnames
- `namescat` a vector giving for each observation the value of categorical variable, each variable are stacked under each other. If NULL, names are taken from the (modified) dataset extracted from modele
- `xlim` range for the plotted ‘x’ values, defaulting to the range of the finite values of ‘x’
- `ylim` range for the plotted ‘y’ values, defaulting to the range of the finite values of ‘y’
- `lwd` The line width, a positive number, defaulting to 1
- `label` a list of character for the elements which are labelled (by default, "all", you can use "none", "ind", ind.sup")
autoLab if autoLab="auto", autoLab is equal to "y" if there are less than 50 elements and "no" otherwise; if "y", the labels of the drawn elements are placed in a "good" way (can be time-consuming if many elements), and if "no" the elements are placed quickly but may overlap

graph.type a character that gives the type of graph used: "ggplot" or "classic"

Further arguments passed to or from other methods

Value

Return a graph with the ellipses. If only one variable is chosen, the graph is different.

Author(s)

Pierre-Andre Cornillon, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

MCA, PCA

Examples

Not run:
data(poison)
res.mca = MCA(poison, quali.sup = 3:4, quanti.sup = 1:2)
plotellipses(res.mca)
plotellipses(res.mca,keepvar=3:6)

End(Not run)
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13)
plotellipses(res.pca,keepvar=13)

plotGPApartial

Draw an interactive General Procrustes Analysis (GPA) map

Description

Draw an interactive General Procrustes Analysis (GPA) map. The graph is interactive and clicking on a point will draw the partial points, if you click on a point for which the partial points are yet drawn, the partial points are deleted. To stop the interactive plot, click on the title (or in the top of the graph)

Usage

plotGPApartial(x, axes = c(1, 2),
lab.ind.moy = TRUE, habillage = "ind",
chrono = FALSE, draw.partial = NULL,
xlim = NULL, ylim = NULL, cex = 1, title = NULL, palette = NULL, ...)
Arguments

- **x**: an object of class GPA
- **axes**: a length 2 vector specifying the components to plot
- **lab.ind.moy**: boolean, if TRUE, the label of the mean points are drawn
- **habillage**: string corresponding to the color which are used. If "ind", one color is used for each individual; if "group" the individuals are colored according to the group
- **chrono**: boolean, if TRUE, the partial points of a same point are linked (useful when groups correspond to different moment)
- **draw.partial**: data frame of a boolean variable for all the individuals and all the centers of gravity and with for which the partial points should be drawn (by default, NULL and no partial points are drawn)
- **xlim**: range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
- **ylim**: range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
- **cex**: cf. function `par` in the `graphics` package
- **title**: string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
- **palette**: the color palette used to draw the points. By default colors are chosen. If you want to define the colors: palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25)))

... further arguments passed to or from other methods

Value

Returns the General Procrustes Analysis map.

Author(s)

Elisabeth Morand, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

- GPA

Description

Draw an interactive Multiple Factor Analysis (MFA) graphs.
plotMFApartial(x, axes = c(1, 2),
 lab.ind = TRUE, lab.par = FALSE, habillage = "group",
 chrono = FALSE, col.hab = NULL, invisible = NULL,
 draw.partial = NULL, xlim = NULL, ylim = NULL,
 cex = 1, title = NULL, palette = NULL, ...)

Arguments

x an object of class MFA
axes a length 2 vector specifying the components to plot
lab.ind boolean, if TRUE, the label of the mean points are drawn
lab.par boolean, if TRUE, the label of the partial points are drawn
habillage string corresponding to the color which are used. If "group", one color is used for each group of variables; if "quali" the individuals are colored according to one categorical variable; if "group" the individuals are colored according to the group
chrono boolean, if TRUE, the partial points of a same point are linked (useful when groups correspond to different moment)
col.hab the colors to use. By default, colors are chosen
invisible list of string; for choix ="ind", the individuals can be omit (invisible = "ind"), or supplementary individuals (invisible="ind.sup") or the center of gravity of the categorical variables (invisible= "quali"); if invisible = c("ind","ind.sup"), just the centers of gravity are drawn
draw.partial data frame of a boolean variable for all the individuals and all the centers of gravity and with for which the partial points should be drawn (by default, NULL and no partial points are drawn)
xlim range for the plotted 'x' values, defaulting to the range of the finite values of 'x'
ylim range for the plotted 'y' values, defaulting to the range of the finite values of 'y'
cex cf. function par in the graphics package
title string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
palette the color palette used to draw the points. By default colors are chosen. If you want to define the colors : palette=palette(c("black","red","blue")); or you can use: palette=palette(rainbow(30)), or in black and white for example: palette=palette(gray(seq(0,.9,len=25))
...
... further arguments passed to or from other methods

Value

Draw a graph with the individuals and the centers of gravity. The graph is interactive and clicking on a point will draw the partial points, if you click on a point for which the partial points are yet drawn, the partial points are deleted. To stop the interactive plot, click on the title (or in the top of the graph).

Return the names of the points for which the partial points are drawn.
Description

The data used here refer to a survey carried out on a sample of children of primary school who suffered from food poisoning. They were asked about their symptoms and about what they ate.

