Package ‘FedData’

August 9, 2018

Type Package
Title Functions to Automate Downloading Geospatial Data Available from Several Federated Data Sources
Description Functions to automate downloading geospatial data available from several federated data sources (mainly sources maintained by the US Federal government). Currently, the package enables extraction from seven datasets: The National Elevation Dataset digital elevation models (1 and 1/3 arc-second; USGS); The National Hydrography Dataset (USGS); The Soil Survey Geographic (SSURGO) database from the National Cooperative Soil Survey (NCSS), which is led by the Natural Resources Conservation Service (NRCS) under the USDA; the Global Historical Climatology Network (GHCN), coordinated by National Climatic Data Center at NOAA; the Daymet gridded estimates of daily weather parameters for North America, version 3, available from the Oak Ridge National Laboratory’s Distributed Active Archive Center (DAAC); the International Tree Ring Data Bank; and the National Land Cover Database (NLCD).

Version 2.5.5
Date 2018-08-08
Author R. Kyle Bocinsky [aut, cre],
 Dylan Beaudette [ctb],
 Scott Chamberlain [ctb]
Maintainer R. Kyle Bocinsky <bocinsky@gmail.com>
URL https://github.com/ropensci/FedData
BugReports https://github.com/ropensci/FedData/issues
License MIT + file LICENSE
Depends R (>= 3.2.0), sp
Imports data.table, devtools, soilDB, igraph, curl, methods, rgdal, raster, Hmisc, rgeos, readr, lubridate, dplyr, magrittr, foreach, ncdf4, stringr, sf, httr
Repository CRAN
NeedsCompilation no
RoxygenNote 6.1.0
Suggests testthat, covr, roxygen2
LazyData true
Date/Publication 2018-08-09 04:10:03 UTC

R topics documented:

- daymet_tiles
- get_daymet
- get_ghcn_daily
- get_itrdb
- get_ned
- get_nhd
- get_nlcd
- get_ssurgo
- nlcd_canopy_pam
- nlcd_impervious_pam
- nlcd_landcover_pam
- nlcd_tiles

Index 17

| daymet_tiles | The DAYMET tiles SpatialPolygonsDataFrame. |

Description

A dataset containing the DAYMET tiles.

Usage

daymet_tiles

Format

A SpatialPolygonsDataFrame with 1060 features and 5 variables:

- **TileID** the numeric identifier of the tile
- **XMin** the minimum longitude of the tile
- **XMax** the maximum longitude of the tile
- **YMin** the minimum latitude of the tile
- **YMax** the maximum latitude of the tile

Source

https://github.com/khufkens/daymet/blob/master/data/tile_outlines.rda
get_daymet

Download and crop the 1-km DAYMET daily weather dataset.

Description

get_daymet returns a RasterBrick of weather data cropped to a given template study area.

Usage

```r
get_daymet(template, label, elements = NULL, years = NULL,
raw.dir = "/RAW/DAYMET", extraction.dir = paste0("./EXTRAC-
TIONS/", label, "/DAYMET"), force.redo = F)
```

Arguments

- **template** A Raster* or Spatial* object to serve as a template for cropping.
- **label** A character string naming the study area.
- **elements** A character vector of elements to extract.
 - The available elements are:
 - `dayl`: Duration of the daylight period in seconds per day. This calculation is based on the period of the day during which the sun is above a hypothetical flat horizon.
 - `prcp`: Daily total precipitation in millimeters per day, sum of all forms converted to water-equivalent. Precipitation occurrence on any given day may be ascertained.
 - `srad`: Incident shortwave radiation flux density in watts per square meter, taken as an average over the daylight period of the day. NOTE: Daily total radiation (MJ/m2/day) can be calculated as follows: ((srad (W/m2) * dayl (s/day)) / 1,000,000)
 - `swe`: Snow water equivalent in kilograms per square meter. The amount of water contained within the snowpack.
 - `tmax`: Daily maximum 2-meter air temperature in degrees Celsius.
 - `tmin`: Daily minimum 2-meter air temperature in degrees Celsius.
- **years** A numeric vector of years to extract.
- **raw.dir** A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to "/RAW/DAYMET".
- **extraction.dir** A character string indicating where the extracted and cropped DEM should be put. The directory will be created if missing. Defaults to "/EXTRAC-
TIONS/DAYMET".
- **force.redo** If an extraction for this template and label already exists, should a new one be created?
get_ghcn_daily

Value

A named list of RasterBricks of weather data cropped to the extent of the template.

