Package ‘FinancialMath’

December 16, 2016

Type Package
Title Financial Mathematics for Actuaries
Version 0.1.1
Author Kameron Penn [aut, cre],
 Jack Schmidt [aut]
Maintainer Kameron Penn <kameron.penn.financialmath@gmail.com>
Description Contains financial math functions and introductory derivative functions in-
 cluded in the Society of Actuaries and Casualty Actuarial Society 'Financial Mathemat-
 ics' exam, and some topics in the 'Models for Financial Economics' exam.
License GPL-2
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2016-12-16 22:51:34

R topics documented:

amort.period 2
amort.table 4
annuity.arith 5
annuity.geo 7
annuity.level 8
bear.call 9
bear.call.bls 11
bls.order1 12
bond 13
bull.call 15
bull.call.bls 16
butterfly.spread 17
butterfly.spread.bls 18
cf.analysis 19
amort.period

Description
Solves for either the number of payments, the payment amount, or the amount of a loan. The payment amount, interest paid, principal paid, and balance of the loan are given for a specified period.

Usage
amort.period(Loan=NA,n=NA,pmt=NA,i,ic=1,pf=1,t=1)

Arguments
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loan</td>
<td>loan amount</td>
</tr>
<tr>
<td>n</td>
<td>the number of payments/periods</td>
</tr>
<tr>
<td>pmt</td>
<td>value of level payments</td>
</tr>
<tr>
<td>i</td>
<td>nominal interest rate convertible ic times per year</td>
</tr>
<tr>
<td>ic</td>
<td>interest conversion frequency per year</td>
</tr>
</tbody>
</table>
amort.period

\[\text{pf} \quad \text{the payment frequency - number of payments per year} \]

\[\text{t} \quad \text{the specified period for which the payment amount, interest paid, principal paid, and loan balance are solved for} \]

Details

Effective Rate of Interest:
\[
\text{eff.} \cdot \text{i} = (1 + \frac{i}{n})^n - 1
\]

\[
\text{j} = (1 + \text{eff.} \cdot \text{i})^{\frac{1}{pf}} - 1
\]

\[
\text{Loan} = \text{pmt} \times a^{\frac{1}{n-j}}
\]

Balance at the end of period \(t \):
\[
B_t = \text{pmt} \times a^{\frac{1}{n-t}}
\]

Interest paid at the end of period \(t \):
\[
i_t = B_{t-1} \times j
\]

Principal paid at the end of period \(t \):
\[
p_t = \text{pmt} - i_t
\]

Value

Returns a matrix of input variables, calculated unknown variables, and amortization figures for the given period.

Note

Assumes that payments are made at the end of each period.

One of \(n \), \(\text{pmt} \), or \(\text{Loan} \) must be NA (unknown).

If \(\text{pmt} \) is less than the amount of interest accumulated in the first period, then the function will stop because the loan will never be paid off due to the payments being too small.

If the \(\text{pmt} \) is greater than the loan amount plus interest accumulated in the first period, then the function will stop because one payment will pay off the loan.

\(t \) cannot be greater than \(n \).

Author(s)

Kameron Penn and Jack Schmidt

See Also

amort.table

Examples

amort.period(Loan=100, n=5, i=.01, t=3)

amort.period(n=5, pmt=30, i=.01, t=3, pf=12)

amort.period(Loan=100, pmt=24, ic=1, i=.01, t=3)
Amortization Table

Description

Produces an amortization table for paying off a loan while also solving for either the number of payments, loan amount, or the payment amount. In the amortization table the payment amount, interest paid, principal paid, and balance of the loan are given for each period. If \(n \) ends up not being a whole number, outputs for the balloon payment, drop payment and last regular payment are provided. The total interest paid, and total amount paid is also given. It can also plot the percentage of each payment toward interest vs. period.

Usage

\[
amort\text{.table}(\text{Loan=NA}, n=\text{NA}, \text{pmt=NA}, i, \text{ic}=1, \text{pf}=1, \text{plot}=\text{FALSE})
\]

Arguments

- **Loan**: loan amount
- **n**: the number of payments/periods
- **pmt**: value of level payments
- **i**: nominal interest rate convertible \(\text{ic} \) times per year
- **ic**: interest conversion frequency per year
- **pf**: the payment frequency- number of payments per year
- **plot**: tells whether or not to plot the percentage of each payment toward interest vs. period

Details

Effective Rate of Interest:
\[
eff.i = \left(1 + \frac{i}{ic}\right)^{ic} - 1
\]
\[
j = \left(1 + eff.i\right)^{\frac{1}{pf}} - 1
\]

Loan:
\[
\text{Loan} = \text{pmt} \times a_{n|j}
\]

Balance at the end of period \(t \):
\[
B_t = \text{pmt} \times a_{n-t|j}
\]

Interest paid at the end of period \(t \):
\[
i_t = B_{t-1} \times j
\]

Principal paid at the end of period \(t \):
\[
p_t = \text{pmt} - i_t
\]

Total Paid:
\[
\text{Total Paid} = \text{pmt} \times n
\]

Total Interest Paid:
\[
\text{Total Interest Paid} = \text{pmt} \times n - \text{Loan}
\]

If \(n = n^* + k \) where \(n^* \) is an integer and \(0 < k < 1 \):

Last regular payment (at period \(n^* \)):
\[
\text{Last} = \text{pmt} \times s_{n^*|j}
\]

Drop payment (at period \(n^* + 1 \)):
\[
\text{Drop} = \text{Loan} \times (1 + j)^{n^*+1} - \text{pmt} \times s_{n^*|j}
\]

Balloon payment (at period \(n^* \)):
\[
\text{Balloon} = \text{Loan} \times (1 + j)^{n^*} - \text{pmt} \times s_{n^*|j} + \text{pmt}
\]
annuity.arith

Value

A list of two components.

Schedule A data frame of the amortization schedule.

Other A matrix of the input variables and other calculated variables.

Note

Assumes that payments are made at the end of each period.

One of n, Loan, or pmt must be NA (unknown).

If pmt is less than the amount of interest accumulated in the first period, then the function will stop because the loan will never be paid off due to the payments being too small.

If pmt is greater than the loan amount plus interest accumulated in the first period, then the function will stop because one payment will pay off the loan.

Author(s)

Kameron Penn and Jack Schmidt

See Also

amort.period

annuity.level

Examples

amort.table(Loan=1000,n=2,i=.005,ic=1,pf=1)

amort.table(Loan=100,pmt=40,i=.02,ic=2,pf=2,plot=FALSE)

amort.table(Loan=NA,pmt=102.77,n=10,i=.005,plot=TRUE)

annuity.arith Arithmetic Annuity

Description

Solves for the present value, future value, number of payments/periods, amount of the first payment, the payment increment amount per period, and/or the interest rate for an arithmetically growing annuity. It can also plot a time diagram of the payments.

Usage

annuity.arith(pv=NA,fv=NA,n=NA,p=NA,q=NA,i=NA,ic=1,pf=1,imm=TRUE,plot=FALSE)
Arguments

pv present value of the annuity
fv future value of the annuity
n number of payments/periods
p amount of the first payment
q payment increment amount per period
i nominal interest frequency convertible ic times per year
ic interest conversion frequency per year
pf the payment frequency- number of payments per year
imm option for annuity immediate or annuity due, default is immediate (TRUE)
plot option to display a time diagram of the payments

Details

Effective Rate of Interest: \(eff.i = \left(1 + \frac{i}{ic}\right)^{ic} - 1 \)
\(j = \left(1 + eff.i\right)^{\frac{1}{pf}} - 1 \)
\(fv = pv \times (1 + j)^n \)

Annuity Immediate:
\(pv = p \times a_{\overline{n}|j} + q \times \frac{a_{\overline{n}|j} - n \times (1+j)^{-n}}{j} \)

Annuity Due:
\(pv = (p \times a_{\overline{n}|j} + q \times \frac{a_{\overline{n}|j} - n \times (1+j)^{-n}}{j}) \times (1 + i) \)

Value

Returns a matrix of the input variables, and calculated unknown variables.