Usage

data(poison)

Format

A data frame with 55 rows and 15 columns.

Examples

Not run:
data(poison)
res.mca <- MCA(poison, quanti.sup = 1:2, quali.sup=c(3,4))

End(Not run)
Description

The data used here refer to a survey carried out on a sample of children of primary school who suffered from food poisoning. They were asked about their symptoms and about what they ate.

Usage

```r
data(poison)
```

Format

A data frame with 55 rows and 3 columns (the sex, if they are sick or not, and a textual variable with their symptom and what they eat).

Examples

```r
data(poison.text)
res.text <- textual(poison.text, num.text = 3, contingence.by = c(1,2))
## Contingence table for the sex variable, the sich variable and the couple
## of variable sick-sex
res.text2 <- textual(poison.text, num.text = 3, contingence.by = list(1,2,c(1,2)))
```

poulet

Genomic data for chicken

Description

Genomic data for chicken

Usage

```r
data(poulet)
```

Format

A data frame with 43 chickens and 7407 variables. A factor with levels J16 J16R16 J16R5 J48 J48R24 N
And many continuous variables corresponding to the gene expression
Examples

```r
## Not run:
data(poulet)
res.pca = PCA(poulet, quali.sup=1, graph=FALSE)
plot(res.pca)
plot(res.pca, habillage=1, label="quali",
     palette=palette(c("black","red","blue","darkgreen","purple","orange")))
dimdesc(res.pca)
## Dessine des ellipses autour des centres de gravite
plotellipses(res.pca)
## End(Not run)
```

predict.CA
Predict projection for new rows with Correspondence Analysis

Description

Predict the projection of new rows with Correspondence Analysis.

Usage

```r
## S3 method for class 'CA'
predict(object, newdata, ...)
```

Arguments

- `object` an object of class CA
- `newdata` A data frame or a matrix in which to look for variables with which to predict. newdata must contain columns with the same names as the original data.
- `...` Other options.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- CA
predict.FAMD

Predict projection for new rows with Factor Analysis of Mixed Data

Description

Predict the projection of new rows with Factor Analysis of Mixed Data.

Usage

```r
## S3 method for class 'FAMD'
predict(object, newdata, ...)
```

Arguments

- `object`: an object of class `FAMD`
- `newdata`: A data frame or a matrix in which to look for variables with which to predict. `newdata` must contain columns with the same names as the original data.
- `...`: Other options.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

[FAMD](#)

predict.LinearModel

Predict method for Linear Model Fits

Description

Predicted values based on LinearModel object.

Usage

```r
## S3 method for class 'LinearModel'
predict(object, newdata, interval = c("none", "confidence", "prediction"),
        level = 0.95, type = c("response", "terms"), ...)
```
predict.MCA

Arguments

- **object**: Object of class inheriting from "LinearModel"
- **newdata**: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
- **interval**: Type of interval calculation. Can be abbreviated.
- **level**: Tolerance/confidence level.
- **type**: Type of prediction (response or model term). Can be abbreviated.
- **...**: further arguments passed to or from other methods such as `lm`.

Details

See the help of `predict.lm` function.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- `LinearModel`

predict.MCA

Predict projection for new rows with Multiple Correspondence Analysis

Description

Predict the projection of new rows with Multiple Correspondence Analysis.

Usage

```r
## S3 method for class 'MCA'
predict(object, newdata, ...)
```

Arguments

- **object**: an object of class MCA
- **newdata**: A data frame or a matrix in which to look for variables with which to predict. newdata must contain columns with the same names as the original data.
- **...**: Other options.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- `MCA`
predict.MFA

Predict projection for new rows with Multiple Factor Analysis

Description

Predict the projection of new rows with Multiple Factor Analysis.

Usage

```r
# S3 method for class 'MFA'
predict(object, newdata, ...)
```

Arguments

- `object`: an object of class MFA
- `newdata`: A data frame or a matrix in which to look for variables with which to predict. newdata must contain columns with the same names as the original data.
- `...`: Other options.

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- `MFA`

predict.PCA

Predict projection for new rows with Principal Component Analysis

Description

Predict the projection of new rows with Principal Component Analysis.

Usage

```r
# S3 method for class 'PCA'
predict(object, newdata, ...)
```

Arguments

- `object`: an object of class PCA
- `newdata`: A data frame or a matrix in which to look for variables with which to predict. newdata must contain columns with the same names as the original data.
- `...`: Other options.
prefpls

Author(s)
Francois Husson <husson@agrocampus-ouest.fr>

See Also
PCA

prefpls Scatter plot and additional variables with quality of representation contour lines

Description
This function is useful to interpret the usual graphs (x,y) with additional quantitative variables.

