Package ‘FuncDiv’

March 8, 2023

Title Compute Contributitional Diversity Metrics

Version 1.0.0

License AGPL-3

Depends R (>= 3.5.0)

Imports ape, collapse, data.table, parallel, parallelDist, Rcpp, RcppParallel, RcppXPtrUtils, stats

Suggests testthat (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo, RcppParallel

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Gavin Douglas [aut, cre] (<https://orcid.org/0000-0001-5164-6707>)

Maintainer Gavin Douglas <gavinmdouglas@gmail.com>

Repository CRAN

Date/Publication 2023-03-08 19:20:02 UTC

R topics documented:

alpha_div_contrib ... 2
beta_div_contrib ... 4
compute_alpha_div .. 6
contrib_to_multitab ... 7
FuncDiv_alpha_metrics 8
func_abun_crossproduct 9
Main function for computing contributinal alpha diversity

Description

Based on joint taxa-function input data (i.e., contributinal data), a dataframe will be returned for each specified metric, which will contain the metric values for all function and sample combinations.

Usage

alpha_div_contrib(
 metrics,
 func_tab = NULL,
 abun_tab = NULL,
 contrib_tab = NULL,
 in_tree = NULL,
 ncores = 1,
 replace_NA = FALSE,
 custom_metric_functions = NULL,
 samp_colname = "sample",
 func_colname = "function.",
 taxon_colname = "taxon",
 abun_colname = "taxon_abun"
)

Arguments

metrics alpha diversity metrics to compute. Must either be names of functions in FuncDiv_alpha_metrics, or alternatively in custom_metric_functions, if specified.

func_tab data.frame object containing function copy numbers, with rows as functions and columns as taxa. Required if abun_tab is specified, and is mutually exclusive with contrib_tab.

abun_tab data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples. Required if func_tab is specified, and is mutually exclusive with contrib_tab.

contrib_tab data.frame object containing combined taxa abundances and function copy numbers across taxa. Must contain columns corresponding to the sample ids, function ids, taxa ids, and taxa abundances within samples. These column names are specified by the samp_colname, func_colname, taxon_colname, and abun_colname, respectively. Mutually exclusive with abun_tab and func_tab.

in_tree phylo object to use if faiths_pd is specified.
alpha_div_contrib

- **ncores** integer indicating number of cores to use for parallelizable steps.
- **replace_NA** Boolean vector of length one, indicating whether all NA's in the output of all metrics should be converted to 0's. Note that this done automatically done for richness either way.
- **custom_metric_functions** List object containing custom alpha diversity metric functions. This overrides `FuncDiv_alpha_metrics` when specified. The list element names must correspond to at least the names indicated by the metrics parameter.
- **samp_colname** sample id column name of `contrib_tab` input data.frame.
- **func_colname** function id column name of `contrib_tab` input data.frame.
- **taxon_colname** taxon id column name of `contrib_tab` input data.frame.
- **abun_colname** taxonomic abundance (within each sample) column name of `contrib_tab` input data.frame.

Details

Input data can be either a separate function copy number and taxonomic abundance table, or a joint contributional table. By default, specified metrics must be one of `names(FuncDiv_alpha_metrics)`. However, custom alpha diversity metric functions can be specified with the `custom_metric_functions` parameter.

Note that the taxonomic abundances can be relative abundance, read counts, or transformed in another way. However, note that some default metrics are only compatible with count data (see `?FuncDiv_alpha_metrics`).

Value

a list, containing one dataframe for each specified alpha diversity metric. In each dataframe, rows are functions and samples are columns.

