Package ‘FastJm’

Type Package

Title Semi-Parametric Joint Modeling of Longitudinal and Survival Data

Version 1.3.1

Date 2023-03-25

Maintainer Shanpeng Li <lishanpeng0913@ucla.edu>

Description Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data applying customized linear scan algorithms, proposed by Li and colleagues (2022) <doi:10.1155/2022/1362913>. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.

License GPL (>= 3)

NeedsCompilation yes

Imports Rcpp (>= 1.0.7), dplyr, nlme, caret, survival

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5.0), statmod, MASS

RoxygenNote 7.2.3

LazyData true

Suggests testthat (>= 3.0.0), spelling

Language en-US

Config/testthat/edition 3

Author Shanpeng Li [aut, cre],
 Ning Li [ctb],
 Hong Wang [ctb],
 Jin Zhou [ctb],
 Hua Zhou [ctb],
 Gang Li [ctb]

Repository CRAN

Date/Publication 2023-03-26 16:00:02 UTC
R topics documented:

- anova
- cdata
- fitted
- fixef
- jmc
- MAEQjmcs
- PEjmcs
- plot.jmcs
- print
- print.survfitjmcs
- ranef
- residuals
- summary
- summary.MAEQjmcs
- summary.PEjmcs
- survfitjmcs
- vcov
- ydata

Index

anova Anova Method for Fitted Joint Models

Description

Performs a likelihood ratio test between two nested joint models.

Usage

```r
## S3 method for class 'jmcs'
anova(object, object2, digits = 4, ...)
```

Arguments

- `object`: an object inheriting from class `jmcs`, nested in `object2`.
- `object2`: an object inheriting from class `jmcs`.
- `digits`: the number of significant digits to use when printing. Default is 4.
- `...`: further arguments passed to or from other methods.

Value

A table to summarize the likelihood ratio test.
cdata

Simulated competing risks data

Description

The `cdata` data frame has 1000 rows and 7 columns.

Usage

data(cdata)

Format

This data frame contains the following columns:

- **ID** patient identifier.
- **surv** event time.
- **failure_type** event indicator. 0 denotes censoring, 1 risk 1, and 2 risk 2.
- **x1** continuous variable.
- **x2** treatment indicator. 0 denotes the placebo group and 1 the treatment group.
- **gender** gender indicator.
- **race** race indicator.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Examples

```r
# Fit a joint model
fit <- jmcs(ydata = ydata, cdata = cdata, 
            long.formula = response ~ time + x1, 
            surv.formula = Surv(surv, failure_type) ~ x1 + x2, 
            random = ~ time| ID)

fit2 <- jmcs(ydata = ydata, cdata = cdata, 
             long.formula = response ~ time + gender + x1 + race, 
             surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race, 
             random = ~ time| ID)

anova(fit, fit2)
```
fitted

Fitted values for joint models

Description

Extract fitted values for joint models.

Usage

```r
## S3 method for class 'jmcs'
fitted(
  object,
  type = c("Marginal", "Subject"),
  process = c("Longitudinal", "Event"),
  ...
)
```

Arguments

- `object`: an object inheriting from class `jmcs`.
- `type`: for which type of fitted values to calculate.
- `process`: for which sub-model to calculate the fitted values.
- `...`: further arguments passed to or from other methods.

Value

a numeric vector of fitted values.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

Examples

```r
fit <- jmcs(ydata = ydata, cdata = cdata,
            long.formula = response ~ time + gender + x1 + race,
            surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
            random = ~ time| ID)

# fitted for the longitudinal process
head(cbind(
  "Marg" = fitted(fit, type = "Marginal", process = "Longitudinal"),
  "Subj" = fitted(fit, type = "Subject", process = "Longitudinal")
))

# fitted for the event process - marginal survival function
head(fitted(fit, type = "Marginal", process = "Event"))
```
Description

Extracts the fixed effects for a fitted joint model.

Usage

fixef(object, process = c("Longitudinal", "Event"), ...)

Arguments

- object: an object inheriting from class jmcs.
- process: for which sub-model to extract the estimated coefficients.
- ...: further arguments passed to or from other methods.