Examples

Not run:
Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
http://village.anth.wsu.edu
vepPolygon <- polygon_from_extent(raster::extent(672800,740000,4102000,4170000),
 proj4string='+proj=utm +datum=NAD83 +zone=12')

Get the DAYMET (North America only)
Returns a list of raster bricks
DAYMET <- get_daymet(template=vepPolygon,
 label='VEPIIN',
 elements = c('prcp','tmin','tmax'),
 years = 1980:1985)

Plot with raster::plot
plot(DAYMET$tmin$X1985.10.23)

End(Not run)

get_ghcn_daily Download and crop the Global Historical Climate Network-Daily data.

Description

get_ghcn_daily returns a named list of length 2:

1. 'spatial': A SpatialPointsDataFrame of the locations of GHCN weather stations in the template, and
2. 'tabular': A named list of data.frames with the daily weather data for each station. The name of each list item is the station ID.

Usage

get_ghcn_daily(template = NULL, label = NULL, elements = NULL,
 years = NULL, raw.dir = "./RAW/GHCN",
 extraction.dir = paste0("./EXTRACTIONS/", label, "/GHCN"),
 standardize = F, force.redo = F)

Arguments

template A Raster* or Spatial* object to serve as a template for cropping. Alternatively, a character vector providing GHCN station IDs. If missing, all stations will be downloaded!
label

A character string naming the study area.

elements

A character vector of elements to extract.
The five core elements are:
PRCP = Precipitation (tenths of mm)
SNOW = Snowfall (mm)
SNWD = Snow depth (mm)
TMAX = Maximum temperature (tenths of degrees C)
TMIN = Minimum temperature (tenths of degrees C)

The other elements are:

ACMC = Average cloudiness midnight to midnight from 30-second ceilometer data (percent)
ACMH = Average cloudiness midnight to midnight from manual observations (percent)
ACSC = Average cloudiness sunrise to sunset from 30-second ceilometer data (percent)
ACSH = Average cloudiness sunrise to sunset from manual observations (percent)
AWDR = Average daily wind direction (degrees)
AWND = Average daily wind speed (tenths of meters per second)
DAEV = Number of days included in the multiday evaporation total (MDEV)
DAPR = Number of days included in the multiday precipitation total (MDPR)
DASF = Number of days included in the multiday snowfall total (MDSF)
DATN = Number of days included in the multiday minimum temperature (MDTN)
DATX = Number of days included in the multiday maximum temperature (MDTX)
DAWM = Number of days included in the multiday wind movement (MDWM)
DWPR = Number of days with non-zero precipitation included in multiday precipitation total (MDPR)
EVAP = Evaporation of water from evaporation pan (tenths of mm)
FMTM = Time of fastest mile or fastest 1-minute wind (hours and minutes, i.e., HHMM)
FRGB = Base of frozen ground layer (cm)
FRGT = Top of frozen ground layer (cm)
FRTH = Thickness of frozen ground layer (cm)
GAHT = Difference between river and gauge height (cm)
MDEV = Multiday evaporation total (tenths of mm; use with DAEV)
MDPR = Multiday precipitation total (tenths of mm; use with DAPR and DWPR, if available)
MDSF = Multiday snowfall total
MDTN = Multiday minimum temperature (tenths of degrees C; use with DATN)
MDTX = Multiday maximum temperature (tenths of degrees C; use with DATX)
MDWM = Multiday wind movement (km)
MNPN = Daily minimum temperature of water in an evaporation pan (tenths of degrees C)
MXPN = Daily maximum temperature of water in an evaporation pan (tenths of degrees C)
PGTM = Peak gust time (hours and minutes, i.e., HHMM)
PSUN = Daily percent of possible sunshine (percent)
SN*# = Minimum soil temperature (tenths of degrees C) where * corresponds to a code for ground cover and # corresponds to a code for soil depth.

