Package ‘FormulR’

March 20, 2024

Title Comprehensive Tools for Drug Formulation Analysis and Visualization

Version 1.0.0

Description This presents a comprehensive set of tools for the analysis and visualization of drug formulation data. It includes functions for statistical analysis, regression modeling, hypothesis testing, and comparative analysis to assess the impact of formulation parameters on drug release and other critical attributes. Additionally, the package offers a variety of data visualization functions, such as scatterplots, histograms, and boxplots, to facilitate the interpretation of formulation data. With its focus on usability and efficiency, this package aims to streamline the drug formulation process and aid researchers in making informed decisions during formulation design and optimization.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Depends dplyr, ggplot2

Imports utils, knitr

VignetteBuilder knitr

NeedsCompilation no

Author Oche Ambrose George [aut, cre]

<https://orcid.org/0000-0002-3979-6232>

Maintainer Oche Ambrose George <ocheab1@gmail.com>

Repository CRAN

Date/Publication 2024-03-20 09:50:05 UTC

Suggests rmarkdown

R topics documented:

anova_analysis ... 2
batch_variability ... 3
boxplot ... 3
compare_distributions .. 4
anova_analysis

Perform ANOVA analysis

Description

This function conducts analysis of variance (ANOVA) to assess the impact of formulation parameters on key response variables.

Usage

anova_analysis(formulation_data)

Arguments

formulation_data

A data frame containing the formulation data.

Value

A summary of the ANOVA analysis results.

Examples

formulation_data <- data.frame(
 Excipient_Concentration = runif(100, min = 0, max = 1),
 Drug_Release = rnorm(100, mean = 50, sd = 10),
 Particle_Size = rnorm(100, mean = 100, sd = 20)
)
anova_analysis(formulation_data)
batch_variability

Assess batch-to-batch variability

Description

This function calculates the batch-to-batch variability of a specified parameter.

Usage

batch_variability(formulation_data, parameter)

Arguments

formulation_data A data frame containing formulation data.
parameter The parameter for which batch-to-batch variability is calculated.

Value

The batch-to-batch variability of the specified parameter.

boxplot

Generate boxplot

Description

This function generates a boxplot to compare the distribution of a variable across different groups.

Usage

boxplot(formulation_data, x, y)

Arguments

formulation_data A data frame containing the formulation data.
x The name of the grouping variable.
y The name of the variable.
Value

A boxplot.

Examples

```r
formulation_data <- data.frame(
  Formulation_Type = sample(c("Type A", "Type B"), 100, replace = TRUE),
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
boxplot(formulation_data, "Formulation_Type", "Drug_Release")
```

```
compare_distributions(formulation_data, group_var, response_var)
```

compare_distributions
Compare distributions across groups

Description

This function compares the distributions of a response variable across groups specified by group_var.

Usage

```r
compare_distributions(formulation_data, group_var, response_var)
```

Arguments

- **formulation_data**
 A data frame containing formulation data.
- **group_var**
 The variable defining the groups for comparison.
- **response_var**
 The response variable to compare across groups.

Value

A boxplot comparing the distributions across groups.

A boxplot comparing the distributions across groups.
compare_means
Compare means across groups

Description
This function compares the means of a response variable across groups specified by group_var.

Usage
```
compare_means(formulation_data, group_var, response_var)
```

Arguments
- **formulation_data**
 A data frame containing formulation data.
- **group_var**
 The variable defining the groups for comparison.
- **response_var**
 The response variable to compare across groups.

Value
Results of the t-test comparing means across groups.

confidence_intervals
Confidence intervals of drug release

Description
This function computes confidence intervals for drug release based on the provided formulation data.

Usage
```
confidence_intervals(formulation_data)
```

Value
Results of the t-test comparing means across groups.
Arguments

formulation_data

A data frame containing formulation data.

Value

Confidence intervals for drug release.

Description

This function generates a control chart for monitoring the quality control parameter over time.

Usage

control_chart(formulation_data, parameter)

control_chart(formulation_data, parameter)

Arguments

formulation_data

A data frame containing formulation data.

parameter

The quality control parameter to monitor.

Value

A control chart for the specified quality control parameter.
histogram

Generate histogram

Description

This function generates a histogram to visualize the distribution of a variable.

Usage

`histogram(formulation_data, x, bins = 20)`

Arguments

- `formulation_data`: A data frame containing the formulation data.
- `x`: The name of the variable.
- `bins`: The number of bins for the histogram.

Value

A histogram.

Examples

```r
formulation_data <- data.frame(
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
histogram(formulation_data, "Drug_Release")
```

hypothesis_testing

Perform hypothesis testing

Description

This function conducts hypothesis testing to compare means between different formulation groups.

Usage

`hypothesis_testing(formulation_data)`

Arguments

- `formulation_data`: A data frame containing the formulation data.
Value

The results of the hypothesis testing.

Examples

```r
formulation_data <- data.frame(
  Formulation_Type = sample(c("Type A", "Type B"), 100, replace = TRUE),
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
```

```r
hypothesis_testing(formulation_data)
```

regression_analysis
Perform regression analysis

Description

This function conducts regression analysis to model relationships between formulation parameters and response variables.

Usage

```r
regression_analysis(formulation_data)
```

Arguments

`formulation_data`

A data frame containing the formulation data.

Value

A summary of the regression analysis results.

Examples

```r
formulation_data <- data.frame(
  Excipient_Concentration = runif(100, min = 0, max = 1),
  Drug_Release = rnorm(100, mean = 50, sd = 10),
  Particle_Size = rnorm(100, mean = 100, sd = 20)
)
```

```r
regression_analysis(formulation_data)
```
Description

This function generates a scatterplot to visualize the relationship between two variables.

Usage

scatterplot(formulation_data, x, y)

Arguments

formulation_data
A data frame containing the formulation data.

x
The name of the x-variable.

y
The name of the y-variable.

Value

A scatterplot.

Examples

formulation_data <- data.frame(
 Excipient_Concentration = runif(100, min = 0, max = 1),
 Drug_Release = rnorm(100, mean = 50, sd = 10)
)
scatterplot(formulation_data, "Excipient_Concentration", "Drug_Release")

Description

This function calculates summary statistics of the provided formulation data.

Usage

summary_statistics(formulation_data)

summary_statistics(formulation_data)
Arguments

- **formulation_data**

 A data frame containing formulation data.

Value

- Summary statistics of the formulation data.
- Summary statistics of the formulation data.
Index

anova_analysis, 2
batch_variability, 3
boxplot, 3
compare_distributions, 4
compare_means, 5
confidence_intervals, 5
control_chart, 6
histogram, 7
hypothesis_testing, 7
regression_analysis, 8
scatterplot, 9
summary_statistics, 9