Note

At least one of pv, fv, n, p, q, or i must be NA (unknown).

pv and fv cannot both be specified, at least one must be NA (unknown).

Author(s)

Kameron Penn and Jack Schmidt

See Also

annuity.geo
annuity.level
perpetuity.arith
perpetuity.geo
perpetuity.level
annuity.geo

Examples

```r
annuity.arith(pv=NA, fv=NA, n=20, p=100, q=4, i=.03, ic=1, pf=2, imm=TRUE)

annuity.arith(pv=NA, fv=3000, n=20, p=100, q=NA, i=.05, ic=3, pf=2, imm=FALSE)
```

Description

Solves for the present value, future value, number of payments/periods, amount of the first payment, the payment growth rate, and/or the interest rate for a geometrically growing annuity. It can also plot a time diagram of the payments.

Usage

```r
annuity.geo(pv=NA, fv=NA, n=NA, p=NA, k=NA, i=NA, ic=1, pf=1, imm=TRUE, plot=FALSE)
```

Arguments

- `pv`: present value of the annuity
- `fv`: future value of the annuity
- `n`: number of payments/periods for the annuity
- `p`: amount of the first payment
- `k`: payment growth rate per period
- `i`: nominal interest rate convertible `ic` times per year
- `ic`: interest conversion frequency per year
- `pf`: the payment frequency - number of payments/periods per year
- `imm`: option for annuity immediate or annuity due, default is immediate (TRUE)
- `plot`: option to display a time diagram of the payments

Details

Effective Rate of Interest:

\[
eff.i = (1 + \frac{i}{ic})^{ic} - 1
\]

\[
j = (1 + \frac{eff.i}{ic})^{pc} - 1
\]

\[
fv = pv * (1 + j)^n
\]

Annuity Immediate:

\[
j \neq k: pv = p * \frac{1-(\frac{1+k}{j-k})^n}{j-k}
\]

\[
j = k: pv = p * \frac{n}{1+j}
\]

Annuity Due:

\[
j \neq k: pv = p * \frac{1-(\frac{1+k}{j-k})^n}{j-k} * (1 + j)
\]

\[
j = k: pv = p * n
\]
annuity.level

Value

Returns a matrix of the input variables and calculated unknown variables.

Note

At least one of pv, fv, n, pmt, k, or i must be NA (unknown).
pv and fv cannot both be specified, at least one must be NA (unknown).

See Also

annuity.arith
annuity.level
perpetuity.arith
perpetuity.geo
perpetuity.level

Examples

annuity.geo(pv=NA,fv=100,n=10,p=.02,i=NA,ic=2,pf=.5,plot=TRUE)
annuity.geo(pv=NA,fv=128,n=5,p=NA,k=.04,i=.03,pf=2)

annuity.level Level Annuity

Description

Solves for the present value, future value, number of payments/periods, interest rate, and/or the amount of the payments for a level annuity. It can also plot a time diagram of the payments.

Usage

annuity.level(pv=NA,fv=NA,n=NA,pmt=NA,i=NA,ic=1,pf=1,imm=TRUE,plot=FALSE)

Arguments

pv present value of the annuity
fv future value of the annuity
n number of payments/periods
pmt value of the level payments
i nominal interest rate convertible ic times per year
ic interest conversion frequency per year
pf the payment frequency- number of payments/periods per year
imm option for annuity immediate or annuity due, default is immediate (TRUE)
plot option to display a time diagram of the payments
Details

Effective Rate of Interest: \(eff.i = (1 + \frac{i}{p})^{pc} - 1 \)

\(j = (1 + eff.i)^{\frac{1}{pc}} - 1 \)

Annuity Immediate:

\[pv = pmt \times a_{\overline{n}|j} = pmt \times \frac{1-(1+j)^{-n}}{j} \]

\[fv = pmt \times s_{\overline{n}|j} = pmt \times a_{\overline{n}|j} \times (1+j)^n \]

Annuity Due:

\[pv = pmt \times \ddot{a}_{\overline{n}|j} = pmt \times a_{\overline{n}|j} \times (1+j) \]

\[fv = pmt \times \ddot{s}_{\overline{n}|j} = pmt \times a_{\overline{n}|j} \times (1+j)^{n+1} \]

Value

Returns a matrix of the input variables and calculated unknown variables.

Note

At least one of \(pv, fv, n, pmt, \) or \(i \) must be NA (unknown).

\(pv \) and \(fv \) cannot both be specified, at least one must be NA (unknown).

See Also

- annuity.arith
- annuity.geo
- perpetuity.arith
- perpetuity.geo
- perpetuity.level

Examples

\begin{verbatim}
annuity.level(pv=NA,fv=101.85,n=10,pmt=8,i=NA,ic=1,pf=1,imm=TRUE)
annuity.level(pv=80,fv=NA,n=15,pf=2,pmt=NA,i=.01,imm=FALSE)
\end{verbatim}

bear.call

Bear Call Spread

Description

Gives a table and graphical representation of the payoff and profit of a bear call spread for a range of future stock prices.

Usage

\begin{verbatim}
bear.call(S,K1,K2,r,t,price1,price2,plot=FALSE)
\end{verbatim}
Arguments

S spot price at time 0
K1 strike price of the short call
K2 strike price of the long call
r yearly continuously compounded risk free rate
t time of expiration (in years)
price1 price of the short call with strike price K1
price2 price of the long call with strike price K2
plot tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$
For $S_t \leq K1$: payoff = 0
For $K1 < S_t < K2$: payoff = $K1 - S_t$
For $S_t \geq K2$: payoff = $K1 - K2$
payoff = profit + (price1 - price2)*e^{-r*t}$

Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.
Premiums A matrix of the premiums for the call options and the net cost.

Note

K1 must be less than S, and K2 must be greater than S.

Author(s)

Kameron Penn and Jack Schmidt

See Also

bear.call.bls
bull.call
option.call

Examples

bear.call(S=100,K1=70,K2=130,r=.03,t=1,price1=20,price2=10,plot=TRUE)
Description

Gives a table and graphical representation of the payoff and profit of a bear call spread for a range of future stock prices. Uses the Black Scholes equation for the call prices.

Usage

```r
bear.call.bls(S,K1,K2,r,t,sd,plot=FALSE)
```

Arguments

- **S**: spot price at time 0
- **K1**: strike price of the short call
- **K2**: strike price of the long call
- **r**: yearly continuously compounded risk free rate
- **t**: time of expiration (in years)
- **sd**: standard deviation of the stock (volatility)
- **plot**: tells whether or not to plot the payoff and profit

Details

Stock price at time \(t = S_t \)

- For \(S_t \leq K1 \): payoff = 0
- For \(K1 < S_t < K2 \): payoff = \(K1 - S_t \)
- For \(S_t \geq K2 \): payoff = \(K1 - K2 \)

\[
\text{payoff} = \text{profit} + (\text{price}_{K1} - \text{price}_{K2}) \times e^{r \times t}
\]

Value

A list of two components.

- **Payoff**: A data frame of different payoffs and profits for given stock prices.
- **Premiums**: A matrix of the premiums for the call options and the net cost.

Note

K1 must be less than S, and K2 must be greater than S.

Author(s)

Kameron Penn and Jack Schmidt
See Also

 bear.call
 bull.call.bls
 option.call

Examples

 bear.call.bls(S=100,K1=70,K2=130,r=.03,t=1,sd=.2)

bls.order1 Black Scholes First-order Greeks

Description

Gives the price and first order greeks for call and put options in the Black Scholes equation.

