FisherEM: The FisherEM Algorithm to Simultaneously Cluster and Visualize High-Dimensional Data

The FisherEM algorithm, proposed by Bouveyron & Brunet (201) <doi:10.1007/s11222-011-9249-9>, is an efficient method for the clustering of high-dimensional data. FisherEM models and clusters the data in a discriminative and low-dimensional latent subspace. It also provides a low-dimensional representation of the clustered data. A sparse version of Fisher-EM algorithm is also provided.

Version: 1.5.1
Depends: MASS, parallel, elasticnet
Published: 2018-10-11
Author: Charles Bouveyron and Camille Brunet
Maintainer: Charles Bouveyron <charles.bouveyron at>
License: GPL-2
NeedsCompilation: no
Citation: FisherEM citation info
CRAN checks: FisherEM results


Reference manual: FisherEM.pdf
Package source: FisherEM_1.5.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: FisherEM_1.5.1.tgz, r-oldrel: FisherEM_1.5.1.tgz
Old sources: FisherEM archive


Please use the canonical form to link to this page.