Value

A numeric vector or a list of the estimated parameters for the fitted model.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

Examples

a joint model fit
fit <- jmcs(ydata = ydata, cdata = cdata,
 long.formula = response ~ time + gender + x1 + race,
 surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
 random = ~ time | ID)

fixed effects for the longitudinal process
fixef(fit, process = "Longitudinal")
fixed effects for the event process
fixef(fit, process = "Event")
Joint modeling of longitudinal continuous data and competing risks

Description

Joint modeling of longitudinal continuous data and competing risks

Usage

```r
jmcs(
  ydata,  # a longitudinal data frame in long format.
cdata,  # a survival data frame with competing risks or single failure. Each subject has 
  long.formula,  # one data entry.
  random = NULL,  # a formula object with the response variable and fixed effects covariates to be 
  surv.formula,  # included in the longitudinal sub-model.
  REML = TRUE,  # a one-sided formula object describing the random effects part of the longituti-
  quadpoint = NULL,  # nal sub-model. For example, fitting a random intercept model takes the form ~ 
  maxiter = 10000,  # 1|ID. Alternatively. Fitting a random intercept and slope model takes the form 
  print.para = FALSE,  # ~ x1 + ... + xn|ID.
  survinitial = TRUE,  # surv.formula  # a formula object with the survival time, event indicator, and the covariates to be 
  tol = 1e-04,  # included in the survival sub-model.
  method = "pseudo-adaptive",  # REML  # a logic object that indicates the use of REML estimator. Default is TRUE.
  opt = "nlminb"  # quadpoint  # the number of pseudo-adaptive Gauss-Hermite quadrature points. to be chosen 
  # for numerical integration. Default is 6 which produces stable estimates in most 
  # dataframes.
)
```

Arguments

- `ydata`: a longitudinal data frame in long format.
- `cdata`: a survival data frame with competing risks or single failure. Each subject has one data entry.
- `long.formula`: a formula object with the response variable and fixed effects covariates to be included in the longitudinal sub-model.
- `random`: a one-sided formula object describing the random effects part of the longitudinal sub-model. For example, fitting a random intercept model takes the form ~ 1|ID. Alternatively. Fitting a random intercept and slope model takes the form ~ x1 + ... + xn|ID.
- `surv.formula`: a formula object with the survival time, event indicator, and the covariates to be included in the survival sub-model.
- `REML`: a logic object that indicates the use of REML estimator. Default is TRUE.
- `quadpoint`: the number of pseudo-adaptive Gauss-Hermite quadrature points. to be chosen for numerical integration. Default is 6 which produces stable estimates in most dataframes.
- `maxiter`: the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
print.para
Print detailed information of each iteration. Default is FALSE, i.e., not to print
the iteration details.
survinitial
Fit a Cox model to obtain initial values of the parameter estimates. Default is
TRUE.
tol
Tolerance parameter. Default is 0.0001.
method
Method for proceeding numerical integration in the E-step. Default is pseudo-
adaptive.
opt
Optimization method to fit a linear mixed effects model, either nlminb (default)
or optim.

Value
Object of class jmcs with elements

beta
the vector of fixed effects for the linear mixed effects model.
gamma1
the vector of fixed effects for type 1 failure for the survival model.
gamma2
the vector of fixed effects for type 2 failure for the survival model. Valid only if
CompetingRisk = TRUE.
nu1
the vector of association parameter(s) for type 1 failure.
nu2
the vector of association parameter(s) for type 2 failure. Valid only if CompetingRisk
= TRUE.
H01
the matrix that collects baseline hazards evaluated at each uncensored event time
for type 1 failure. The first column denotes uncensored event times, the second
column the number of events, and the third columns the hazards obtained by
Breslow estimator.
H02
the matrix that collects baseline hazards evaluated at each uncensored event
time for type 2 failure. The data structure is the same as H01. Valid only if
CompetingRisk = TRUE.
Sig
the variance-covariance matrix of the random effects.
sigma
the variance of the measurement error for the linear mixed effects model.
iters
the total number of iterations until convergence.
convergence
convergence identifier: 1 corresponds to successful convergence, whereas 0 to a
problem (i.e., when 0, usually more iterations are required).
v cov
the variance-covariance matrix of all the fixed effects for both models.
sebeta
the standard error of beta.
segamma1
the standard error of gamma1.
segamma2
the standard error of gamma2. Valid only if CompetingRisk = TRUE.
enu1
the standard error of nu1.
enu2
the standard error of nu2. Valid only if CompetingRisk = TRUE.
seSig
the vector of standard errors of covariance of random effects.
se sigma
the standard error of variance of measurement error for the linear mixed effects
model.
loglike the log-likelihood value.

fitted a list with the fitted values:

- resid the vector of estimated residuals for the linear mixed effects model.
- fitted the vector of fitted values for the linear mixed effects model.
- fittedmar the vector of marginal fitted values for the linear mixed effects model.
- residmar the vector of estimated marginal residuals for the linear mixed effects model.

fittedSurv the estimated survival rate evaluated at each uncensored event time.

FUNB the estimated random effects for each subject.

CompetingRisk logical value; TRUE if a competing event are accounted for.

quadpoint the number of Gauss Hermite quadrature points used for numerical integration.

ydata the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata.

cdata the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times.

PropEventType a frequency table of number of events.