Usage
prefpls(donnee, var1 = 1, var2 = 2, firstvar = 3,
lastvar = ncol(donnee), levels = c(0.2,0.4,0.6,0.7,0.8,0.9,1),
asp = 1, nbchar = max(nchar(colnames(donnee))), title = NULL,
choix = "var")

Arguments
donnee a data frame made up of quantitative variables
var1 the position of the variable corresponding to the x-axis
var2 the position of the variable corresponding to the y-axis
firstvar the position of the first endogenous variable
lastvar the position of the last endogenous variable (by default the last column of donnee)
levels a list of the levels displayed in the graph of variables
asp aspect ratio for the graph of the individuals
nbchar the number of characters used for the labels of the variables
title string corresponding to the title of the graph you draw (by default NULL and a title is chosen)
choix the graph to plot ("ind" for the individuals, "var" for the variables)

Details
This function is very useful when there is a strong correlation between two variables x and y

Value
A scatter plot of the individuals
A graph with additional variables and the quality of representation contour lines.
Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

References

Examples
```r
data(decathlon)
prefpls(decathlon[,c(11,12,1:10)])
```

print.AovSum
Print the AovSum results

Description
Print the results of the ANOVA obtained by the function AovSum.

Usage
```r
## S3 method for class 'AovSum'
print(x, ...)
```

Arguments
- `x` an object of class AovSum
- `...` further arguments passed to or from other methods

Author(s)
Vincent Guyader, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also
AovSum

Examples
```r
## Not run:
data(senso)
res <- AovSum(Score~ Product + Day , data=senso)
res

## End(Not run)
```
print.CA

Print the Correspondance Analysis (CA) results

Description

Print the Correspondence Analysis (CA) results.

Usage

S3 method for class 'CA'
print(x, file = NULL, sep = ";", ...)

Arguments

x
an object of class CA
file
A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file
sep
character string to insert between the objects to print (if the argument file is not NULL
...
Further arguments passed to or from other methods

Author(s)

Jeremy Mazet, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

CA, write.infile

print.CaGalt

Print the Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) results

Description

Print the Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) results

Usage

S3 method for class 'CaGalt'
S3 method for class 'CaGalt'
print(x, file = NULL, sep = ";", ...)
print.catdes

Arguments

x an object of class CaGalt

file A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file

sep character string to insert between the objects to print (if the argument file is not NULL)

... further arguments passed to or from other methods

Author(s)

Belchin Kostov <badriyan@clinic.ub.es>, Monica Becue-Bertaut, Francois Husson

See Also

CaGalt, write.infile

Examples

Not run:
data(health)
res.cagalt<-CaGalt(Y=health[,1:115],X=health[,116:118],type="n")
print(res.cagalt)

End(Not run)
print.condes

See Also

catdes

Examples

Not run:
data(wine)
res <- catdes(wine, num.var=2)
print(res)

End(Not run)

print.condes

Print the condes results

Description

Print the results of the function condes.

Usage

S3 method for class 'condes'
print(x, ...)

Arguments

x
an object of class condes

...
further arguments passed to or from other methods

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

condes

Examples

Not run:
data(wine)
res <- condes(wine, num.var=3)
print(res)

End(Not run)
print.FAMD

Print the Multiple Factor Analysis of mixt Data (FAMD) results

Description

Print the Multiple Factor Analysis of mixt Data (FAMD) results.

Usage

S3 method for class 'FAMD'
print(x, file = NULL, sep = ";", ...)

Arguments

- **x**: an object of class FAMD
- **file**: A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file
- **sep**: character string to insert between the objects to print (if the argument file is not NULL
- **...**: further arguments passed to or from other methods

Author(s)

Jeremy Mazet, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

FAMD

print.GPA

Print the Generalized Procrustes Analysis (GPA) results

Description

Print the Generalized Procrustes Analysis (GPA) results.

Usage

S3 method for class 'GPA'
print(x, file = NULL, sep = ";", ...)

print.HCPC

Arguments

x

an object of class GPA

file

A connection, or a character string naming the file to print to. If NULL (the
default), the results are not printed in a file

sep

character string to insert between the objects to print (if the argument file is not
NULL

...

further arguments passed to or from other methods

Author(s)

Elisabeth Morand, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

GPA, write.infile

Description

Print the Hierarchical Clustering on Principal Components (HCPC) results.

Usage

S3 method for class 'HCPC'
print(x, file = NULL, sep = ";", ...)

Arguments

x

an object of class HCPC

file

A connection, or a character string naming the file to print to. If NULL (the
default), the results are not printed in a file

sep

character string to insert between the objects to print (if the argument file is not
NULL

...

further arguments passed to or from other methods

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

HCPC, write.infile
print.HMFA

Print the Hierarchical Multiple Factor Analysis results

Description

Print the Hierarchical Multiple Factor Analysis results.

Usage

```r
## S3 method for class 'HMFA'
print(x, file = NULL, sep = ";", ...)  
```

Arguments

- `x`: an object of class `HMFA`
- `file`: A connection, or a character string naming the file to print to. If `NULL` (the default), the results are not printed in a file
- `sep`: character string to insert between the objects to print (if the argument `file` is not `NULL`)
- `...`: further arguments passed to or from other methods

Author(s)

Sebastien Le, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

`HMFA, write.infile`

print.LinearModel

Print the LinearModel results

Description

Print the results of the ANOVA obtained by the function `LinearModel`.

Usage

```r
## S3 method for class 'LinearModel'
print(x, ...)  
```

Arguments

- `x`: an object of class `LinearModel`
- `...`: further arguments passed to or from other methods
Details

Gives the results of the LinearModel function. If a model selection is performed, the global F-test for the complete model is first given, then all the results are given for the selected model (global F-test, the F-tests for main effects and interaction, the t-tests).

