Package ‘FiSh’

December 16, 2019

Type Package
Title Fisher-Shannon Method
Version 1.0
Author Fabian Guignard [aut],
 Mohamed Laib [aut, cre]
Maintainer Mohamed Laib <laib.med@gmail.com>
Description Proposes non-parametric estimates of the Fisher information measure and the
 Shannon entropy power. The state-of-the-art studies related to the Fisher-Shannon
 measures, with new analytical formulas for positive unimodal skewed distributions
 are presented in Guignard et al. <arXiv:1912.02452>. A ‘python’ version of this
 work is available on ‘github’ and ‘PyPi’ (‘FiShPy’).
Imports fda.usc, KernSmooth
License MIT + file LICENSE
URL https://FiShInfo.github.io/
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Note The authors are grateful to Mikhail Kanevski, Federico Amato and
 Luciano Telesca for many fruitful discussions about the use and
 the application of Fisher-Shannon method.
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-16 14:00:09 UTC

R topics documented:

FiSh-package ... 2
nsrk ... 3
SEP_FIM ... 3
Index ... 5
FiSh-package

FiSh: Fisher-Shannon Method

Description

Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. The state-of-the-art studies related to the Fisher-Shannon measures, with new analytical formulas for positive unimodal skewed distributions are presented in Guignard et al. [arXiv:1912.02452]. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy').

Details

This R code was developed and used for the following paper:

Author(s)

Fabian Guignard <fabian.guignard@bluemail.ch> and
Mohamed Laib <laib.med@gmail.com>
Maintainer: Mohamed Laib <laib.med@gmail.com>

References

See Also

Useful links:

* https://FiShInfo.github.io/
nsrk

Normal scale rule for kernel density estimation

Description

Bandwidth selector for non-parametric estimation. Estimates the optimal AMISE bandwidth using the Normal Scale Rule with Gaussian kernel.

Usage

```r
nsrk(x, log_trsf=FALSE)
```

Arguments

- `x`: Univariate data.
- `log_trsf`: Logical flag: if TRUE the data are log-transformed (usually used for skewed positive data). By default `log_trsf = FALSE`.

Value

The bandwidth value.

References

Examples

```r
x <- rnorm(1000)
h <- nsrk(x)
```

SEP_FIM

Fisher-Shannon method

Description

Non-parametric estimates of the Shannon Entropy Power (SEP), the Fisher Information Measure (FIM) and the Fisher-Shannon Complexity (FSC), using kernel density estimators with Gaussian kernel.

Usage

```r
SEP_FIM(x, h, log_trsf=FALSE, resol=1000, tol = .Machine$double.eps)
```


Arguments

- **x**: Univariate data.
- **h**: Value of the bandwidth for the density estimate
- **log_trsf**: Logical flag: if TRUE the data are log-transformed (used for skewed data), in this case the data should be positive. By default, log_trsf = FALSE.
- **resol**: Number of equally-spaced points, over which function approximations are computed and integrated.
- **tol**: A tolerance to avoid dividing by zero values.

Value

A table with one row containing:

- SEP Shannon Entropy Power.
- FIM Fisher Information Measure.
- FSC Fisher-Shannon Complexity

References

Examples

library(KernSmooth)

x <- rnorm(1000)
h <- dpik(x)

SEP_FIM(x, h)
Index

FiSh (FiSh-package), 2
FiSh-package, 2

nsrk, 3

SEP_FIM, 3