LongitudinalSubmodel the component of the long.formula.

SurvivalSubmodel the component of the surv.formula.

random the component of the random.

call the matched call.

Quad.method the quadrature rule used for integration. If pseudo-adaptive quadrature rule is used, then return pseudo-adaptive. Otherwise return standard.

id the grouping vector for the longitudinal outcome.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

ranef, fixef, fitted.jmcs, residuals.jmcs, survfitjmcs, plot.jmcs, vcov.jmcs

Examples

```r
require(FastJM)
# Load a simulated longitudinal dataset
data(ydata)
# Load a simulated survival dataset with two competing events
data(cdata)

# Fit a joint model
fit <- jmcs(ydata = ydata, cdata = cdata,
```
long.formula = response ~ time + gender + x1 + race,
surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
random = ~ time| ID

fit
Extract the parameter estimates of longitudinal sub-model fixed effects
fixef(fit, process = "Longitudinal")

Extract the parameter estimates of survival sub-model fixed effects
fixef(fit, process = "Event")

Obtain the random effects estimates for first 6 subjects
head(ranef(fit))

Obtain the variance-covariance matrix of all parameter estimates
vcov(fit)

Obtain the result summaries of the joint model fit
summary(fit, process = "Longitudinal")

summary(fit, process = "Event")

Prediction of cumulative incidence for competing risks data
Predict the conditional probabilities for two patients who are alive (censored)
ND <- ydata[ydata$ID %in% c(419, 218),]
ID <- unique(ND$ID)
NDc <- cdata[cdata$ID %in% ID,]
survfit <- survfitjmcs(fit,
 ynewdata = ND,
 cnewdata = NDc,
 u = seq(3, 4.8, by = 0.2),
 method = "GH",
 obs.time = "time")

PE <- PEjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
 obs.time = "time", method = "GH",
 quadpoint = NULL, maxiter = 1000, n.cv = 3,
 survinitial = TRUE)

Brier <- summary(PE, error = "Brier")
Brier

MAEQ <- MAEQjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
 obs.time = "time", method = "GH",
 quadpoint = NULL, maxiter = 1000, n.cv = 3,
 survinitial = TRUE)

APE <- summary(MAEQ, digits = 3)
APE

MAEQjmcs
A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.
Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Usage

MAEQjmcs(
 object,
 seed = 100,
 landmark.time = NULL,
 horizon.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 maxiter = 1000,
 n.cv = 3,
 survinitial = TRUE,
 quantile.width = 0.25,
 ...
)

Arguments

object object of class 'MAEQjmcs'.
seed a numeric value of seed to be specified for cross validation.
landmark.time a numeric value of time for which dynamic prediction starts.
horizon.time a numeric vector of future times for which predicted probabilities are to be computed.
obs.time a character string of specifying a longitudinal time variable.
method estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv number of folds for cross validation. Default is 3.
survinitial Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
quantile.width a numeric value of width of quantile to be specified. Default is 0.25.
... Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.
PEjmcs

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

PEjmcs A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

Usage

PEjmcs(
 object,
 seed = 100,
 landmark.time = NULL,
 horizon.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 maxiter = NULL,
 n.cv = 3,
 survinitial = TRUE,
 ...
)

Arguments

object object of class 'PEjmcs'.
seed a numeric value of seed to be specified for cross validation.
landmark.time a numeric value of time for which dynamic prediction starts.
horizon.time a numeric vector of future times for which predicted probabilities are to be computed.
obstime a character string of specifying a longitudinal time variable.
method estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv number of folds for cross validation. Default is 3.
survinitial Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
... Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

plot.jmcs

Fitted values for joint models

Description

Plot Diagnostics for Joint Models.

Usage

S3 method for class 'jmcs'
plot(x, add.smooth = getOption("add.smooth"), ...)

Arguments

x x of class 'jmcs'.
add.smooth logical; if TRUE a smooth line is superimposed in the "Residuals vs Fitted" plot.
... further arguments passed to or from other methods.

Value

The first two plots are longitudinal sub-model diagnostics and the last two are marginal survival function and marginal cumulative hazard.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>
Examples

```r
fit <- jmcs(ydata = ydata, cdata = cdata,
            long.formula = response ~ time + gender + x1 + race,
            surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
            random = ~ time | ID)

oldpar <- par(mfrow = c(2, 2))
plot(fit)
par(oldpar)
```

Description
Print jmcs

Usage

```r
## S3 method for class 'jmcs'
print(x, digits = 4, ...)
```

Arguments

- `x`: Object of class 'jmcs'.
- `digits`: the number of significant digits to use when printing.
- `...`: Further arguments passed to or from other methods.