Ground cover codes include the following:
0 = unknown
1 = grass
2 = fallow
3 = bare ground
4 = brome grass
5 = sod
6 = straw mulch
7 = grass muck
8 = bare muck

Depth codes include the following:
1 = 5 cm
2 = 10 cm
3 = 20 cm
4 = 50 cm
5 = 100 cm
6 = 150 cm
7 = 180 cm

SX*# = Maximum soil temperature (tenths of degrees C) where * corresponds to a code for ground cover and # corresponds to a code for soil depth.
See SN*# for ground cover and depth codes.
TAVG = Average temperature (tenths of degrees C) [Note that TAVG from source 'S' corresponds to an average for the period ending at 2400 UTC rather than local midnight]
THIC = Thickness of ice on water (tenths of mm)
TOBS = Temperature at the time of observation (tenths of degrees C)
TSUN = Daily total sunshine (minutes)
WDF1 = Direction of fastest 1-minute wind (degrees)
WDF2 = Direction of fastest 2-minute wind (degrees)
WDF5 = Direction of fastest 5-second wind (degrees)
WDFG = Direction of peak wind gust (degrees)
WDFI = Direction of highest instantaneous wind (degrees)
WDFM = Fastest mile wind direction (degrees)
WDMV = 24-hour wind movement (km)
WESD = Water equivalent of snow on the ground (tenths of mm)
WESF = Water equivalent of snowfall (tenths of mm)
WSF1 = Fastest 1-minute wind speed (tenths of meters per second)
WSF2 = Fastest 2-minute wind speed (tenths of meters per second)
WSF5 = Fastest 5-second wind speed (tenths of meters per second)
WSFG = Peak gust wind speed (tenths of meters per second)
WSFI = Highest instantaneous wind speed (tenths of meters per second)
WSFM = Fastest mile wind speed (tenths of meters per second)
get_ghcn_daily

WT** = Weather Type where ** has one of the following values:

01 = Fog, ice fog, or freezing fog (may include heavy fog)
02 = Heavy fog or heaving freezing fog (not always distinguished from fog)
03 = Thunder
04 = Ice pellets, sleet, snow pellets, or small hail
05 = Hail (may include small hail)
06 = Glaze or rime
07 = Dust, volcanic ash, blowing dust, blowing sand, or blowing obstruction
08 = Smoke or haze
09 = Blowing or drifting snow
10 = Tornado, waterspout, or funnel cloud
11 = High or damaging winds
12 = Blowing spray
13 = Mist
14 = Drizzle
15 = Freezing drizzle
16 = Rain (may include freezing rain, drizzle, and freezing drizzle)
17 = Freezing rain
18 = Snow, snow pellets, snow grains, or ice crystals
19 = Unknown source of precipitation
21 = Ground fog
22 = Ice fog or freezing fog

WV** = Weather in the Vicinity where ** has one of the following values:

01 = Fog, ice fog, or freezing fog (may include heavy fog)
03 = Thunder
07 = Ash, dust, sand, or other blowing obstruction
18 = Snow or ice crystals
20 = Rain or snow shower

years
A numeric vector indicating which years to get.

raw.dir
A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to './RAW/GHCN/'.

extraction.dir
A character string indicating where the extracted and cropped GHCN shapefiles should be put. The directory will be created if missing. Defaults to './EXTRAC-TIONS/GHCN/'.

standardize
Select only common year/month/day? Defaults to FALSE.

force.redo
If an extraction for this template and label already exists, should a new one be created? Defaults to FALSE.

Value
A named list containing the 'spatial' and 'tabular' data.

Examples

Not run:

Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
```r
# http://village.anth.wsu.edu
evPolygon <- polygon_from_extent(raster::extent(672800, 740000, 4102000, 4170000),
                               proj4string='+proj=utm +datum=NAD83 +zone=12')

# Get the daily GHCN data (GLOBAL)
# Returns a list: the first element is the spatial locations of stations,
# and the second is a list of the stations and their daily data
GHCHN.prcp <- get_ghcn_daily(template=vepPolygon, label='VEPIIN', elements=c('prcp'))

# Plot the VEP polygon
plot(vepPolygon)

# Plot the spatial locations
plot(GHCHN.prcp$spatial, pch=1, add=T)
legend('bottomleft', pch=1, legend='GHCN Precipitation Records')

# Elements for which you require the same data
# (i.e., minimum and maximum temperature for the same days)
# can be standardized using standardize=T
GHCHN.temp <- get_ghcn_daily(template=vepPolygon,
                               label='VEPIIN',
                               elements=c('tmin', 'tmax'),
                               standardize=T)

# Plot the VEP polygon
plot(vepPolygon)

# Plot the spatial locations
plot(GHCHN.temp$spatial, pch=1, add=T)
legend('bottomleft', pch=1, legend='GHCN Temperature Records')

## End (Not run)
```

get_itrdb
Download the latest version of the ITRDB, and extract given parameters.

