Package ‘FitDynMix’

January 11, 2024

Title Estimation of Dynamic Mixtures

Version 1.0.0

Description Estimation of a dynamic lognormal -
Generalized Pareto mixture via the Approximate Maximum Likelihood and the Cross-

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 2.10)

LazyData true

Rd Macros Rdpack

Imports evir, MASS, pracma, Rdpack, parallel, ks, stats, graphics

URL https://github.com/marco-bee/FitDynMix

BugReports https://github.com/marco-bee/FitDynMix/issues

NeedsCompilation no

Author Marco Bee [aut, cre] (<https://orcid.org/0000-0002-9579-3650>)
Maintainer Marco Bee <marco.bee@unitn.it>
Repository CRAN

Date/Publication 2024-01-11 13:00:03 UTC

R topics documented:

AMLEfit .. 2
AMLEmode ... 3
CENOisyFit .. 4
CENOisyFitBoot 6
cvm_stat_M ... 7
ddyn ... 8
dynloglik ... 8
dynloglikMC .. 9
AMLEfit

Estimating a dynamic mixture via AMLE

Description

This function fits a dynamic mixture via Approximate Maximum Likelihood. Currently only implemented for the lognormal - generalized Pareto case, with Cauchy or exponential weight. The bootstrap estimation of the standard errors of the MLEs (used for finding the supports of the uniform priors) is carried out via parallel computing.

Usage

AMLEfit(yObs, epsilon, k, bootreps, intTol = 1e-04, weight)

Arguments

- **yObs**: numerical vector: observed sample.
- **epsilon**: non-negative scalar: scale parameter of the Markov kernel.
- **k**: non-negative integer: number of samples generated in the AMLE approach, such that k*epsilon = ABC sample size.
- **bootreps**: positive integer: number of bootstrap replications.
- **intTol**: non-negative scalar: threshold for stopping the computation of the integral in the normalization constant: if the integral on the interval from n-1 to n is smaller than intTol, the approximation procedure stops.
- **weight**: 'cau' or 'exp': name of weight distribution.

Details

For the lognormal and GPD parameters, the support of the uniform prior is set equal to the 99% confidence interval of the bootstrap distribution after discarding the outliers. For the Cauchy parameters, the support is given by the range of the bootstrap distribution after discarding the outliers. Be aware that computing times are large when k and/or bootreps are large.
AMLEmode

Value

A list with the following elements:
- **AMLEpars** a list of four 6 or 5-dimensional vectors: approximate maximum likelihood estimates computed via sample mean, maxima of the marginal kernel densities, maximum of the multivariate kernel densities, maximum of the product of the marginal kernel densities.
- **ABCsam** ((k x epsilon) x nc) matrix: ABC sample, where nc is 6 or 5, according to the weight.
- **MLEpars** (np x 1) vector: maximum likelihood estimates and maximized log-likelihood, where np is 7 or 6, according to the weight.
- **MLEboot** (bootreps x nc) matrix: maximum likelihood estimates obtained in each bootstrap replication, nc is 6 or 5, according to the weight.

References

See Also

AMLEmode.

Examples

```r
k <- 5000
epsilon <- .02
bootreps <- 2
res = AMLEfit(Metro2019, epsilon, k, bootreps, , 'cau')
```

AMLEmode

Approximating the mode of a multivariate empirical distribution

Description

This function approximates the mode of a multivariate empirical distribution by means of:

1. the sample mean
2. the product of the maxima of the univariate kernel densities estimated using the marginals
3. the maximum of the multivariate kernel density
4. the maximum of the product of the univariate kernel densities

Usage

AMLEmode(ABCsam)
Arguments

ABCsam (m x k) matrix: ABC sample, where m is the ABC sample size and k is the number of parameters.

Details

The bandwidth is estimated via smoothed cross-validation

Value

A list containing the 4 approximate modes.

Description

This function estimates a dynamic mixture by means of the noisy Cross-Entropy method. Currently only implemented for the lognormal - generalized Pareto case, with Cauchy or exponential weight. This is mainly an auxiliary function, not suitable for the final user. Use CeNoisyFitBoot instead.