Usage

 bls.order1(S,K,r,t,sd,D=0)

Arguments

- **S**: spot price at time 0
- **K**: strike price
- **r**: continuously compounded yearly risk free rate
- **t**: time of expiration (in years)
- **sd**: standard deviation of the stock (volatility)
- **D**: continuous dividend yield

Value

A matrix of the calculated greeks and prices for call and put options.

Note

Cannot have any inputs as vectors.
- **t** cannot be negative.
- Either both or neither of **S** and **K** must be negative.

Author(s)

Kameron Penn and Jack Schmidt
bond

See Also

`option.put`

`option.call`

Examples

```r
x <- bls.order1(S=100, K=110, r=.05, t=1, sd=.1, D=0)
ThetaPut <- x["Theta","Put"]
DeltaCall <- x[2,1]
```

bond

Bond Analysis

Description

Solves for the price, premium/discount, and Durations and Convexities (in terms of periods). At a specified period (t), it solves for the full and clean prices, and the write up/down amount. Also has the option to plot the convexity of the bond.

Usage

```r
bond(f, r, c, n, i, ic=1, cf=1, t=NA, plot=FALSE)
```

Arguments

- **f**: face value
- **r**: coupon rate convertible cf times per year
- **c**: redemption value
- **n**: the number of coupons/periods for the bond
- **i**: nominal interest rate convertible ic times per year
- **ic**: interest conversion frequency per year
- **cf**: coupon frequency-number of coupons per year
- **t**: specified period for which the price and write up/down amount is solved for, if not NA
- **plot**: tells whether or not to plot the convexity

Details

Effective Rate of Interest:

\[
\text{eff}.i = (1 + \frac{i}{ic})^{ic} - 1
\]

\[
j = (1 + \text{eff}.i)^\frac{1}{cf} - 1
\]

coupon = \frac{fr}{cf} (per period)

price = coupon*\frac{d}{\text{cf}} + c * (1 + j)^{-n}
Bond

\[
MACD = \frac{\sum_{k=1}^{n} k \cdot (1+j)^{-k} \cdot \text{coupon} + n \cdot (1+j)^{-n} \cdot c}{\text{price}}
\]

\[
MODD = \frac{\sum_{k=1}^{n} (k+1) \cdot (1+j)^{-k} \cdot \text{coupon} + n \cdot (1+j)^{-n} \cdot c}{\text{price}}
\]

\[
MACC = \frac{\sum_{k=1}^{n} k^2 \cdot (1+j)^{-k} \cdot \text{coupon} + n \cdot (1+j)^{-n} \cdot c}{\text{price}}
\]

\[
MODC = \frac{\sum_{k=1}^{n} (k+1) \cdot (1+j)^{-k} \cdot \text{coupon} + n \cdot (1+j)^{-n} \cdot c}{\text{price}}
\]

Price (for period t):

If \(t \) is an integer: \(\text{price} = \text{coupon} \cdot a_{n-t} + c \cdot (1 + j)^{-(n-t)} \)

If \(t \) is not an integer then \(t^* = t + k \) where \(t^* \) is an integer and \(0 < k < 1 \):

full price = \((\text{coupon} \cdot a_{n-t^*} + c \cdot (1 + j)^{-(n-t^*)}) \cdot (1 + j)^k \)

clean price = full price \(-k \cdot \text{coupon} \)

If \(\text{price} > c \):

premiuim = \(\text{price} - c \)

Write-down amount (for period t) = \((\text{coupon} - c \cdot j) \cdot (1 + j)^{-(n-t+1)} \)

If \(\text{price} < c \):

discount = \(c - \text{price} \)

Write-up amount (for period t) = \((c \cdot j - \text{coupon}) \cdot (1 + j)^{-(n-t+1)} \)

Value

A matrix of all of the bond details and calculated variables.

Note

\(t \) must be less than \(n \).

To make the duration in terms of years, divide it by \(cf \).

To make the convexity in terms of years, divide it by \(cf^2 \).

Examples

\[
\text{bond(f=100, r=.04, c=100, n=20, i=.04, ic=1, cf=1, t=1)}
\]

\[
\text{bond(f=100, r=.05, c=110, n=10, i=.06, ic=1, cf=2, t=5)}
\]
bull.call

Bull Call Spread

Description

Gives a table and graphical representation of the payoff and profit of a bull call spread for a range of future stock prices.

Usage

bull.call(S,K1,K2,r,t,price1,price2,plot=FALSE)

Arguments

S
spot price at time 0
K1
strike price of the long call
K2
strike price of the short call
r
yearly continuously compounded risk free rate
t
time of expiration (in years)
price1
price of the long call with strike price K1
price2
price of the short call with strike price K2
plot
tells whether or not to plot the payoff and profit

Details

Stock price at time t = S_t
For S_t ≤ K1: payoff = 0
For K1 < S_t < K2: payoff = S_t - K1
For S_t ≥ K2: payoff = K2 - K1
profit = payoff + (price2 - price1)∗e^{r∗t}

Value

A list of two components.
Payoff
A data frame of different payoffs and profits for given stock prices.
Premiums
A matrix of the premiums for the call options and the net cost.

Note

K1 must be less than S, and K2 must be greater than S.
See Also

bull.call.bls
bear.call
option.call

Examples

bull.call(S=115,K1=100,K2=145,r=.03,t=1,price1=20,price2=10,plot=TRUE)

Description

Gives a table and graphical representation of the payoff and profit of a bull call spread for a range of future stock prices. Uses the Black Scholes equation for the call prices.

Usage

bull.call.bls(S,K1,K2,r,t,sd,plot=FALSE)

Arguments

S spot price at time 0
K1 strike price of the long call
K2 strike price of the short call
r yearly continuously compounded risk free rate
t time of expiration (in years)
sd standard deviation of the stock (volatility)
plot tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$
For $S_t \leq K1$: payoff = 0
For $K1 < S_t < K2$: payoff = $S_t - K1$
For $S_t \geq K2$: payoff = $K2 - K1$

profit = payoff + $(price_{K2} - price_{K1}) \times e^{rt}$

Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.
Premiums A matrix of the premiums for the call options and the net cost.
butterfly.spread

Note

K1 must be less than S, and K2 must be greater than S.

See Also

- `bear.call`
- `option.call`

Examples

```r
bull.call.bls(S=115,K1=100,K2=145,r=.03,t=1,vol=.2)
```

Description

Gives a table and graphical representation of the payoff and profit of a long butterfly spread for a range of future stock prices.

Usage

```r
butterfly.spread(S,K1,K2,S,K3,r,t,price1,price2,price3,plot=FALSE)
```

Arguments

- `S`
 - Spot price at time 0
- `K1`
 - Strike price of the first long call
- `K2`
 - Strike price of the two short calls
- `K3`
 - Strike price of the second long call
- `r`
 - Continuously compounded yearly risk free rate
- `t`
 - Time of expiration (in years)
- `price1`
 - Price of the long call with strike price K1
- `price2`
 - Price of one of the short calls with strike price K2
- `price3`
 - Price of the long call with strike price K3
- `plot`
 - Tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$

For $S_t <= K1$: payoff = 0

For $K1 < S_t <= K2$: payoff = $S_t - K1$

For $K2 < S_t < K3$: payoff = $2 \times K2 - K1 - S_t$

For $S_t >= K3$: payoff = 0

profit = payoff + $(2 \times \text{price2} - \text{price1} - \text{price3}) \times e^{r \times t}$
Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.

Premiums A matrix of the premiums for the call options and the net cost.

Note

K2 must be equal to S.
K3 and K1 must both be equidistant to K2 and S.
K1 < K2 < K3 must be true.

See Also

butterfly.spread.blss

Examples

butterfly.spread(S=100,K1=75,K2=100,K3=125,r=.03,t=1,price1=25,price2=10,price3=5)

butterfly.spread.blss Butterfly Spread - Black Scholes

Description

Gives a table and graphical representation of the payoff and profit of a long butterfly spread for a range of future stock prices. Uses the Black Scholes equation for the call prices.