Examples

```r
# First, simulate some (non-realistic) data.
set.seed(123)
test_tree <- ape::rtree(100)
test_abun <- data.frame(matrix(rnorm(500), nrow = 100, ncol = 5))
rownames(test_abun) <- test_tree$tip.label
colnames(test_abun) <- c("sample1", "sample2", "sample3", "sample4", "sample5")
test_abun[test_abun < 0] <- 0
test_func <- data.frame(matrix(sample(c(0L, 1L), 200, replace = TRUE),
                              nrow = 2, ncol = 100))
colnames(test_func) <- test_tree$tip.label
colnames(test_func) <- c("func1", "func2")

# Compute alpha diversity, based on (observed) richness, Faith's phylogenetic
dataframe and the Gini-Simpson Index.
contrib_alpha <- alpha_div_contrib(metrics = c("richness", "faiths_pd", "gini_simpson_index"),
                                   func_tab = test_func,
                                   abun_tab = test_abun,
                                   in_tree = test_tree,
```
Main function for computing contributional beta diversity

Description

Based on joint taxa-function input data (i.e., contributinal data), the beta diversity (i.e., inter-sample distance or divergence) will be computed for the subset of taxa encoding each individual function separately. A large List object containing all these tables can be returned, or alternatively these tables will be written to the disk as plain-text files.

Usage

```r
beta_div_contrib(
  metrics = NULL,
  func_tab = NULL,
  abun_tab = NULL,
  contrib_tab = NULL,
  in_tree = NULL,
  func_ids = NULL,
  return_objects = FALSE,
  write_outfiles = FALSE,
  outdir = NULL,
  ncores = 1,
  samp_colname = "sample",
  func_colname = "function.",
  taxon_colname = "taxon",
  abun_colname = "taxon_abun"
)
```

Arguments

- `metrics`
 Beta diversity metrics to compute. Must be default metric computed by `parallelDist::parDist` or one of "weighted_unifrac", "unweighted_unifrac", or "jensen_shannon_div".

- `func_tab`
 Data.frame object containing function copy numbers, with rows as functions and columns as taxa. Required if `abun_tab` is specified, and is mutually exclusive with `contrib_tab`.

- `abun_tab`
 Data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples. Required if `func_tab` is specified, and is mutually exclusive with `contrib_tab`.

beta_div_contrib

contrib_tab data.frame object containing combined taxa abundances and function copy numbers across taxa. Must contain columns corresponding to the sample ids, function ids, taxa ids, and taxa abundances within samples. These column names are specified by the samp_colname, func_colname, taxon_colname, and abun_colname, respectively. Mutually exclusive with abun_tab and func_tab.

in_tree phylo object to use if weighted_unifrac or unweighted_unifrac are specified.

func_ids character vector specifying subset of function ids to include for analysis. Will analyze all functions present if this is not specified.

return_objects Boolean vector of length one, specifying whether function should return a list of all output distance tables (nested by metric name, and then by function id). Incompatible with write_outfiles.

write_outfiles Boolean vector of length one, specifying whether function write all distance tables to plain-text files in the specified outdir location. Incompatible with return_objects.

outdir character vector of length one, indicating where to save output files if write_outfiles = TRUE.

ncores integer indicating number of cores to use for parallelizable steps.

samp_colname sample id column name of contrib_tab input data.frame.

func_colname function id column name of contrib_tab input data.frame.

taxon_colname taxon id column name of contrib_tab input data.frame.

abun_colname taxonomic abundance (within each sample) column name of contrib_tab input data.frame.

Details

Input data can be either a separate function copy number and taxonomic abundance table, or a joint contribututional table. Metrics must be one of "weighted_unifrac", "unweighted_unifrac", "jensen_shannon_div", or a default metric available through the parallelDist::parDist function. See ?parallelDist::parDist for a description of all default metrics.

The taxonomic abundances will be converted to relative abundances prior to computing inter-sample distances.

Value

differs depending on the return_objects and write_outfiles parameters.

If return_objects = TRUE, then a nested List will be returned. Each specific beta diversity metric will be the first level, and the functions are the second level (e.g., contrib_beta$binary$func2).

If write_outfiles then a character vector will be returned, indicating where the output tables were written.