Usage

CENoisyFit(
 x,
 rawdata,
 rho,
 maxiter,
 alpha,
 nsim,
 nrepsInt,
 xiInst,
 betaInst,
 eps,
 r = 5,
 weight
)

Arguments

x list: sequence of integers 1,...,K, where K is the number of datasets. Set x = 1 in case of a single dataset.

rawdata either a list of vectors or a vector: in the former case, each vector contains a dataset to be used for estimation.

rho real in (0,1): parameter determining the quantile of the log-likelihood values to be used at each iteration.
maxiter non-negative integer: maximum number of iterations.
alpha real in (0,1): smoothing parameter.
nsim non-negative integer: number of replications used in the normal and lognormal updating.
nrepsInt non-negative integer: number of replications used in the Monte Carlo estimate of the normalizing constant.
xiInst non-negative real: shape parameter of the instrumental GPD.
betaInst non-negative real: scale parameter of the instrumental GPD.
eps non-negative real: tolerance for the stopping criterion of the noisy Cross-Entropy method.
r positive integer: length of window to be used in the stopping criterion.
weight 'cau' or 'exp': name of weight distribution.

Details

Value
For each dataset, a list with the following elements is returned:
V (nreps x 12) matrix: updated mean and variance of the distributions used in the stochastic program. nit (positive integer): number of iterations needed for convergence. loglik (scalar): maximized log-likelihood.

References

See Also
CENoisyFitBoot

Examples
maxiter = 10
alpha = .5
rho = .05
eps = 1e-2
nsim = 1000
nrepsInt = 1000
xiInst = 3
betaInst = 3
r = 5
res <- CENoisyFit(1,Metro2019,rho,maxiter,alpha,nsim,nrepsInt,xiInst,betaInst,eps,r,'exp')
CENoisyFitBoot
Cross-Entropy estimation and bootstrap standard errors

Description

This function estimates a dynamic mixture by means of the noisy Cross-Entropy method and computes bootstrap standard errors. Currently only implemented for the lognormal - generalized Pareto, with Cauchy or exponential weight. Bootstrap standard errors are computed in parallel.

Usage

```r
CENoisyFitBoot(
  yObs, nboot, rho, maxiter, alpha, nsim, nrepsInt, xiInst, betaInst, eps, r = 5, weight
)
```

Arguments

- `yObs` numerical vector: observed random sample from the mixture.
- `nboot` integer: number of bootstrap replications for computing the standard errors. If `nboot = 0`, no standard errors are computed.
- `rho` real in (0,1): parameter determining the quantile of the log-likelihood values to be used at each iteration.
- `maxiter` non-negative integer: maximum number of iterations.
- `alpha` real in (0,1): smoothing parameter.
- `nsim` non-negative integer: number of replications used in the normal and lognormal updating.
- `nrepsInt` non-negative integer: number of replications used in the Monte Carlo estimate of the normalizing constant.
- `xiInst` non-negative real: shape parameter of the instrumental GPD.
- `betaInst` non-negative real: scale parameter of the instrumental GPD.
- `eps` non-negative real: tolerance for the stopping criterion of the noisy Cross-Entropy method.
- `r` positive integer: length of window to be used in the stopping criterion.
- `weight` 'cau' or 'exp': name of weight distribution.
cvm_stat_M

Value
If nboot > 0, a list with the following elements:
 estPars: Cross-Entropy estimates.
 nit: number of iterations needed for convergence.
 loglik: maximized log-likelihood.
 bootPars: parameter estimates obtained for each bootstrap sample.
 stddev: bootstrap standard errors.
If nboot = 0, only estPars, nit and loglik are returned.

Examples
res = CENoisyFitBoot(Metro2019,0,.05,20,.5,500,500,3,3,.01,5,'exp')

cvm_stat_M Computing the Cramér - von Mises distance between two samples

Description
This function Computing the Cramér - von Mises distance between two samples.

Usage
cvm_stat_M(vec1, vec2, power)

Arguments
vec1 (n x 1) vector: first sample.
vec2 (n x 1) vector: second sample.
power power of the integrand. Equal to 2 when using the L2 distance

Details
This function computes the Cramér - von Mises distance between two samples. See Drovandi and Frazier (2022, p. 7).

Value
out scalar: Cramér - von Mises distance between the two samples

References

Examples
out = cvm_stat_M(runif(100),rnorm(100),2)
ddyn
\textit{Density of a Lognormal-GPD dynamic mixture}

\textbf{Description}

This function evaluates the density of a Lognormal-GPD dynamic mixture, with Cauchy or exponential weight.