Usage

butterfly.spread.blss(S,K1,K2=S,K3,r,t,.sd,plot=FALSE)

Arguments

S spot price at time 0
K1 strike price of the first long call
K2 strike price of the two short calls
K3 strike price of the second long call
r continuously compounded yearly risk free rate
t time of expiration (in years)
sd standard deviation of the stock (volatility)
plot tells whether or not to plot the payoff and profit
Details

Stock price at time \(t = S_t \)
For \(S_t \leq K_1 \): payoff = 0
For \(K_1 < S_t \leq K_2 \): payoff = \(S_t - K_1 \)
For \(K_2 < S_t < K_3 \): payoff = \(2 * K_2 - K_1 - S_t \)
For \(S_t \geq K_3 \): payoff = 0
profit = payoff + (2 * price_{K_2} - price_{K_1} - price_{K_3}) * e^{rt}

Value

A list of two components.

- Payoff A data frame of different payoffs and profits for given stock prices.
- Premiums A matrix of the premiums for the call options and the net cost.

Note

- \(K_2 \) must be equal to \(S \).
- \(K_3 \) and \(K_1 \) must both be equidistant to \(K_2 \) and \(S \).
- \(K_1 < K_2 < K_3 \) must be true.

See Also

- butterfly.spread
- option.call

Examples

butterfly.spread.bls(S=100,K1=75,K2=100,K3=125,r=.03,t=1,sd=.2)

cf.analysis
Cash Flow Analysis

Description

Calculates the present value, macaulay duration and convexity, and modified duration and convexity for given cash flows. It also plots the convexity and time diagram of the cash flows.

Usage

cf.analysis(cf,times,i,plot=FALSE,time.d=FALSE)
Arguments

- cf: vector of cash flows
- times: vector of the periods for each cash flow
- i: interest rate per period
- plot: tells whether or not to plot the convexity
- time.d: tells whether or not to plot the time diagram of the cash flows

Details

\[p^v = \sum_{k=1}^{n} \frac{c_{f_k}}{(1+i)^{t_{imes_k}}} \]

\[MACD = \sum_{k=1}^{n} \frac{t_{imes_k} \cdot (1+i)^{-t-i-mes_k \cdot c_{f_k}}} {p^v} \]

\[MODD = \sum_{k=1}^{n} \frac{t_{imes_k} \cdot (1+i)^{-t-i-mes_k + 1 \cdot c_{f_k}}} {p^v} \]

\[MACC = \sum_{k=1}^{n} \frac{t_{imes_k} \cdot (1+i)^{-t-i-mes_k \cdot c_{f_k}}} {p^v} \]

\[MODC = \sum_{k=1}^{n} \frac{t_{imes_k} \cdot (t_{imes_k + 1}) \cdot (1+i)^{-t-i-mes_k + 2 \cdot c_{f_k}}} {p^v} \]

Value

A matrix of all of the calculated values.

Note

The periods in t must be positive integers.

See Also

TVM

Examples

\[\text{cf.anal}ysis(cf=c(1,1,101),\text{times}=c(1,2,3),i=.04,\text{time.d}=\text{TRUE}) \]

\[\text{cf.anal}ysis(cf=c(5,1,5,45,5),\text{times}=c(5,4,6,7,5),i=.06,\text{plot}=\text{TRUE}) \]
Usage

collar(S,K1,K2,r,t,price1,price2,plot=FALSE)

Arguments

S spot price at time 0
K1 strike price of the long put
K2 strike price of the short call
r yearly continuously compounded risk free rate
t time of expiration (in years)
price1 price of the long put with strike price K1
price2 price of the short call with strike price K2
plot tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$
For $S_t \leq K_1$: payoff = $K_1 - S_t$
For $K_1 < S_t < K_2$: payoff = 0
For $S_t \geq K_2$: payoff = $K_2 - S_t$
profit = payoff + (price2 - price1)\cdot e^{rt}

Value

A list of two components.
Payoff A data frame of different payoffs and profits for given stock prices.
Premiums A matrix of the premiums for the call and put options and the net cost.

See Also

collar.bls
option.put
option.call

Examples

collar(S=100,K1=90,K2=110,r=.05,t=1,price1=5,price2=15,plot=TRUE)
Description

Gives a table and graphical representation of the payoff and profit of a collar strategy for a range of future stock prices. Uses the Black Scholes equation for the call and put prices.

Usage

collar.bl(s,K1,K2,r,t,sd,plot=FALSE)

Arguments

S spot price at time 0
K1 strike price of the long put
K2 strike price of the short call
r yearly continuously compounded risk free rate
t time of expiration (in years)
sd standard deviation of the stock (volatility)
plot tells whether or not to plot the payoff and profit

Details

Stock price at time t = S_t
For S_t <= K1: payoff = K1 - S_t
For K1 < S_t < K2: payoff = 0
For S_t >= K2: payoff = K2 - S_t
profit = payoff + (price_{K2} - price_{K1}) * e^{rt}

Value

A list of two components.
Payoff A data frame of different payoffs and profits for given stock prices.
Premiers A matrix of the premiums for the call and put options and the net cost.

See Also

option.put
option.call

Examples

collar.bl(s=100,K1=90,K2=110,r=.05,t=1,sd=.2)
covered.call

Covered Call

Description

Gives a table and graphical representation of the payoff and profit of a covered call strategy for a range of future stock prices.

Usage

```
covered.call(S,K,r,t,sd,price=NA,plot=FALSE)
```

Arguments
- **S**: spot price at time 0
- **K**: strike price
- **r**: continuously compounded yearly risk free rate
- **t**: time of expiration (in years)
- **sd**: standard deviation of the stock (volatility)
- **price**: specified call price if the Black Scholes pricing is not desired (leave as NA to use the Black Scholes pricing)
- **plot**: tells whether or not to plot the payoff and profit

Details

Stock price at time \(t = S_t \)

For \(S_t \leq K \): payoff = \(S_t \)

For \(S_t > K \): payoff = \(K \)

profit = payoff + price \(e^{rt} \) − \(S \)

Value

A list of two components.

- **Payoff**: A data frame of different payoffs and profits for given stock prices.
- **Premium**: The price of the call option.

Note

Finds the put price by using the Black Scholes equation by default.

See Also

- `option.call`
- `covered.put`
Examples

```r
covered.call(S=100,K=110,r=.03,t=1,sd=.2,plot=TRUE)
```

Description

Gives a table and graphical representation of the payoff and profit of a covered put strategy for a range of future stock prices.

Usage

```r
covered.put(S,K,r,t,sd,price=NA,plot=FALSE)
```

Arguments

- **S** spot price at time 0
- **K** strike price
- **r** continuously compounded yearly risk free rate
- **t** time of expiration (in years)
- **sd** standard deviation of the stock (volatility)
- **price** specified put price if the Black Scholes pricing is not desired (leave as NA to use the Black Scholes pricing)
- **plot** tells whether or not to plot the payoff and profit

Details

Stock price at time \(t = S_t \)

For \(S_t \leq K \): payoff = \(S - K \)

For \(S_t > K \): payoff = \(S - S_t \)

profit = payoff + price * e^{r * t}

Value

A list of two components.

- **Payoff** A data frame of different payoffs and profits for given stock prices.
- **Premium** The price of the put option.

Note

Finds the put price by using the Black Scholes equation by default.
Description

Gives a table and graphical representation of the payoff of a forward contract, and calculates the forward price for the contract.

