Package ‘FeatureImpCluster’

October 12, 2022

Title Feature Importance for Partitional Clustering

Version 0.1.5

Description Implements a novel approach for measuring feature importance in k-means clustering. Importance of a feature is measured by the misclassification rate relative to the baseline cluster assignment due to a random permutation of feature values. An explanation of permutation feature importance in general can be found here: <https://christophm.github.io/interpretable-ml-book/feature-importance.html>.

License GPL-3

Encoding UTF-8

Suggests flexclust, clustMixType, knitr, rmarkdown, testthat, attempt, ClustImpute, covr

Imports ggplot2

RoxygenNote 7.1.1

Depends data.table

NeedsCompilation no

Author Oliver Pfaffel [aut, cre]

Maintainer Oliver Pfaffel <opfaffel@gmail.com>

Repository CRAN

Date/Publication 2021-10-20 16:20:02 UTC

R topics documented:

create_random_data ... 2
FeatureImpCluster .. 2
PermMisClassRate .. 3
plot.featImpCluster .. 5

Index 6
create_random_data Create random data set with 4 clusters

Description
Create random data set with 4 clusters in a 2 dimensional subspace of a nr_other_vars+2 dimensional space

Usage
create_random_data(n = 10000, nr_other_vars = 4)

Arguments
n number of points
nr_other_vars number of other variables / "noise" dimensions

Value
list containing the random data.table and a vector with the true underlying cluster assignments

Examples
create_random_data(n=1e3)

FeatureImpCluster Feature importance for k-means clustering

Description
This function loops through PermMisClassRate for each variable of the data. The mean misclassification rate over all iterations is interpreted as variable importance.

Usage
FeatureImpCluster(
 clusterObj,
 data,
 basePred = NULL,
 predFUN = NULL,
 sub = 1,
 biter = 10
)
Arguments

clusterObj a "typical" cluster object. The only requirement is that there must be a prediction function which maps the data to an integer

data data.table with the same features as the data set used for clustering (or the simply the same data)

basePred should be equal to results of predFUN(clusterObj,newdata=data); this option saves time when data is a very large data set

predFUN predFUN(clusterObj,newdata=data) should provide the cluster assignment as a numeric vector; typically this is a wrapper around a build-in prediction function

sub integer between 0 and 1(=default), indicates that only a subset of the data should be used if <1

biter the permutation is iterated biter(=5, default) times

Value

A list of

misClassRate A matrix of the permutation misclassification rate for each variable and each iteration

featureImp For each row of complete_data, the associated cluster

Examples

set.seed(123)
dat <- create_random_data(n=1e3)$data # random data

library(flexclust)
res <- kcca(dat,k=4)
f <- FeatureImpCluster(res,dat)
plot(f)

PermMisClassRate

PermMisClassRate Permutation misclassification rate for single variable

Description

Answers the following question: Using the current partion as a baseline, what is the misclassification rate if a given feature is permuted?
PermMisClassRate

Usage

PermMisClassRate(
 clusterObj,
 data,
 varName,
 basePred = NULL,
 predFUN = NULL,
 sub = 1,
 biter = 5,
 seed = 123
)

Arguments

clusterObj a "typical" cluster object. The only requirement is that there must be a prediction function which maps the data to an integer
data data.table with the same features as the data set used for clustering (or the simply the same data)
varName character; variable name
basePred should be equal to results of predFUN(clusterObj,newdata=data); this option saves time when data is a very large data set
predFUN predFUN(clusterObj,newdata=data) should provide the cluster assignment as a numeric vector; typically this is a wrapper around a build-in prediction function
sub integer between 0 and 1 (=default), indicates that only a subset of the data should be used if <1
biter the permutation is iterated biter (=5, default) times
seed value for random seed

Value

vector of length biter with the misclassification rate

Examples

set.seed(123)
dat <- create_random_data(n=1e3)$data # random data

library(flexclust)
res <- kcca(dat,k=4)
PermMisClassRate(res,dat,varName="x")
Description
Feature importance box plot

Usage
```r
## S3 method for class 'featImpCluster'
plot(x, dat = NULL, color = "none", showPoints = FALSE, ...)
```

Arguments
- `x`: an object returned from FeatureImpCluster
- `dat`: same data as used for the computation of the feature importance (only relevant for colored plots)
- `color`: If set to "type", the plot will show different variable types with a different color.
- `showPoints`: Show points (default is False)
- `...`: arguments to be passed to base plot method

Value
Returns a ggplot2 object
Index

create_random_data, 2
FeatureImpCluster, 2
PermMisClassRate, 2, 3
plot.featImpCluster, 5