\textbf{Usage}

\texttt{ddyn(x, pars, intTol, weight)}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{x} non-negative vector: points where the density is evaluated.
 \item \textbf{pars} numerical vector: if weight is equal to 'cau', values of μ_c, τ, μ, σ, ξ, β; if weight is equal to 'exp', values of λ, μ, σ, ξ, β.
 \item \textbf{intTol} non-negative scalar: threshold for stopping the computation of the integral in the normalization constant: if the integral on the interval from n-1 to n is smaller than intTol, the approximation procedure stops.
 \item \textbf{weight} 'cau' or 'exp': name of weight distribution.
\end{itemize}

\textbf{Value}

density of the lognormal-GPD mixture evaluated at x.

\textbf{Examples}

\begin{verbatim}
 x <- seq(0,20,length.out=1000)
 pars <- c(1,2,0,.5,.25,3.5)
 dLNPar <- ddyn(x,pars,1e-04,'cau')
\end{verbatim}

\textbf{dynloglik
\textit{Log-likelihood of a Lognormal-GPD dynamic mixture}}

\textbf{Description}

This function evaluates the log-likelihood of a Lognormal-GPD dynamic mixture, computing the integral in the normalizing constant via quadrature methods.

\textbf{Usage}

\texttt{dynloglik(x, y, intTol, weight)}

\textbf{Examples}

\begin{verbatim}
 x <- seq(0,20,length.out=1000)
 y <- dLNPar
 dynloglik(x, y, 1e-04, 'cau')
\end{verbatim}
Arguments

x if weight is equal to 'cau', (6 by 1) numerical vector: values of μ_c, τ, μ, σ, ξ, β; if weight is equal to 'exp', (5 by 1) numerical vector: values of λ, μ, σ, ξ, β.

y vector: points where the function is evaluated.

intTol non-negative scalar: threshold for stopping the computation of the integral in the normalization constant: if the integral on the interval from n-1 to n is smaller than intTol, the approximation procedure stops.

weight 'cau' or 'exp': name of weight distribution.

Value

log-likelihood of the lognormal-GPD mixture evaluated at y.

Examples

x <- c(1,2,0,.5,.25,3.5)
y <- rDynMix(100,x,'cau')
fit <- dynloglik(x,y,1e-04,'cau')

dynloglikMC Log-likelihood of a Lognormal-GPD dynamic mixture

Description

This function evaluates the log-likelihood of a Lognormal-GPD dynamic mixture, with Cauchy or exponential weight, approximating the normalizing constant via Monte Carlo simulation.

Usage

dynloglikMC(x, y, nreps, xiInst, betaInst, weight)
MLEBootstrap

Examples

```r
lik <- dynloglikMC(c(1,2,0,1,.25,3.5),Metro2019,10000,3,3,'exp')
```

Metro2019

Population estimate of the US metropolitan areas

Description

A dataset containing the 2019 population estimate, divided by 10000, of the 415 US metropolitan areas computed by the US Census Bureau.

Usage

`Metro2019`

Format

A numerical vector with 415 rows and 1 column.

Source

https://www.census.gov

MLEBootstrap

Bootstrap standard errors of MLEs

Description

This function creates bootstrap samples of input data and fits a dynamic mixture via maximum likelihood.

Usage

`MLEBootstrap(x, y, intTol, weight)`

Arguments

- `x`: list of integers: indices of replications.
- `y`: numerical vector: observed data.
- `intTol`: threshold for stopping the computation of the integral in the normalization constant: if the integral on the interval from n-1 to n is smaller than intTol, the approximation procedure stops.
- `weight`: 'cau' or 'exp': name of weight distribution.
MLEfit

Details
MLEs are computed by means of the optim function. When it breaks down, the sample is discarded and a new one is generated. The function keeps track of the number of times this happens.

Value
A list with the following elements:
MLE: maximum likelihood estimates obtained from each bootstrap sample.
errors: number of times the MLE algorithm breaks down.

Examples
bootMLEs <- MLEBoot(1, Metro2019, 1e-04, 'exp')

MLEfit
Estimating a dynamic mixture via MLE

Description
This function fits a dynamic mixture via standard maximum likelihood. Currently only implemented for the lognormal - generalized Pareto case, with Cauchy or exponential weight.

Usage
MLEfit(yObs, bootreps, intTol = 1e-04, weight)

Arguments
yObs numerical vector: observed sample.
bootreps non-negative integer: number of bootstrap replications. If equal to 0, no standard errors are computed.
intTol non-negative scalar: threshold for stopping the computation of the integral in the normalization constant: if the integral on the interval from n-1 to n is smaller than intTol, the approximation procedure stops.
weight 'cau' or 'exp': name of weight distribution.