Usage

forward(S,t,r,position,div.structure="none",dividend=NA,df=1,D=NA,k=NA,plot=FALSE)

Arguments

- **S**: spot price at time 0
- **t**: time of expiration (in years)
- **r**: continuously compounded yearly risk free rate
- **position**: either buyer or seller of the contract ("long" or "short")
- **div.structure**: the structure of the dividends for the underlying ("none", "continuous", or "discrete")
- **dividend**: amount of each dividend, or amount of first dividend if k is not NA
- **df**: dividend frequency- number of dividends per year
- **D**: continuous dividend yield
- **k**: dividend growth rate per df
- **plot**: tells whether or not to plot the payoff

Details

Stock price at time $t = S_t$

Long Position: payoff = $S_t - \text{forward price}$

Short Position: payoff = forward price - S_t

If div.structure = "none"

forward price = $S \times e^{rt}$

If div.structure = "discrete"
forward.prepaid

\[e^{f.i} = e^r - 1 \]
\[j = (1 + e^{f.i})^{\frac{1}{N}} - 1 \]

Number of dividends: \(t^* = t \cdot df \)
if \(k = NA \): forward price = \(S \cdot e^{r \cdot t} - \text{dividend} \cdot s \cdot \frac{1}{j} \)
if \(k \neq j \): forward price = \(S \cdot e^{r \cdot t} - \text{dividend} \cdot \frac{1 - (1 + j)^{-k}}{j-k} \cdot e^{r \cdot t} \)
if \(k = j \): forward price = \(S \cdot e^{r \cdot t} - \text{dividend} \cdot \frac{1}{1+j} \cdot e^{r \cdot t} \)

If div.structure = "continuous"
forward price = \(S \cdot e^{(r-D) \cdot t} \)

Value
A list of two components.
Payoff A data frame of different payoffs for given stock prices.
Price The forward price of the contract.

Note
Leave an input variable as NA if it is not needed (ie. \(k=NA \) if div.structure="none").

See Also
forward.prepaid

Examples

```r
forward(S=100,t=2,r=.03,position="short",div.structure="none")
forward(S=100,t=2,r=.03,position="long",div.structure="discrete",dividend=3,k=.02)
forward(S=100,t=1,r=.03,position="long",div.structure="continuous",D=.01)
```

Description
Gives a table and graphical representation of the payoff of a prepaid forward contract, and calculates the prepaid forward price for the contract.

Usage
forward.prepaid(S,t,r,position,div.structure="none",dividend=NA,df=1,D=NA, k=NA,plot=FALSE)
Arguments

- **S**
 spot price at time 0
- **t**
 time of expiration (in years)
- **r**
 continuously compounded yearly risk free rate
- **position**
 either buyer or seller of the contract ("long" or "short")
- **div. structure**
 the structure of the dividends for the underlying ("none", "continuous", or "discrete")
- **dividend**
 amount of each dividend, or amount of first dividend if \(k \) is not NA
- **df**
 dividend frequency- number of dividends per year
- **D**
 continuous dividend yield
- **k**
 dividend growth rate per \(df \)
- **plot**
 tells whether or not to plot the payoff

Details

Stock price at time \(t = S_t \)
Long Position: payoff = \(S_t - \) prepaid forward price
Short Position: payoff = prepaid forward price - \(S_t \)

If div. structure = "none"
forward price= \(S \)

If div. structure = "discrete"
\[
eff.i = e^r - 1
\]
\[
j = (1 + eff.i)^{\frac{t}{df}} - 1
\]
Number of dividends: \(t^* = t \times df \)
if \(k = NA \): prepaid forward price = \(S - \text{dividend} \times a_{t^*} \)
if \(k \neq j \): prepaid forward price = \(S - \text{dividend} \times \frac{1 - \left(\frac{1+k}{1+j}\right)^{t^*}}{j-k} \)
if \(k = j \): prepaid forward price = \(S - \text{dividend} \times \frac{t^*}{t+j} \)

If div. structure = "continuous"
prepaid forward price= \(S \times e^{-D \times t} \)

Value

A list of two components.

- **Payoff**
 A data frame of different payoffs for given stock prices.
- **Price**
 The prepaid forward price of the contract.

Note

Leave an input variable as NA if it is not needed (ie. \(k=NA \) if div. structure="none").
See Also
forward

Examples
forward.prepaid(S=100,t=2,r=.04,position="short",div.structure="none")

forward.prepaid(S=100,t=2,r=.03,position="long",div.structure="discrete",dividend=3,k=.02,df=2)

forward.prepaid(S=100,t=1,r=.05,position="long",div.structure="continuous",D=.06)

<table>
<thead>
<tr>
<th>IRR</th>
<th>Internal Rate of Return</th>
</tr>
</thead>
</table>

Description
Calculates internal rate of return for a series of cash flows, and provides a time diagram of the cash flows.

Usage
IRR(cf0,cf,times,plot=FALSE)

Arguments
- cf0: cash flow at period 0
- cf: vector of cash flows
- times: vector of the times for each cash flow
- plot: option whether or not to provide the time diagram

Details
\[cf0 = \sum_{k=1}^{n} \frac{cf_k}{(1+irr)^{t_k}} \]

Value
The internal rate of return.

Note
Periods in t must be positive integers.
Uses polyroot function to solve equation given by series of cash flows, meaning that in the case of having a negative IRR, multiple answers may be returned.
The Net Present Value (NPV) is a financial metric used to evaluate the attractiveness of an investment project. It is calculated as the difference between the present value of cash inflows and the present value of cash outflows over a period of time. NPV helps investors understand the profitability of an investment by considering the time value of money.

Description
Calculates the net present value for a series of cash flows, and provides a time diagram of the cash flows.

Usage
```
NPV(cf0, cf, times, i, plot=FALSE)
```

Arguments
- `cf0`: cash flow at period 0
- `cf`: vector of cash flows
- `times`: vector of the times for each cash flow
- `i`: interest rate per period
- `plot`: tells whether or not to plot the time diagram of the cash flows

Details
The net present value (NPV) is calculated using the following formula:

\[
NPV = cf0 - \sum_{k=1}^{n} \frac{cf_k}{(1+i)^{times_k}}
\]

Value
The NPV.

Note
- The periods in `times` must be positive integers.
- The lengths of `cf` and `times` must be equal.
See Also
 irr

Examples
 npv(cf=100,cf=c(50,40),times=c(3,5),i=.01)
 npv(cf=100,cf=50,times=3,i=.05)
 npv(cf=100,cf=c(50,60,10,20),times=c(1,5,9,9),i=.045)

Description
 Gives a table and graphical representation of the payoff and profit of a long or short call option for a range of future stock prices.

Usage
 option.call(S,K,r,t,sd,price=NA,position,plot=FALSE)

Arguments
 S spot price at time 0
 K strike price
 r continuously compounded yearly risk free rate
 t time of expiration (in years)
 sd standard deviation of the stock (volatility)
 price specified call price if the Black Scholes pricing is not desired (leave as NA to use the Black Scholes pricing)
 position either buyer or seller of option ("long" or "short")
 plot tells whether or not to plot the payoff and profit

Details
 Stock price at time $t = S_t$
 Long Position:
 payoff = max(0, $S_t - K$)
 profit = payoff - pricee^{r*t}
 Short Position:
 payoff = -max(0, $S_t - K$)
 profit = payoff + pricee^{r*t}
option.put

Value
A list of two components.
Payoff A data frame of different payoffs and profits for given stock prices.
Premium The price for the call option.

Note
Finds the call price by using the Black Scholes equation by default.

Author(s)
Kameron Penn and Jack Schmidt

See Also
option.put
bls.order1

Examples
option.call(S=100,K=110,r=.03,t=1.5,sd=.2,price=NA,position="short")

option.call(S=100,K=100,r=.03,t=1,sd=.2,price=10,position="long")

option.put Put Option

Description
Gives a table and graphical representation of the payoff and profit of a long or short put option for a range of future stock prices.