Examples

First, simulate some (non-realistic) data.
set.seed(123)
```r
test_tree <- ape::rtree(100)
test_abun <- data.frame(matrix(rnorm(500), nrow = 100, ncol = 5))
rownames(test_abun) <- test_tree$tip.label
colnames(test_abun) <- c("sample1", "sample2", "sample3", "sample4", "sample5")
test_abun[test_abun < 0] <- 0

test_func <- data.frame(matrix(sample(c(0L, 1L), 200, replace = TRUE),
nrow = 2, ncol = 100))
colnames(test_func) <- test_tree$tip.label
rownames(test_func) <- c("func1", "func2")

# Compute beta diversity, based on Weighted UniFrac and Jaccard distances
# (i.e., "binary").
contrib_beta <- beta_div_contrib(metrics = c("weighted_unifrac", "binary"),
  func_tab = test_func,
  abun_tab = test_abun,
  in_tree = test_tree,
  return_objects = TRUE,
  ncores = 1)

# Parse beta diversity distance list value for a specific function (func2) and
# distance metric (Jaccard).
contrib_beta$binary$func2
```

compute_alpha_div
Convenience function for running default alpha diversity metrics on a single vector input

Description

This is a simple wrapper for `FuncDiv_alpha_metrics`, and you can see more details with `?FuncDiv_alpha_metrics`.

Usage

```r
compute_alpha_div(x, metric, ...)
```

Arguments

- `x`: input vector. Either class numeric (representing abundance of categories [e.g., microbes]) or character (indicating which taxa are present, which is required for `faiths_pd`).
- `metric`: alpha diversity metric to compute. Must be one of `names(FuncDiv_alpha_metrics)`.
- `...`: included so that functions with single arguments will not throw errors if `tree` is included (and ignored). This should be a phylo object to use in case of `faiths_pd`.

Details

These functions all have a single input: a numeric vector containing taxa abundances within a given sample. The exception is for `faiths_pd`, which expects a character vector of taxa labels that are present, as well as a tree (phylo object), which must contain all these specified taxa labels as tip labels.

Value

numeric vector with alpha diversity value.

Examples

```r
# Most metrics just require an input vector of abundances.
test_abun <- c(0, NA, 1, 2, 10, 4)
compute_alpha_div(x = test_abun, metric = "richness")

# Note that the input for computing Faith's PD is different.
# Get a randomly generated tree:
test_tree <- ape::rtree(n = 50)
test_present_tips <- c('t1', 't2', 't3')
compute_alpha_div(x = test_present_tips, metric = "faiths_pd", tree = test_tree)
```

contrib_to_multitab

Utility function to convert from contributional to multi-table input objects

Description

Converts from contributional-type table (i.e., a single, long table with joint taxa/function information) to separate taxa abundance and function copy number tables.

Usage

```r
contrib_to_multitab(
  contrib_tab,
  samp_colname = "sample",
  func_colname = "function.",
  abun_colname = "taxon_abun",
  taxon_colname = "taxon",
  copy.num_colname = "genome_function_count"
)
```
FuncDiv_alpha_metrics

Arguments

- `contrib_tab` data.frame object containing combined taxa abundances and function copy numbers across taxa. Must contain columns corresponding to the sample ids, function ids, taxa ids, and taxa abundances within samples. These column names are specified by the `samp_colname`, `func_colname`, `taxon_colname`, `abun_colname`, and `copy.num_colname`, respectively.

- `samp_colname` sample id column name of `contrib_tab` input data.frame.

- `func_colname` function id column name of `contrib_tab` input data.frame.

- `abun_colname` taxonomic abundance (within each sample) column name of `contrib_tab` input data.frame.

- `taxon_colname` taxon id column name of `contrib_tab` input data.frame.

- `copy.num_colname` function copy number column name of `contrib_tab` input data.frame.

Value

list with taxon abundance (`taxon_abun`) and function copy number (`function_copy_num`) data.frames as separate elements.

Description

These functions are used by the `alpha_div_contrib` function to compute contributional diversity, but can be used for any arbitrary input vector as well to compute standard alpha diversity.

Usage

`FuncDiv_alpha_metrics`

Format

An object of class `list` of length 15.