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

LinearModel

Examples

Not run:
data(senso)
res <- LinearModel(Score~ Product + Day , data=senso)
res
res2 <- LinearModel(Score~ Product + Day , data=senso, selection="BIC")
res2
End(Not run)

print.MCA

Print the Multiple Correspondance Analysis (MCA) results

Description

Print the Multiple Correspondance Analysis (spMCA) results.

Usage

S3 method for class 'MCA'
print(x, file = NULL, sep = ",", ...)

Arguments

x an object of class MCA
file A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file
sep character string to insert between the objects to print (if the argument file is not NULL
... further arguments passed to or from other methods
Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

MCA, write.infile

print.MFA

Print the Multiple Factor Analysis results

Description

Print the Multiple Factor Analysis results.

Usage

S3 method for class 'MFA'
print(x, file = NULL, sep = ";", ...)

Arguments

x an object of class MFA
file A connection, or a character string naming the file to print to. If NULL (the
default), the results are not printed in a file
sep character string to insert between the objects to print (if the argument file is not
 NULL)
... further arguments passed to or from other methods

Author(s)

Jeremy Mazet, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

MFA, write.infile
Description

Print the Principal Component Analysis (PCA) results.

Usage

S3 method for class 'PCA'
print(x, file = NULL, sep = ";", ...)

Arguments

x an object of class PCA
file A connection, or a character string naming the file to print to. If NULL (the default), the results are not printed in a file
sep character string to insert between the objects to print (if the argument file is not NULL
... further arguments passed to or from other methods

Author(s)

Jeremy Mazet, Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also

PCA, write.infile

Examples

Not run:
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13)
print(res.pca, file="c:/essai.csv", sep = ";")

End(Not run)
Reconstruction of the data from the PCA, CA or MFA results

Description

Reconstruct the data from the PCA, CA or MFA results.

Usage

reconst(res, ncp=NULL)

Arguments

res an object of class PCA, CA or MFA
ncp number of dimensions used to reconstitute the data (by default NULL and the
 number of dimensions calculated for the PCA, CA or MFA is used)

Value

Returns a data frame with the number of individuals and the number of variables used for the PCA, CA or MFA

Author(s)

Francois Husson <Francois.Husson@agrocampus-ouest.fr>, Julie Josse <Julie.Josse@agrocampus-ouest.fr>

See Also

PCA, CA, MFA

Examples

data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13, graph=FALSE)
rec <- reconst(res.pca,ncp=2)
RegBest

Select variables in multiple linear regression

Description

Find an optimal submodel

Usage

RegBest(y, x, int = TRUE, wt=NULL, na.action = na.omit,
method=c("r2","Cp", "adjr2"), nbest=1)

Arguments

y A response vector
x A matrix of predictors
int Add an intercept to the model
wt Optional weight vector
na.action Handling missing values
method Calculate R-squared, adjusted R-squared or Cp to select the model. By default
a the F-test on the r-square is used
nbest number of best models for each set of explained variables (by default 1)

Value

Returns the objects

all gives all the nbest best models for a given number of variables
best the best model

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

lm

Examples

data(milk)
res = RegBest(y=milk[,6],x=milk[,-6])
res$best
Description

Dataset to illustrate one-way and Two-way analysis of variance

Usage

data(senso)

Format

Dataset with 45 rows and 3 columns: Score, Product and Day

Examples

```r
## Example of 2-way analysis of variance
data(senso)
res <- AovSum (Score~ Product + Day, data=senso)
res

## Example of 2-way analysis of variance with interaction
data(senso)
res2 <- AovSum (Score~ Product + Day + Product : Day, data=senso)
res2
```

Description

Simulate by bootstrap

Usage

```r
simule(data, nb.simul)
```

Arguments

data A data frame from which the rows are the original data from which the simulate data are calculated (by the average of a bootstrap sample. The columns corresponds to the variables for which the simulation should be done. The first column must be a factor allowing to group the rows. A bootstrap simulation is done for each level of this factor.
nb.simul The number of simulations.
Details

The simulation is independently done for each level of the factor. The number of rows can be different for each levels.

Value

- **mean**: Data.frame with all the levels of the factor variable, and for each variable, the mean of the original data.
- **simul**: Data.frame with all the levels of the factor variable, and for each variable, the nb.simul bootstrap simulations.
- **simul.mean**: Data.frame with all the levels of the factor variable, and for each variable, the mean of the simulated data.

Author(s)

Jeremy Mazet

summary.CA

Printing summaries of ca objects

Description

Printing summaries of correspondence analysis objects

Usage

```r
## S3 method for class 'CA'
summary(object, nb.dec = 3, nbelements=10, ncp = 3, align.names=TRUE, file="", ...)
```

Arguments

- **object**: an object of class CA
- **nb.dec**: number of decimal printed
- **nbelements**: number of elements written (rows, columns, ...) ; use nbelements = Inf if you want to have all the elements
- **ncp**: number of dimensions printed
- **align.names**: boolean, if TRUE the names of the objects are written using the same number of characters
- **file**: a connection, or a character string naming the file to print to
- **...**: further arguments passed to or from other methods, such as cex, cex.main, ...