Usage
option.put(S,K,r,t,sd,price=NA,position,plot=FALSE)

Arguments
S spot price at time 0
K strike price
r continuously compounded yearly risk free rate
t time of expiration (in years)
sd standard deviation of the stock (volatility)
price specified put price if the Black Scholes pricing is not desired (leave as NA to use the Black Scholes pricing)
position either buyer or seller of option ("long" or "short")
plot tells whether or not to plot the payoff and profit
Details

Stock price at time $t = S_t$
Long Position:
 payoff = $\max(0, K - S_t)$
 profit = payoff $-price \times e^{r \times t}$
Short Position:
 payoff = $-\max(0, K - S_t)$
 profit = payoff $+price \times e^{r \times t}$

Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.
Premium The price of the put option.

Note

Finds the put price by using the Black Scholes equation by default.

Author(s)

Kameron Penn and Jack Schmidt

See Also

 option.call
 bls.order1

Examples

 option.put(S=100,K=110,r=.03,t=1,sd=.2,price=NA,position="short")

 option.put(S=100,K=110,r=.03,t=1,sd=.2,price=NA,position="long")

perpetuity.arith Arithmetical Perpetuity

Description

Solves for the present value, amount of the first payment, the payment increment amount per period, or the interest rate for an arithmetically growing perpetuity.

Usage

 perpetuity.arith(pv=NA,p=NA,q=NA,i=NA,ic=1,pf=1,imm=TRUE)
Arguments

\begin{itemize}
 \item \texttt{pv} \quad present value of the annuity
 \item \texttt{p} \quad amount of the first payment
 \item \texttt{q} \quad payment increment amount per period
 \item \texttt{i} \quad nominal interest rate convertible \texttt{ic} times per year
 \item \texttt{ic} \quad interest conversion frequency per year
 \item \texttt{pf} \quad the payment frequency - number of payments per year
 \item \texttt{imm} \quad option for annuity immediate or annuity due, default is immediate (TRUE)
\end{itemize}

Details

Effective Rate of Interest: \(e f f . i = (1 + \frac{i}{ic})^{ic} - 1 \)

\(j = (1 + eff. i)^{\frac{1}{pf}} - 1 \)

Perpetuity Immediate:

\(pv = \frac{p}{j} + \frac{q}{j^2} \)

Perpetuity Due:

\(pv = (\frac{p}{j} + \frac{q}{j^2}) \ast (1 + j) \)

Value

Returns a matrix of input variables, and calculated unknown variables.

Note

One of \texttt{pv}, \texttt{p}, \texttt{q}, or \texttt{i} must be NA (unknown).

Author(s)

Kameron Penn and Jack Schmidt

See Also

\begin{itemize}
 \item \texttt{perpetuity.geo}
 \item \texttt{perpetuity.level}
 \item \texttt{annuity.arith}
 \item \texttt{annuity.geo}
 \item \texttt{annuity.level}
\end{itemize}

Examples

\begin{itemize}
 \item \texttt{perpetuity.arith(100,p=1,q=.5,i=NA,ic=1,pf=1,imm=TRUE)}
 \item \texttt{perpetuity.arith(pv=NA,p=1,q=.5,i=.07,ic=1,pf=1,imm=TRUE)}
 \item \texttt{perpetuity.arith(pv=100,p=NA,q=1,i=.05,ic=.5,pf=1,imm=FALSE)}
\end{itemize}
perpetuity.geo Geometric Perpetuity

Description
Solves for the present value, amount of the first payment, the payment growth rate, or the interest rate for a geometrically growing perpetuity.

Usage
perpetuity.geo(pv=NA,p=NA,k=NA,i=NA,ic=1,pf=1,imm=TRUE)

Arguments
- **pv** present value
- **p** amount of the first payment
- **k** payment growth rate per period
- **i** nominal interest rate convertible ic times per year
- **ic** interest conversion frequency per year
- **pf** the payment frequency- number of payments and periods per year
- **imm** option for perpetuity immediate or due, default is immediate (TRUE)

Details
Effective Rate of Interest:
\[eff.i = \left(1 + \frac{i}{ic}\right)^{ic} - 1 \]
\[j = (1 + eff.i)^{\frac{1}{pf}} - 1 \]
Perpetuity Immediate:
\[j > k: pv = \frac{p}{j-k} \]
Perpetuity Due:
\[j > k: pv = \frac{p}{j-k} \ast (1 + j) \]

Value
Returns a matrix of the input variables and calculated unknown variables.

Note
One of pv, p, k, or i must be NA (unknown).
See Also

- perpetuity.arith
- perpetuity.level
- annuity.arith
- annuity.geo
- annuity.level

Examples

```r
perpetuity.geo(pv=NA,p=5,k=.03,i=.04,ic=1,pf=1,imm=TRUE)
```

```r
perpetuity.geo(pv=1000,p=5,k=NA,i=.04,ic=1,pf=1,imm=FALSE)
```

perpetuity.level Level Perpetuity

Description

Solves for the present value, interest rate, or the amount of the payments for a level perpetuity.

Usage

```r
perpetuity.level(pv=NA,pmt=NA,i=NA,ic=1,pf=1,imm=TRUE)
```

Arguments

- **pv**: present value
- **pmt**: value of level payments
- **i**: nominal interest rate convertible ic times per year
- **ic**: interest conversion frequency per year
- **pf**: the payment frequency- number of payments per year
- **imm**: option for perpetuity immediate or annuity due, default is immediate (TRUE)

Details

Effective Rate of Interest: $eff.i = (1 + \frac{i}{ic})^{ic} - 1$

$$j = (1 + eff.i)^{\frac{1}{pf}} - 1$$

Perpetuity Immediate:

$$pv = \frac{pmt \cdot a_{\infty|j}}{j} = \frac{pmt}{j}$$

Perpetuity Due:

$$pv = \frac{pmt \cdot \ddot{a}_{\infty|j}}{j} = \frac{pmt}{j} \cdot (1 + i)$$
Value

Returns a matrix of the input variables and calculated unknown variables.

Note

One of pv, pmt, or i must be NA (unknown).

Author(s)

Kameron Penn and Jack Schmidt

See Also

perpetuity.arith
perpetuity.geo
annuity.arith
annuity.geo
annuity.level

Examples

```r
perpetuity.level(pv=100, pmt=NA, i=.05, ic=1, pf=2, imm=TRUE)
```

```r
perpetuity.level(pv=100, pmt=NA, i=.05, ic=1, pf=2, imm=FALSE)
```

protective.put

Protective Put

Description

Gives a table and graphical representation of the payoff and profit of a protective put strategy for a range of future stock prices.

Usage

```r
protective.put(S,K,r,t, sd, price=NA, plot=FALSE)
```

Arguments

- `S` spot price at time 0
- `K` strike price
- `r` continuously compounded yearly risk free rate
- `t` time of expiration (in years)
- `sd` standard deviation of the stock (volatility)
- `price` specified put price if the Black Scholes pricing is not desired (leave as NA to use the Black Scholes pricing)
- `plot` tells whether or not to plot the payoff and profit
Details

Stock price at time \(t = S_t \)
For \(S_t \leq K \): payoff = \(K - S \)
For \(S_t > K \): payoff = \(S_t - S \)
profit = payoff - price \(e^{rt} \)

Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.
Premium The price of the put option.

Note

Finds the put price by using the Black Scholes equation by default.

Author(s)

Kameron Penn and Jack Schmidt

See Also

optionNput

Examples

protectiveNput(s\]1PPLk\]1PPLr\]NP1Lt\]NULsd\]N1I
protectiveNput(s\]1PPLk\]9PLr\]NP1Lt\]NULsd\]N1I

rate.conv

Interest, Discount, and Force of Interest Converter

Description

Converts given rate to desired nominal interest, discount, and force of interest rates.