Details

The metrics were primarily taken from definitions provided by scikit-bio Python package, as well as the vegan and picante R packages. The functions are provided as elements of this list, so that it is more convenient to call them programmatically. All available alpha diversity metrics can be seen by typing `names(FuncDiv_alpha_metrics)`. The code to compute each metric can be inspected for each function, for instance, for richness, by typing: `FuncDiv_alpha_metrics$richness`.

These functions all have a single input: a numeric vector containing taxa abundances within a given sample. The exception is for `faiths_pd`, which expects a character vector of taxa labels that are
present, as well as a tree (phylo object), which must contain all these specified taxa labels as tip labels.

Note that not all these metrics are appropriate for relative abundance data. In particular, these metrics expect count data (e.g., read counts) corresponding to the number of occurrences of each category (e.g., each microbe): menhinicks_richness, mcintoshs_evenness, mcintoshs_dominance, margalefs_richness, and fishers_alpha.

Value

numeric vector with alpha diversity value.

Examples

Most metrics just require an input vector of abundances.
Test_abun <- c(0, NA, 1, 2, 10, 4)
FuncDiv_alpha_metrics['"richness"'](Test_abun)

Note that the input for computing Faith's PD is different.
Get a randomly generated tree:
Test_tree <- ape::rtree(n = 50)
Test_present_tips <- c('t1', 't2', 't3')
FuncDiv_alpha_metrics['"faiths_pd"'](Test_present_tips, Test_tree)

func_abun_crossproduct

Utility function to get community-wide function abundance table

Description

Takes in table of function copy numbers across taxa and table of taxa abundances across samples. I.e., it represents the multiplication of the function copy numbers by the abundances of the taxa within each sample.

Usage

func_abun_crossproduct(func_tab, abun_tab)

Arguments

func_tab data.frame object containing function copy numbers, with rows as functions and columns as taxa.

abun_tab data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples.

Value

data.frame representing the unnormalized community-wide abundances of functions across samples.
multitab_to_contrib

Utility function to convert from multi-table objects to contributional table

Description

Converts from separate taxa abundance and function copy number table input style to contributional-type table (i.e., a single, long table with joint taxa/function information).

Usage

```
multitab_to_contrib(
  func_tab,
  abun_tab,
  ncores = 1,
  samp_colname = "sample",
  func_colname = "function.",
  abun_colname = "taxon_abun",
  taxon_colname = "taxon",
  copy.num_colname = "genome_function_count"
)
```

Arguments

- `func_tab` : data.frame object containing function copy numbers, with rows as functions and columns as taxa.
- `abun_tab` : data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples.
- `ncores` : integer specifying number of cores to use for parallizable steps.
- `samp_colname` : sample id column name of contrib_tab output data.frame.
- `func_colname` : function id column name of contrib_tab output data.frame.
- `abun_colname` : taxonomic abundance (within each sample) column name of contrib_tab output data.frame.
- `taxon_colname` : taxon id column name of contrib_tab output data.frame.
- `copy.num_colname` : function copy number (within each taxa) column name of contrib_tab output data.frame.

Value

data.frame in contributional format (i.e., single, long-format version of both input tables).
subset_func_and_abun_tables

Utility function to subset function copy number and taxonomic abundance tables

Description

The input tables will be returned except subset to the same taxa ids. Any functions and/or samples that are totally absent after this step will be dropped.

Usage

subset_func_and_abun_tables(func_table, abun_table, func_ids = NULL)

Arguments

- func_table: data.frame object containing function copy numbers, with rows as functions and columns as taxa.
- abun_table: data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples.
- func_ids: optional character vector of function ids to retain (all other rows of func_tab will be removed).

Value

list containing subsetted function and abundance data.frames as separate elements.
Index

* datasets
 FuncDiv_alpha_metrics, 8

alpha_div_contrib, 2
beta_div_contrib, 4
compute_alpha_div, 6
contrib_to_multitab, 7
func_abun_crossproduct, 9
FuncDiv_alpha_metrics, 8
multitab_to_contrib, 10
subset_func_and_abun_tables, 11