Details
Starting values for mu and sigma are the lognormal MLEs computed with the observations below the median. Initial values for xi and tau are the GPD MLEs obtained with the observations above the median. For the location and scale parameter of the Cauchy, we respectively use the first quartile and abs(log(sd(x)/2)). For the parameter of the exponential, we use abs(log(sd(x)/2)).
Value

MLEpars vector: maximum likelihood estimates and maximized log-likelihood.
MLEboot matrix: maximum likelihood estimates obtained in each bootstrap replication.
sdMLE vector: bootstrap standard deviation of the MLEs.

References

See Also

AMLEfit

Examples

mixFit <- MLEfit(Metro2019,0,,'cau')

Description

This function evaluates via Monte Carlo simulation the normalizing constant of a Lognormal-GPD dynamic mixture, with Cauchy or exponential weight.

Usage

nConst_MC(x, nreps, xiInst = 3, betaInst = 3, weight)

Arguments

x if weight is equal to 'cau', (6 by 1) numerical vector: values of μ_c, τ, μ, σ, ξ, β; if weight is equal to 'exp', (5 by 1) numerical vector: values of λ, μ, σ, ξ, β.
nreps number of replications to be used in the computation of the integral in the normalizing constant.
xiInst real: value of the shape parameter of the instrumental density. Default value equal to 3.
betaInst non-negative real: value of the scale parameter of the instrumental density. Default value equal to 3.
weight 'cau' or 'exp': name of weight distribution.
Value

Normalizing constant of the density of the lognormal-GPD mixture.

Examples

```r
nconst <- nConst_MC(c(1,2,0,0.5,0.25,3.5), 10000, 3, 3, 'cau')
```

Description

This function fits a dynamic mixture by Approximate Maximum Likelihood and by standard maximum likelihood. Currently only implemented for the lognormal - generalized Pareto case, with Cauchy or exponential weight.

Usage

```r
rDynMix(nreps, x, weight)
```

Arguments

- `nreps`
 integer: number of observations sampled from the mixture.

- `x`
 numerical vector: if weight = 'cau', values of $\mu_c, \tau, \mu, \sigma, \xi, \beta$; if weight = 'exp', values of $\lambda, \mu, \sigma, \xi, \beta$.

- `weight`
 'cau' or 'exp': name of weight distribution.

Details

This function simulates a dynamic lognormal-GPD mixture using the algorithm of Frigessi et al. (2002, p. 221).

Value

ysim (nreps x 1) vector: nreps random numbers from the lognormal-GPD dynamic mixture.

References

Examples

```r
ysim <- rDynMix(100,c(1,2,0,0.5,0.25,3),'cau')
```
Index

* Cross-Entropy;
 CENoisyFitBoot, 6
* MLE;
 MLEBoot, 10
* approximate
 AMLEfit, 2
 AMLEmode, 3
* bootstrap.
 CENoisyFitBoot, 6
 MLEBoot, 10
* cross-entropy.
 CENoisyFit, 4
* datasets
 Metro2019, 10
* dynamic
 AMLEfit, 2
 AMLEmode, 3
 CENoisyFit, 4
 CENoisyFitBoot, 6
 cvm_stat_M, 7
 ddyn, 8
 dynloglik, 8
 dynloglikMC, 9
 MLEBoot, 10
 MLEfit, 11
 nConst_MC, 12
 rDynMix, 13
* likelihood.
 AMLEfit, 2
 AMLEmode, 3
 MLEfit, 11
* maximum
 AMLEfit, 2
 AMLEmode, 3
 MLEfit, 11
* mixture.
 ddyn, 8
 dynloglik, 8
 dynloglikMC, 9
 nConst_MC, 12
 rDynMix, 13

nConst_MC, 12
* mixture;
 AMLEfit, 2
 AMLEmode, 3
 CENoisyFit, 4
 CENoisyFitBoot, 6
 cvm_stat_M, 7
 MLEBoot, 10
 MLEfit, 11
 rDynMix, 13
* non-parametric
 CENoisyFitBoot, 6
 MLEBoot, 10
* simulation.
 cvm_stat_M, 7
 rDynMix, 13
 AMLEfit, 2, 12
 AMLEmode, 3, 3
 CENoisyFit, 4
 CENoisyFitBoot, 6
 cvm_stat_M, 7
 ddyn, 8
 dynloglik, 8
 dynloglikMC, 9
 Metro2019, 10
 MLEBoot, 10
 MLEfit, 11
 nConst_MC, 12
 rDynMix, 13