Usage

rate.conv(rate, conv=1, type="interest", nom=1)

Arguments

rate current rate
conv how many times per year the current rate is convertible
type current rate as one of "interest", "discount" or "force"
nom desired number of times the calculated rates will be convertible
straddle

Details
\[1 + i = (1 + \left(\frac{i_{r}}{m}\right)^{m})^{n} = (1 - d)^{-1} = (1 - \frac{d^{(m)}}{m})^{m} = e^{\delta} \]

Value

A matrix of the interest, discount, and force of interest conversions for effective, given and desired conversion rates.

The row named 'eff' is used for the effective rates, and the nominal rates are in a row named 'nom(x)' where the rate is convertible x times per year.

Author(s)

Kameron Penn and Jack Schmidt

Examples

\[
\begin{align*}
\text{rate.conv} & (\text{rate}=.05, \text{conv}=2, \text{nom}=1) \\
\text{rate.conv} & (\text{rate}=.05, \text{conv}=2, \text{nom}=4, \text{type}="\text{discount}") \\
\text{rate.conv} & (\text{rate}=.05, \text{conv}=2, \text{nom}=4, \text{type}="\text{force}")
\end{align*}
\]

straddle

Straddle Spread

Description

Gives a table and graphical representation of the payoff and profit of a long or short straddle for a range of future stock prices.

Usage

\[
\text{straddle}(S,K,r,t,\text{price1},\text{price2},\text{position},\text{plot}=\text{FALSE})
\]

Arguments

\[
\begin{align*}
S & \quad \text{spot price at time 0} \\
K & \quad \text{strike price of the call and put} \\
r & \quad \text{continuously compounded yearly risk free rate} \\
t & \quad \text{time of expiration (in years)} \\
\text{price1} & \quad \text{price of the long call with strike price K} \\
\text{price2} & \quad \text{price of the long put with strike price K} \\
\text{position} & \quad \text{either buyer or seller of option ("long" or "short")} \\
\text{plot} & \quad \text{tells whether or not to plot the payoff and profit}
\end{align*}
\]
Details

Stock price at time \(t = S_t \)

Long Position:

For \(S_t \leq K \): payoff = \(K - S_t \)
For \(S_t > K \): payoff = \(S_t - K \)

profit = payoff - (price1 + price2)\(e^{rt} \)

Short Position:

For \(S_t \leq K \): payoff = \(S_t - K \)
For \(S_t > K \): payoff = \(K - S_t \)

profit = payoff + (price1 + price2)\(e^{rt} \)

Value

A list of two components.

Payoff A data frame of different payoffs and profits for given stock prices.
Premiums A matrix of the premiums for the call and put options, and the net cost.

See Also

straddle.bl
option.put
option.call
strangle

Examples

straddle(S=100,K=110,r=.03,t=1,price1=15,price2=10,position="short")

Description

Gives a table and graphical representation of the payoff and profit of a long or short straddle for a range of future stock prices. Uses the Black Scholes equation for the call and put prices.

Usage

straddle.bl(S,K,r,t,sd,position,plot=FALSE)
Arguments

- S: spot price at time 0
- K: strike price of the call and put
- r: continuously compounded yearly risk free rate
- t: time of expiration (in years)
- sd: standard deviation of the stock (volatility)
- $position$: either buyer or seller of option ("long" or "short")
- $plot$: tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$

Long Position:
- For $S_t \leq K$: payoff = $K - S_t$
- For $S_t > K$: payoff = $S_t - K$

```
profit = payoff - (price_{call} + price_{put}) * e^{rt}
```

Short Position:
- For $S_t \leq K$: payoff = $S_t - K$
- For $S_t > K$: payoff = $K - S_t$

```
profit = payoff + (price_{call} + price_{put}) * e^{rt}
```

Value

A list of two components.

- Payoff: A data frame of different payoffs and profits for given stock prices.
- Premiums: A matrix of the premiums for the call and put options, and the net cost.

See Also

- `option.put`
- `option.call`
- `strangle.bl`
strangle (Strangle Spread)

Description

Gives a table and graphical representation of the payoff and profit of a long strangle spread for a range of future stock prices.

Usage

strangle(S,K1,K2,r,t,price1,price2,plot=FALSE)

Arguments

- S: spot price at time 0
- K1: strike price of the long put
- K2: strike price of the long call
- r: continuously compounded yearly risk free rate
- t: time of expiration (in years)
- price1: price of the long put with strike price K1
- price2: price of the long call with strike price K2
- plot: tells whether or not to plot the payoff and profit

Details

Stock price at time \(t = S_t \)
- For \(S_t \leq K_1 \): payoff = \(K_1 - S_t \)
- For \(K_1 < S_t < K_2 \): payoff = 0
- For \(S_t \geq K_2 \): payoff = \(S_t - K_2 \)
- profit = payoff - (price1 + price2)*e^{r*t}

Value

A list of two components.

- Payoff: A data frame of different payoffs and profits for given stock prices.
- Premiums: A matrix of the premiums for the call and put options, and the net cost.

Note

K1 < S < K2 must be true.

Author(s)

Kameron Penn and Jack Schmidt
See Also

strangle.bls
option.put
option.call
straddle

Examples

strangle(S=105,K1=100,K2=110,r=.03,t=1,price1=10,price2=15,plot=TRUE)

strangle.bls Strangle Spread - Black Scholes

Description

Gives a table and graphical representation of the payoff and profit of a long strangle spread for a range of future stock prices. Uses the Black Scholes equation for the call prices.

Usage

strangle.bls(S,K1,K2,r,t,price,plot=FALSE)

Arguments

S spot price at time 0
K1 strike price of the long put
K2 strike price of the long call
r continuously compounded yearly risk free rate
t time of expiration (in years)
price standard deviation of the stock (volatility)
plot tells whether or not to plot the payoff and profit

Details

Stock price at time $t = S_t$
For $S_t \leq K_1$: payoff $= K_1 - S_t$
For $K_1 < S_t < K_2$: payoff $= 0$
For $S_t \geq K_2$: payoff $= S_t - K_2$

profit $= \text{payoff} - (price_{K1} + price_{K2}) \cdot e^{rt}$
swap.commodity

Value

A list of two components.

Payoff
A data frame of different payoffs and profits for given stock prices.

Premiums
A matrix of the premiums for the call and put options, and the net cost.

Note

K1 < S < K2 must be true.

Author(s)

Kameron Penn and Jack Schmidt

See Also

option.put
option.call
straddle.blr

Examples

strangle.blr(S=105,K1=100,K2=110,r=.03,t=1,sd=.2)
strangle.blr(S=115,K1=50,K2=130,r=.03,t=1,sd=.2)

swap.commodity

Commodity Swap

Description

Solves for the fixed swap price, given the variable prices and interest rates (either as spot rates or zero coupon bond prices).

Usage

swap.commodity(prices, rates, type="spot_rate")

Arguments

prices vector of variable prices
rates vector of variable rates
type rates defined as either "spot_rate" or "zcb_price"
Details

For spot rates: \[\sum_{k=1}^{n} \left(\frac{prices_k}{1 + rates_k}\right)^n = \sum_{k=1}^{n} \left(\frac{X}{1 + rates_k}\right)^n\]

For zero coupon bond prices: \[\sum_{k=1}^{n} prices_k \times rates_k = \sum_{k=1}^{n} X \times rates_k\]

Where \(X\) = fixed swap price.

Value

The fixed swap price.

Note

Length of the price vector and rate vector must be of the same length.

Author(s)

Kameron Penn and Jack Schmidt

See Also

\texttt{swap.rate}

Examples

\begin{verbatim}
swap.commodity(prices=c(103,106,108), rates=c(.04,.05,.06))

swap.commodity(prices=c(103,106,108), rates=c(.9615,.907,.8396), type="zcb_price")

swap.commodity(prices=c(105,105,105), rates=c(.85,.89,.80), type="zcb_price")
\end{verbatim}

\texttt{swap.rate} \hspace{1cm} \textit{Interest Rate Swap}

Description

Solves for the fixed interest rate given the variable interest rates (either as spot rates or zero coupon bond prices).