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>
See Also

CA

summary.CaGalt Printing summaries of CaGalt objects

Description

Printing summaries of Correspondence Analysis on Generalised Aggregated Lexical Table (CaGalt) objects

Usage

S3 method for class 'CaGalt'
summary(object, nb.dec = 3, nbelements=10, nbind = nbelements,
n = 3, align.names=TRUE, file="", ...)

Arguments

object an object of class CaGalt
nb.dec number of printed decimals
nbelements number of written elements (variables, categories, frequencies); use nbelements = Inf if you want to have all the elements
nbind number of written elements; use nbind = Inf to have the results for all the individuals and nbind = 0 if you do not want the results for individuals
ncp number of printed dimensions
align.names boolean, if TRUE the names of the objects are written using the same number of characters
file a connection, or a character string naming the file to print to
... further arguments passed to or from other methods, such as cex, cex.main, ...

Author(s)

Belchin Kostov <badriyan@clinic.ub.es>, Monica Becue-Bertaut, Francois Husson

See Also

CaGalt

Examples

Not run:
data(health)
res.cagalt<-CaGalt(Y=health[,1:115],X=health[,116:118],type="n")
summary(res.cagalt)
End(Not run)
Description

Printing summaries of factor analysis on mixed data objects

Usage

```R
# S3 method for class 'FAMD'
summary(object, nb.dec = 3, nbelements=10,
         nbind=nbelements, ncp = 3, align.names=TRUE, file='', ...)  
```

Arguments

- **object**: an object of class FAMD
- **nb.dec**: number of decimal printed
- **nbelements**: number of elements written (variables, categories, ...); use `nbelements = Inf` if you want to have all the elements
- **nbind**: number of individuals written (individuals and supplementary individuals, ...); use `nbind = Inf` to have the results for all the individuals and `nbind = 0` if you do not want the results for individuals
- **ncp**: number of dimensions printed
- **align.names**: boolean, if TRUE the names of the objects are written using the same number of characters
- **file**: a connection, or a character string naming the file to print to
- **...**: further arguments passed to or from other methods, such as cex, cex.main, ...

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

FAMD
Summary.MCA

Printing summaries of MCA objects

Description

Printing summaries of multiple correspondence analysis objects

Usage

```r
## S3 method for class 'MCA'
summary(object, nb.dec = 3, nbelements=10,
         nbind=nbelements, ncp = 3, align.names=TRUE, file="", ...)```

**Arguments**

- **object**: an object of class MCA
- **nb.dec**: number of decimal printed
- **nbelements**: number of elements written (variables, categories, ...); use `nbelements = Inf` if you want to have all the elements
- **nbind**: number of individuals written (individuals and supplementary individuals, ...); use `nbind = Inf` to have the results for all the individuals and `nbind = 0` if you do not want the results for individuals
- **ncp**: number of dimensions printed
- **align.names**: boolean, if TRUE the names of the objects are written using the same number of characters
- **file**: a connection, or a character string naming the file to print to
- **...**: further arguments passed to or from other methods, such as `cex`, `cex.main`, ...

**Author(s)**

Francois Husson <husson@agrocampus-ouest.fr>

**See Also**

`MCA`
Summary of MFA objects

Printing summaries of MFA objects

Description

Printing summaries of multiple factor analysis objects

Usage

## S3 method for class 'MFA'
summary(object, nb.dec = 3, nbelements=10,
nbind = nbelements, ncp = 3, align.names=TRUE, file="", ...)  

Arguments

- **object**: an object of class MFA
- **nb.dec**: number of decimal printed
- **nbelements**: number of elements written (groups, variables, categories, ...); use nbelements = Inf if you want to have all the elements
- **nbind**: number of individuals written (individuals and supplementary individuals, ...); use nbind = Inf to have the results for all the individuals and nbind = 0 if you do not want the results for individuals
- **ncp**: number of dimensions printed
- **align.names**: boolean, if TRUE the names of the objects are written using the same number of characters
- **file**: a connection, or a character string naming the file to print to
- **...**: further arguments passed to or from other methods, such as cex, cex.main, ...

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- MFA
summary.PCA

Printing summaries of PCA objects

Description

Printing summaries of principal component analysis objects

Usage

## S3 method for class 'PCA'
summary(object, nb.dec = 3, nbelements=10,
         nbind = nbelements, ncp = 3, align.names=TRUE, file="", ...)

Arguments

- **object**
  - an object of class PCA
- **nb.dec**
  - number of decimal printed
- **nbelements**
  - number of elements written (variables, categories, ...); use nbelements = Inf if you want to have all the elements
- **nbind**
  - number of individuals written (individuals and supplementary individuals, ...); use nbind = Inf to have the results for all the individuals and nbind = 0 if you do not want the results for individuals
- **ncp**
  - number of dimensions printed
- **align.names**
  - boolean, if TRUE the names of the objects are written using the same number of characters
- **file**
  - a connection, or a character string naming the file to print to
- **...**
  - further arguments passed to or from other methods, such as cex, cex.main, ...

Author(s)

Francois Husson <husson@agrocampus-ouest.fr>

See Also

- **PCA**
svd.triplet  

_Singular Value Decomposition of a Matrix_

**Description**

Compute the singular-value decomposition of a rectangular matrix with weights for rows and columns.

**Usage**