Description

get_itrdb returns a named list of length 3:

1. `metadata`: A data.table or SpatialPointsDataFrame (if `makeSpatial==TRUE`) of the locations and names of extracted ITRDB chronologies,
2. `widths`: A matrix of tree-ring widths/densities given user selection, and
3. `depths`: A matrix of tree-ring sample depths.
Usage

```r
get_itrdb(template = NULL, label = NULL, recon.years = NULL,
    calib.years = NULL, species = NULL, measurement.type = NULL,
    chronology.type = NULL, makeSpatial = F, raw.dir = "/RAW/ITRDB",
    extraction.dir = ifelse(!is.null(label), paste0("./EXTRACTIONS/",
    label, "/ITRDB"), "/EXTRACTIONS/ITRDB"), force.redo = FALSE)
```

Arguments

- **template**: A Raster* or Spatial* object to serve as a template for selecting chronologies. If missing, all available global chronologies are returned.
- **label**: A character string naming the study area.
- **recon.years**: A numeric vector of years over which reconstructions are needed; if missing, the union of all years in the available chronologies are given.
- **calib.years**: A numeric vector of all required years—chronologies without these years will be discarded; if missing, all available chronologies are given.
- **species**: A character vector of 4-letter tree species identifiers; if missing, all available chronologies are given.
- **measurement.type**: A character vector of measurement type identifiers. Options include:
 - 'Total Ring Density'
 - 'Earlywood Width'
 - 'Earlywood Density'
 - 'Latewood Width'
 - 'Minimum Density'
 - 'Ring Width'
 - 'Latewood Density'
 - 'Maximum Density'
 - 'Latewood Percent'
 if missing, all available chronologies are given.
- **chronology.type**: A character vector of chronology type identifiers. Options include:
 - 'ARSTND'
 - 'Low Pass Filter'
 - 'Residual'
 - 'Standard'
 - 'Re-Whitened Residual'
 - 'Measurements Only'
 if missing, all available chronologies are given.
- **makeSpatial**: Should the metadata be presented as a SpatialPointsDataFrame? Defaults to FALSE.
- **raw.dir**: A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to "/RAW/ITRDB".
get_ned

extraction.dir A character string indicating where the extracted and cropped ITRDB dataset should be put. The directory will be created if missing. Defaults to './EXTRAC-
TIONS/ITRDB/'.

force.redo If an extraction already exists, should a new one be created? Defaults to FALSE.

Value

A named list containing the 'metadata', 'widths', and 'depths' data.

Examples

Not run:
Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
http://village.anth.wsu.edu
vepPolygon <- polygon_from_extent(raster::extent(672800,740000,4102000,4170000),
 proj4string=+proj=utm +datum=NAD83 +zone=12)

Get the ITRDB records
ITRDB <- get_itrdb(template=vepPolygon, label='VEPIIN', makeSpatial=T)

Plot the VEP polygon
plot(vepPolygon)

Map the locations of the tree ring chronologies
plot(ITRDB$metadata, pch=1, add=T)
legend('bottomleft', pch=1, legend='ITRDB chronologies')

End(Not run)

get_ned Download and crop the 1 (~30 meter) or 1/3 (~10 meter) arc-second National Elevation Dataset.

Description

get_ned returns a RasterLayer of elevation data cropped to a given template study area.