Usage

\begin{verbatim}
swap.rate(rates, type="spot_rate")
\end{verbatim}

Arguments

\begin{verbatim}
rates \quad \text{vector of variable rates}

type \quad \text{rates as either "spot_rate" or "zcb_price"}
\end{verbatim}
Details

For spot rates:
\[
1 = \sum_{k=1}^{n} \left[\frac{R}{(1 + \text{rates}_k)^{k}} \right] + \frac{1}{(1 + \text{rates}_n)^n}
\]

For zero coupon bond prices:
\[
1 = \sum_{k=1}^{n} (R * \text{rates}_k) + \text{rates}_n
\]

Where \(R = \text{fixed swap rate} \).

Value

The fixed interest rate swap.

See Also

swap.commodity

Examples

swap.rate(rates=c(.04, .05, .06), type = "spot_rate")

swap.rate(rates=c(.93,.95,.98,.90), type = "zcb_price")

TVM

Time Value of Money

Description

Solves for the present value, future value, time, or the interest rate for the accumulation of money earning compound interest. It can also plot the time value for each period.

Usage

\[
\text{TVM(pv=NA, fv=NA, n=NA, i=NA, ic=1, plot=FALSE)}
\]

Arguments

- **pv**: present value
- **fv**: future value
- **n**: number of periods
- **i**: nominal interest rate convertible ic times per period
- **ic**: interest conversion frequency per period
- **plot**: tells whether or not to produce a plot of the time value at each period

Details

\[
j = \left(1 + \frac{i}{ic}\right)^{ic} - 1
\]

\[
fv = pv * (1 + j)^n
\]
yield.dollar

Value

Returns a matrix of the input variables and calculated unknown variables.

Note

Exactly one of pv, fv, n, or i must be NA (unknown).

See Also

cf.analysis

Examples

TVM(pv=100, fv=200, i=.05, ic=2, plot=TRUE)

TVM(pv=50, n=5, i=.04, plot=TRUE)

yield.dollar

Dollar Weighted Yield

Description

Calculates the dollar weighted yield.

Usage

yield.dollar(cf, times, start, end, endtime)

Arguments

cf vector of cash flows
times vector of times for when cash flows occur
start beginning balance
der end time of comparison

Details

\[I = end - start - \sum_{k=1}^{n} cf_k \]
\[i_{dw} = \frac{I}{start \times endtime - \sum_{k=1}^{n} cf_k \times (endtime - times_k)} \]

Value

The dollar weighted yield.
yield.time

Note
Time of comparison (endtime) must be larger than any number in vector of cash flow times.
Length of cashflow vector and times vector must be equal.

See Also

yield.time

Examples

```r
yield.dollar(cf=c(20,10,50),times=c(.25,.5,.75),start=100,end=175,endtime=1)

yield.dollar(cf=c(500,-1000),times=c(3/12,18/12),start=25200,end=25900,endtime=21/12)
```

yield.time

Time Weighted Yield

Description
Calculates the time weighted yield.

Usage

```r
yield.time(cf,bal)
```

Arguments

- `cf` vector of cash flows
- `bal` vector of balances

Details

\[
i_{tw} = \prod_{k=1}^{n} \left(\frac{bal_{k+1}}{bal_{k} + cf_{k}} \right) - 1
\]

Value
The time weighted yield.

Note
Length of cash flows must be one less than the length of balances.
If lengths are equal, it will not use final cash flow.

Author(s)
Kameron Penn and Jack Schmidt
See Also

yield.dollar

Examples

yield.time(cf=c(0,200,100,50), bal=c(1000,800,1150,1550,1700))
Index

*Topic amortization
 amort.period, 2
 amort.table, 4

*Topic analysis
 bond, 13
 cf. analysis, 19

*Topic annuity
 annuity.arith, 5
 annuity.geo, 7
 annuity.level, 8

*Topic arithmetic
 annuity.arith, 5
 perpetuity.arith, 32

*Topic bond
 bond, 13

*Topic call
 bear.call, 9
 bear.call.bl, 11
 bls.order1, 12
 bull.call, 15
 bull.call.bl, 16
 butterfly.spread, 17
 butterfly.spread.bl, 18
 collar, 20
 collar.bl, 22
 covered.call, 23
 option.call, 30
 straddle, 38
 straddle.bl, 39
 strangle, 41
 strangle.bl, 42

*Topic forward
 forward, 25
 forward.prepaid, 26

*Topic geometric
 annuity.geo, 7
 perpetuity.geo, 34

*Topic greeks
 bls.order1, 12

*Topic interest
 rate.conv, 37
 swap.rate, 44

*Topic irr
 IRR, 28

*Topic level
 annuity.level, 8
 perpetuity.level, 35

*Topic option
 bear.call, 9
 bear.call.bl, 11
 bls.order1, 12
 bull.call, 15
 bull.call.bl, 16
 butterfly.spread, 17
 butterfly.spread.bl, 18
 collar, 20
 collar.bl, 22
 covered.call, 23
 covered.put, 24
 option.call, 30
 option.put, 31
 protective.put, 36
 straddle, 38
 straddle.bl, 39
 strangle, 41
 strangle.bl, 42

*Topic perpetuity
 perpetuity.arith, 32
 perpetuity.geo, 34
 perpetuity.level, 35

*Topic put
 bls.order1, 12
 collar, 20
 collar.bl, 22
 covered.put, 24
 option.put, 31
 protective.put, 36
 straddle, 38
straddle.bls, 39
strangle, 41
strangle.bls, 42
*Topic spread
 bear.call, 9
 bear.call.bls, 11
 bull.call, 15
 bull.call.bls, 16
 butterfly.spread, 17
 butterfly.spread.bls, 18
 collar, 20
 collar.bls, 22
 straddle, 38
 straddle.bls, 39
 strangle, 41
 strangle.bls, 42
*Topic swap
 swap.commodity, 43
 swap.rate, 44
*Topic time
 TVM, 45
 yield.time, 47
*Topic value
 cf.analysis, 19
 NPV, 29
 TVM, 45
*Topic yield
 IRR, 28
 yield.dollar, 46
 yield.time, 47
amort.period, 2, 5
amort.table, 3, 4
annuity.arith, 5, 8, 9, 33, 35, 36
annuity.geo, 6, 7, 9, 33, 35, 36
annuity.level, 5, 6, 8, 9, 33, 35, 36
bear.call, 9, 12, 16, 17
bear.call.bls, 10, 11
bls.order1, 12, 31, 32
bond, 13
bull.call, 10, 15
bull.call.bls, 12, 16, 16
butterfly.spread, 17, 19
butterfly.spread.bls, 18, 18
cf.analysis, 19, 46
collar, 20
collar.bls, 21, 22
covered.call, 23, 25
covered.put, 23, 24
forward, 25, 28
forward.prepaid, 26, 26
IRR, 28, 30
NPV, 29, 29
option.call, 10, 12, 13, 16–19, 21–23, 30,
 32, 39, 40, 42, 43
option.put, 13, 21, 22, 25, 31, 31, 37, 39, 40,
 42, 43
perpetuity.arith, 6, 8, 9, 32, 35, 36
perpetuity.geo, 6, 8, 9, 33, 34, 36
perpetuity.level, 6, 8, 9, 33, 35, 35
protective.put, 36
rate.conv, 37
straddle, 38, 42
straddle.bls, 39, 39, 43
strangle, 39, 41
strangle.bls, 40, 42, 42
swap.commodity, 43, 45
swap.rate, 44, 44
TVM, 20, 45
yield.dollar, 46, 48
yield.time, 47, 47