```r
svd.triplet(X, row.w=NULL, col.w=NULL, ncp=Inf)
```

**Arguments**

- `X`  
  a data matrix

- `row.w`  
  vector with the weights of each row (NULL by default and the weights are uniform)

- `col.w`  
  vector with the weights of each column (NULL by default and the weights are uniform)

- `ncp`  
  the number of components kept for the outputs

**Value**

- `vs`  
  a vector containing the singular values of 'x';

- `u`  
  a matrix whose columns contain the left singular vectors of 'x';

- `v`  
  a matrix whose columns contain the right singular vectors of 'x'.

**See Also**

- `svd`

---

**tab.disjonctif**  

_Make a disjonctif table_

**Description**

Make a disjonctif table.

**Usage**

```r
tab.disjonctif(tab)
```

**Arguments**

- `tab`  
  a data frame with factors
**Value**

The disjonctif table

---

**Description**

Create a disjunctive table. The missing values are replaced by the proportion of the category.

**Usage**

```
tab.disjonctif.prop(tab, seed=NULL, row.w=NULL)
```

**Arguments**

- `tab` a data frame with factors
- `row.w` an optional row weights (by default, a vector of 1 for uniform row weights)
- `seed` a single value, interpreted as an integer for the set.seed function (if seed = NULL, missing values are initially imputed by the mean of each variable)

**Value**

The disjonctif table.prop

---

**tea**

**tea (data)**

---

**Description**

The data used here concern a questionnaire on tea. We asked to 300 individuals how they drink tea (18 questions), what are their product’s perception (12 questions) and some personal details (4 questions).

**Usage**

```
data(tea)
```

**Format**

A data frame with 300 rows and 36 columns. Rows represent the individuals, columns represent the different questions. The first 18 questions are active ones, the 19th is a supplementary quantitative variable (the age) and the last variables are supplementary categorical variables.
Examples

```r
Not run:
data(tea)
res.mca=MCA(tea,quanti.sup=19,quali.sup=20:36)
plot(res.mca,invisible=c("var","quali.sup","quanti.sup"),cex=0.7)
plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"),cex=0.8)
plot(res.mca,invisible=c("quali.sup","quanti.sup"),cex=0.8)
dimdesc(res.mca)
plotellipses(res.mca,keepvar=1:4)

make a hierarchical clustering: click on the tree to define the number of clusters
HCPC(res.mca)

End(Not run)
```

Text mining

Description

Calculates the number of occurrence of each word and a contingency table

Usage