Usage

get_ned(template, label, res = "1", raw.dir = "./RAW/NED",
 extraction.dir = paste0("./EXTRACTIONS/", label, "/NED"),
 raster.options = c("COMPRESS=DEFLATE", "ZLEVEL=9", "INTERLEAVE=BAND"),
 force.redo = F)
get_nhd

Arguments

- **template**: A Raster* or Spatial* object to serve as a template for cropping.
- **label**: A character string naming the study area.
- **res**: A character string representing the desired resolution of the NED. '1' indicates the 1 arc-second NED (the default), while '13' indicates the 1/3 arc-second dataset.
- **raw.dir**: A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to './RAW/NED/'.
- **extraction.dir**: A character string indicating where the extracted and cropped DEM should be put. The directory will be created if missing. Defaults to './EXTRAC-
TIONS/NED/'.
- **raster.options**: a vector of options for raster::writeRaster.
- **force.redo**: If an extraction for this template and label already exists, should a new one be created?

Value

A RasterLayer DEM cropped to the extent of the template.

Examples

```r
## Not run:
# Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
# http://village.anth.wsu.edu
vepPolygon <- polygon_from_extent(raster::extent(672800,740000,4102000,4170000),
  proj4string='+proj=utm +datum=NAD83 +zone=12')

# Get the NED (USA ONLY)
# Returns a raster
NED <- get_ned(template=vepPolygon, label='VEPIIN')

# Plot with raster::plot
plot(NED)

## End(Not run)
```

Description

get_nhd returns a list of Spatial* objects extracted from the National Hydrography Dataset.

Usage

```r
get_nhd(template, label, raw.dir = "./RAW/NHD",
  extraction.dir = paste0("./EXTRACTIONS/", label, "/NHD"),
  force.redo = FALSE)
```
get_nlcd

get_nlcd returns a RasterLayer of NLCD data cropped to a given template study area.

Arguments

- **template** A Raster* or Spatial* object to serve as a template for cropping.
- **label** A character string naming the study area.
- **raw.dir** A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to './RAW/NHD/'.
- **extraction.dir** A character string indicating where the extracted and cropped NHD shapefiles should be put. The directory will be created if missing. Defaults to './EXTRAC-TIONS/NHD/'.
- **force.redo** If an extraction for this template and label already exists, should a new one be created?

Value

A list of Spatial* objects extracted from the National Hydrography Dataset.

Examples

```r
## Not run:
# Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
# http://village.anth.wsu.edu
template <- polygon_from_extent(raster::extent(672800,740000,4102000,4170000),
    proj4string='+proj=utm +datum=NAD83 +zone=12')

# Get the NHD (USA ONLY)
NHD <- get_nhd(template=template, label='VEPIIN')

# Plot the VEP polygon
plot(template)

# Plot the NHD data
plot(NHD$NHDFlowline, add=T)
plot(NHD$NHDLine, add=T)
plot(NHD$NHDArea, col='black', add=T)
plot(NHD$NHDWaterbody, col='black', add=T)
```

Description

get_nlcd returns a RasterLayer of NLCD data cropped to a given template study area.
get_nlcd

Usage

get_nlcd(template, label, year = 2011, dataset = "landcover", raw.dir = ".//RAW/NLCD", extraction.dir = paste0("./EXTRACTIONS/", label, "/NLCD"), raster.options = c("COMPRESS=DEFLATE", "ZLEVEL=9", "INTERLEAVE=BAND"), force.redo = F)

Arguments

template A Raster* or Spatial* object to serve as a template for cropping.
label A character string naming the study area.
dataset A character string representing type of the NLCD product. Acceptable values are 'landcover' (default), 'impervious', and 'canopy'. As of February 7, 2018, the canopy data for 2006 are not available through the National Map Staged datasets, and so aren't available in FedData.
raw.dir A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to './RAW/NLCD/'.
extraction.dir A character string indicating where the extracted and cropped DEM should be put. The directory will be created if missing. Defaults to './EXTRAC-TIONS/NLCD/'.
raster.options a vector of options for raster::writeRaster.
force.redo If an extraction for this template and label already exists, should a new one be created?

Value

A RasterLayer DEM cropped to the extent of the template.

Examples

Not run:
Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
http://village.anth.wsu.edu
vepPolygon <- polygon_from_extent(raster::extent(672800,740000,4102000,4170000),
 proj4string='+proj=utm +datum=NAD83 +zone=12')

Get the NLCD (USA ONLY)
Returns a raster
NLCD <- get_nlcd(template=vepPolygon, label='VEPIIN')

Plot with raster::plot
plot(NLCD)

End(Not run)
get_ssurgo

Download and crop data from the NRCS SSURGO soils database.