Value

a summary of data, joint model, log likelihood, and parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

`jmcs`
print.survfitjmcs

Print survfitjmcs

Description
Print survfitjmcs

Usage
S3 method for class 'survfitjmcs'
print(x, ...)

Arguments

x
x of class 'survfitjmcs'.

...
Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

ranef

Random effects estimates for joint models

Description
Extracts the posterior mean of the random effects for a fitted joint model.

Usage

ranef(object, ...)

Arguments

object
an object inheriting from class jmcs.

...
 further arguments passed to or from other methods.
Value

a matrix of random effects estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Examples

```r
# a joint model fit
fit <- jmcs(ydata = ydata, cdata = cdata,
            long.formula = response ~ time + gender + x1 + race,
            surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
            random = ~ time | ID)

# extract random effects estimates
head(ranef(fit))
```

Description

Extract residuals for joint models.

Usage

```r
## S3 method for class 'jmcs'
residuals(object, type = c("Marginal", "Subject"), ...)
```

Arguments

- **object**: an object inheriting from class jmcs.
- **type**: what type of residuals to calculate.
- **...**: further arguments passed to or from other methods.

Value

a vector of residuals of the longitudinal sub-model.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>
summary

See Also

jmcs

Examples

a joint model fit
fit <- jmcs(ydata = ydata, cdata = cdata,
 long.formula = response ~ time + gender + x1 + race,
 surv.formula = Surv(surv, failure_type) ~ x1 + gender + x2 + race,
 random = ~ time| ID)

residuals of the longitudinal sub-model
head(cbind(
 "Marg" = residuals(fit, type = "Marginal"),
 "Subj" = residuals(fit, type = "Subject")
))

summary

Anova Method for Fitted Joint Models

Description

Produce result summaries of a joint model fit.

Usage

S3 method for class 'jmcs'
summary(object, process = c("Longitudinal", "Event"), digits = 4, ...)

Arguments

object an object inheriting from class jmcs.
process for which model (i.e., longitudinal model or survival model) to extract the estimated coefficients.
digits the number of significant digits to use when printing. Default is 4.
... further arguments passed to or from other methods.

Value

A table to summarize the model results.

See Also

jmcs
Description

Print MAEQjmcs

Usage

S3 method for class 'MAEQjmcs'
summary(object, digits = 3, ...)

Arguments

 object object of class 'MAEQjmcs'.
 digits number of decimal points to be rounded.
 ... Further arguments passed to or from other methods.

Value

 a list of matrices with conditional probabilities for subjects.

Author(s)

 Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

 jmcs, survfitjmcs

Description

Print PEjmcs

Usage

S3 method for class 'PEjmcs'
summary(object, error = c("MAE", "Brier"), ...)

survfitjmcs

Arguments

 object an object inheriting from class jmc.
 seed a random seed number to proceed Monte Carlo simulation. Default is 100.
 ynewdata a data frame that contains the longitudinal and covariate information for the
 subjects for which prediction of survival probabilities is required.

Value

 a list of matrices with conditional probabilities for subjects.

Author(s)

 Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

 jmc, survfitjmcs

Description

 This function computes the conditional probability of surviving later times than the last observed
 time for which a longitudinal measurement was available.

Usage

 survfitjmcs(
 object,
 seed = 100,
 ynewdata = NULL,
 cnewdata = NULL,
 u = NULL,
 Last.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 ...
)

Arguments

 object an object inheriting from class jmc.
 seed a random seed number to proceed Monte Carlo simulation. Default is 100.
 ynewdata a data frame that contains the longitudinal and covariate information for the
 subjects for which prediction of survival probabilities is required.
vcov

vcov

Variance-covariance matrix of the estimated parameters for joint models

Description

Extract variance-covariance matrix for joint models.

Usage

```r
## S3 method for class 'jmcs'
vcov(object, ...)
```
Arguments

object an object inheriting from class jmcs.

Value

a matrix of variance covariance of all parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Description

The ydata data frame has 3067 rows and 6 columns.

Usage

data(ydata)

Format

This data frame contains the following columns:

ID patient identifier.
response response variable.
time visit time.
X1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.
gender gender indicator.
race race indicator.
Index

.datasets
 cdata, 3
 ydata, 20

anova, 2

CDATA, 3

fitted, 4
fitted.jmcs, 8
fixef, 5, 8
jmcs, 3, 6, 11–20
MAEQjmcs, 9
PEjmcs, 11
plot.jmcs, 8, 12
print, 13
print.survfitjmcs, 14
ranef, 8, 14
residuals, 15
residuals.jmcs, 8
summary, 16
summary.MAEQjmcs, 17
summary.PEjmcs, 17
survfitjmcs, 8, 11, 12, 14, 17, 18, 18
vcov, 19
vcov.jmcs, 8
ydata, 20