```r
textual(tab, num.text, contingence.by=1:ncol(tab),
 maj.in.min = TRUE, sep.word=NULL)
```

Arguments

- `tab` a data frame with one textual variable
- `num.text` indice of the textual variable
- `contingence.by` a list with the indices of the variables for which a contingency table is calculated by default a contingency table is calculated for all the variables (except the textual one). A contingency table can also be calculated for couple of variables. If contingence.by is equal to num.text, then the contingency table is calculated for each row of the data table
- `maj.in.min` boolean, if TRUE majuscule are transformed in minuscule
- `sep.word` a string with all the characters which correspond to separator of words

Value

Returns a list including:
- `cont.table` the contingency table with in rows the categories of the categorical variables (or the couple of categories), and in column the words, and in each cell the number of occurrence
- `nb.words` a data.frame with all the words and for each word, the number of lists in which it is present, and the number of occurrence
Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

See Also
CA, descfreq

Examples

data(poison.text)
res.text <- textual(poison.text, num.text = 3, contingence.by = 1)
descfreq(res.text$cont.table)
## Contingence table for the couple of variable sick-sex
res.text2 <- textual(poison.text, num.text = 3, contingence.by = list(c(1,2)))
descfreq(res.text2$cont.table)
## Contingence table for sex, sick and the couple of variable sick-sex
res.text2 <- textual(poison.text, num.text = 3, contingence.by = list(1,2,c(1,2)))

wine

Wine

Description
The data used here refer to 21 wines of Val de Loire.

Usage
data(wine)

Format
A data frame with 21 rows (the number of wines) and 31 columns: the first column corresponds to
the label of origin, the second column corresponds to the soil, and the others correspond to sensory
descriptors.

Source
Centre de recherche INRA d'Angers

Examples
data(wine)

## Example of PCA
res.pca = PCA(wine,ncp=5, quali.sup = 1:2)

## Not run:
## Example of MCA
res.mca = MCA(wine,ncp=5, quanti.sup = 3:ncol(wine))
## Example of MFA
res.mfa = MFA(wine.group=2:5, type=c("n", rep("s", 5)), ncp=5, name.group=c("orig", "olf", "vis", "olfag", "gust", "ens"), num.group.sup=c(1, 6), graph=FALSE)
plotellipses(res.mfa)
plotellipses(res.mfa, keepvar="Label") ## for 1 variable

## End(Not run)

write.infile

Print in a file

Description
Print in a file.

Usage
write.infile(X, file, sep=";", append = FALSE, nb.dec=4)

Arguments
- **X**: an object of class list, data.frame, matrix, ...
- **file**: A connection, or a character string naming the file to print to
- **sep**: character string to insert between the objects to print (if the argument file is not NULL)
- **append**: logical. If TRUE output will be appended to file; otherwise, it will overwrite the contents of file.
- **nb.dec**: number of decimal printed, by default 4

Author(s)
Francois Husson <Francois.Husson@agrocampus-ouest.fr>

Examples
## Not run:
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup = 13)
write.infile(res.pca, file="c:/essai.csv", sep = ";")

## End(Not run)
Index

* **Factor analysis**
  FactoMineR-package, 3

* **algebra**
  svd.triplet, 99
  tab.disjonctif, 99
  tab.disjonctif.prop, 100

* **datasets**
  children, 11
  decathlon, 15
  footsize, 23
  geomorphology, 24
  health, 30
  hobbies, 32
  JO, 33
  milk, 42
  mortality, 42
  poison, 73
  poison.text, 74
  poulet, 74
  senso, 92
  tea, 100
  wine, 102

* **dplot**
  autoLab, 5
  coord.ellipse, 14
  graph.var, 26
  plot.CA, 45
  plot.cates, 50
  plot.DMFA, 51
  plot.FAMD, 52
  plot.GPA, 54
  plot.HCPC, 55
  plot.HMFA, 57
  plot.MCA, 58
  plot.meansComp, 61
  plot.MFA, 62
  plot.PCA, 65
  plotGPAtotal, 70
  plotMFApartial, 71
  prefpls, 79
  simule, 92

* **models**
  AovSum, 4
  LinearModel, 34
  meansComp, 38
  RegBest, 91

* **multivariate**
  CA, 6
  CaGalt, 8
  catdes, 10
  coeffRV, 12
  condes, 13
  descfrec, 16
  dimdesc, 17
  DMFA, 18
  ellipseCA, 19
  estim_ncp, 21
  FAMD, 22
  GPA, 25
  HCPC, 28
  HMFA, 31
  MCA, 35
  MFA, 39
  PCA, 43
  plot.CaGalt, 48
  plotellipses, 68
  print.CaGalt, 81
  reconst, 90
  summary.CaGalt, 94
  textual, 101

* **print**
  print.AovSum, 80
  print.CA, 81
  print.catdes, 82
  print.cates, 83
  print.FAMD, 84
  print.GPA, 84
  print.HCPC, 85
<table>