Description

This is an efficient method for spatially merging several different soil survey areas as well as merging their tabular data.

Usage

```r
get_ssurgo(template, label, raw.dir = "./RAW/SSURGO",
            extraction.dir = paste0("./EXTRACTIONS/", label, "/SSURGO"),
            force.redo = FALSE)
```

Arguments

- `template`: A Raster* or Spatial* object to serve as a template for cropping; optionally, a vector of area names [e.g., c(‘IN087’, ‘IN088’)] may be provided.
- `label`: A character string naming the study area.
- `raw.dir`: A character string indicating where raw downloaded files should be put. The directory will be created if missing. Defaults to ‘./RAW/SSURGO/’.
- `extraction.dir`: A character string indicating where the extracted and cropped SSURGO shapefiles should be put. The directory will be created if missing. Defaults to ‘./EXTRACTIONS/SSURGO/’.
- `force.redo`: If an extraction for this template and label already exists, should a new one be created? Defaults to FALSE.

Details

`get_ssurgo` returns a named list of length 2:

1. 'spatial': A SpatialPolygonsDataFrame of soil mapunits in the template, and
2. 'tabular': A named list of data.frames with the SSURGO tabular data.

Value

A named list containing the 'spatial' and 'tabular' data.

Examples

```r
## Not run:
# Extract data for the Village Ecodynamics Project 'VEPIIN' study area:
# http://village.anth.wsu.edu
vepPolygon <- polygon_from_extent(raster::extent(672800, 740000, 4102000, 4170000),
                                   proj4string = '+proj=utm +datum=NAD83 +zone=12')

# Get the NRCS SSURGO data (USA ONLY)
```
SSURGO.VEPIIN <- get_ssurgo(template=vepPolygon, label='VEPIIN')

Plot the VEP polygon
plot(vepPolygon)

Plot the SSURGO mapunit polygons
plot(SSURGO.VEPIIN$spatial, lwd=0.1, add=T)

Or, download by Soil Survey Area names
SSURGO.areas <- get_ssurgo(template=c('CO0670', 'CO075'), label='CO_TEST')

Let's just look at spatial data for CO0675
SSURGO.areas.CO0675 <- SSURGO.areas$spatial[SSURGO.areas$spatial$AREASYMBOL=='CO075',]

And get the NED data under them for pretty plotting
NED.CO0675 <- get_ned(template=SSURGO.areas.CO0675, label='SSURGO.CO0675')

Plot the SSURGO mapunit polygons, but only for CO0675
plot(NED.CO0675)
plot(SSURGO.areas.CO0675, lwd=0.1, add=T)

End(Not run)

nlcd_canopy_pam The NLCD canopy PAM attributes.

Description
A dataset containing the PAM attributes.

Usage
nlcd_canopy_pam

Format
An object of class character of length 2345.

nlcd_impervious_pam The NLCD impervious PAM attributes.

Description
A dataset containing the PAM attributes.

Usage
nlcd_impervious_pam
Format

An object of class character of length 2345.

nlcd_landcover_pam

The NLCD landcover PAM attributes.

Description

A dataset containing the PAM attributes.

Usage

nlcd_landcover_pam

Format

An object of class character of length 2606.

nlcd_tiles

The NLCD tiles SpatialPolygonsDataFrame.

Description

A dataset containing the NLCD tiles.

Usage

nlcd_tiles

Format

A SpatialPolygonsDataFrame with 203 features and 1 variable:

Name the name of the tile
Index

*Topic datasets
 daymet_tiles, 2
 nlcd_canopy_pam, 15
 nlcd_impervious_pam, 15
 nlcd_landcover_pam, 16
 nlcd_tiles, 16

data.frame, 4, 14
daymet_tiles, 2

get_daymet, 3
get_ghcn_daily, 4
get_itrdb, 8
get_ned, 10
get_nhd, 11
get_nlcd, 12
get_ssurgo, 14

nlcd_canopy_pam, 15
nlcd_impervious_pam, 15
nlcd_landcover_pam, 16
nlcd_tiles, 16