<thead>
<tr>
<th>Function/Package</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.HMFA</td>
<td>86</td>
</tr>
<tr>
<td>print.LinearModel</td>
<td>86</td>
</tr>
<tr>
<td>print.MCA</td>
<td>87</td>
</tr>
<tr>
<td>print.MFA</td>
<td>88</td>
</tr>
<tr>
<td>print.PCA</td>
<td>89</td>
</tr>
<tr>
<td>write.infile</td>
<td>103</td>
</tr>
<tr>
<td>agnes</td>
<td>28</td>
</tr>
<tr>
<td>aov</td>
<td>5, 35</td>
</tr>
<tr>
<td>AovSum</td>
<td>4, 80</td>
</tr>
<tr>
<td>autoLab</td>
<td>5</td>
</tr>
<tr>
<td>CA</td>
<td>6, 17, 20, 47, 75, 81, 90, 94, 102</td>
</tr>
<tr>
<td>CaGalt</td>
<td>8, 49, 82, 94</td>
</tr>
<tr>
<td>cattes</td>
<td>10, 13, 16, 28, 29, 50, 51, 83</td>
</tr>
<tr>
<td>children</td>
<td>11</td>
</tr>
<tr>
<td>coeffRV</td>
<td>12</td>
</tr>
<tr>
<td>condes</td>
<td>11, 13, 16, 83</td>
</tr>
<tr>
<td>coord.ellipse</td>
<td>14</td>
</tr>
<tr>
<td>decathlon</td>
<td>15</td>
</tr>
<tr>
<td>descfreq</td>
<td>16, 29, 102</td>
</tr>
<tr>
<td>dimdesc</td>
<td>7, 17, 19, 32, 37, 41, 44</td>
</tr>
<tr>
<td>DMFA</td>
<td>18, 27, 52</td>
</tr>
<tr>
<td>ellipseCA</td>
<td>7, 19</td>
</tr>
<tr>
<td>estim_ncp</td>
<td>21</td>
</tr>
<tr>
<td>FactoMineR (FactoMineR-package)</td>
<td>3</td>
</tr>
<tr>
<td>FactoMineR-package</td>
<td>3</td>
</tr>
<tr>
<td>FAMD</td>
<td>22, 54, 76, 84, 95</td>
</tr>
<tr>
<td>footsize</td>
<td>23</td>
</tr>
<tr>
<td>geomorphology</td>
<td>24</td>
</tr>
<tr>
<td>GPA</td>
<td>25, 55, 71, 85</td>
</tr>
<tr>
<td>graph.var</td>
<td>26</td>
</tr>
<tr>
<td>HCPC</td>
<td>28, 56, 85</td>
</tr>
<tr>
<td>health</td>
<td>30</td>
</tr>
<tr>
<td>HMFA</td>
<td>17, 27, 31, 58, 86</td>
</tr>
<tr>
<td>hobbies</td>
<td>32</td>
</tr>
<tr>
<td>JO</td>
<td>33</td>
</tr>
<tr>
<td>LinearModel</td>
<td>34, 77, 87</td>
</tr>
<tr>
<td>lm</td>
<td>5, 35, 91</td>
</tr>
<tr>
<td>MCA</td>
<td>17, 27, 35, 60, 70, 77, 88, 96</td>
</tr>
<tr>
<td>meansComp</td>
<td>38, 61</td>
</tr>
<tr>
<td>MFA</td>
<td>17, 27, 39, 64, 73, 78, 88, 90, 97</td>
</tr>
<tr>
<td>milk</td>
<td>42</td>
</tr>
<tr>
<td>mortality</td>
<td>42</td>
</tr>
<tr>
<td>par</td>
<td>27, 55, 57, 69, 71, 72</td>
</tr>
<tr>
<td>PCA</td>
<td>17, 21, 27, 43, 68, 70, 79, 89, 90, 98</td>
</tr>
<tr>
<td>plot.CA</td>
<td>7, 20, 45</td>
</tr>
<tr>
<td>plot.CaGalt</td>
<td>9, 48</td>
</tr>
<tr>
<td>plot.catdes</td>
<td>11, 50</td>
</tr>
<tr>
<td>plot.DMFA</td>
<td>19, 51</td>
</tr>
<tr>
<td>plot.FAMD</td>
<td>23, 52</td>
</tr>
<tr>
<td>plot.GPA</td>
<td>54</td>
</tr>
<tr>
<td>plot.HCPC</td>
<td>29, 55</td>
</tr>
<tr>
<td>plot.HMFA</td>
<td>32, 57</td>
</tr>
<tr>
<td>plot.MCA</td>
<td>37, 58</td>
</tr>
<tr>
<td>plot.meansComp</td>
<td>38, 61</td>
</tr>
<tr>
<td>plot.MFA</td>
<td>40, 41, 62, 73</td>
</tr>
<tr>
<td>plot.PCA</td>
<td>44, 65</td>
</tr>
<tr>
<td>plotellipses</td>
<td>37, 68</td>
</tr>
<tr>
<td>plotGPAPartial</td>
<td>70</td>
</tr>
<tr>
<td>plotMFAPartial</td>
<td>71</td>
</tr>
<tr>
<td>poison</td>
<td>73</td>
</tr>
<tr>
<td>poison.text</td>
<td>74</td>
</tr>
<tr>
<td>poulet</td>
<td>74</td>
</tr>
<tr>
<td>predict.CA</td>
<td>75</td>
</tr>
<tr>
<td>predict.FAMD</td>
<td>76</td>
</tr>
<tr>
<td>predict.LinearModel</td>
<td>76</td>
</tr>
<tr>
<td>predict.lm</td>
<td>77</td>
</tr>
<tr>
<td>predict.MCA</td>
<td>77</td>
</tr>
<tr>
<td>predict.MFA</td>
<td>78</td>
</tr>
<tr>
<td>predict.PCA</td>
<td>78</td>
</tr>
<tr>
<td>prefplls</td>
<td>79</td>
</tr>
<tr>
<td>print.AovSum</td>
<td>80</td>
</tr>
<tr>
<td>print.CA</td>
<td>7, 81</td>
</tr>
<tr>
<td>print.CaGalt</td>
<td>9, 81</td>
</tr>
<tr>
<td>print.catdes</td>
<td>82</td>
</tr>
<tr>
<td>print.condes</td>
<td>83</td>
</tr>
<tr>
<td>print.FAMD</td>
<td>23, 84</td>
</tr>
<tr>
<td>print.GPA</td>
<td>84</td>
</tr>
<tr>
<td>print.HCPC</td>
<td>85</td>
</tr>
<tr>
<td>print.HMFA</td>
<td>32, 86</td>
</tr>
<tr>
<td>print.LinearModel</td>
<td>35, 86</td>
</tr>
<tr>
<td>print.MCA</td>
<td>37, 87</td>
</tr>
<tr>
<td>print.MFA</td>
<td>41, 88</td>
</tr>
<tr>
<td>print.PCA</td>
<td>44, 89</td>
</tr>
<tr>
<td>reconst</td>
<td>90</td>
</tr>
<tr>
<td>RegBest</td>
<td>91</td>
</tr>
<tr>
<td>senso</td>
<td>92</td>
</tr>
</tbody>
</table>
simule, 15, 92
summary.CA, 7, 93
summary.CaGalt, 9, 94
summary.FAMD, 23, 95
summary.MCA, 37, 96
summary.MFA, 41, 97
summary.PCA, 44, 98
svd, 99
svd.triplet, 99

tab.disjonctif, 99
tab.disjonctif.prop, 100
tea, 100
textual, 16, 101

wine, 102
write.infile, 81, 82, 85, 86, 88, 89, 103

xyplot, 69