Package ‘FunnelPlotR’

February 25, 2020

Type Package
Title Funnel Plots for Indirectly-Standardised Ratios
Version 0.2.3
Maintainer Chris Mainey <chris.mainey@uhb.nhs.uk>
License MIT + file LICENSE
URL https://chrismainey.github.io/FunnelPlotR,
 https://github.com/chrismainey/FunnelPlotR
BugReports https://github.com/chrismainey/FunnelPlotR/issues
Encoding UTF-8
LazyData true
Imports ggrepel, scales
Depends ggplot2, dplyr, rlang
RoxygenNote 7.0.2
Suggests testthat (>= 2.1.0), knitr, rmarkdown, COUNT, tidyR
VignetteBuilder knitr
NeedsCompilation no
Author Chris Mainey [aut, cre] (<https://orcid.org/0000-0002-3018-6171>),
 Matthew Bass [ctb]
Repository CRAN
Date/Publication 2020-02-25 15:40:02 UTC

R topics documented:

funnel_plot ... 2

Index 5
funnel_plot

Funnel Plots for Indirectly-Standardised Ratios

Description

An implementation of funnel plots for indirectly standardised ratios, as described by Spiegelhalter (2005) <doi:10.1002/sim.1970>. There are several parameters for the input, with the assumption that you will want smooth, overdispersed, funnel control limits. Limits may be inflated for overdispersion based on the DerSimonian Laird τ^2 additive random effects models, originally described for meta-analysis.

Usage

funnel_plot(
 numerator,
 denominator,
 group,
 label_outliers = 99,
 Poisson_limits = FALSE,
 OD_adjust = TRUE,
 method = "SHMI",
 Winsorise_by = 0.1,
 title = "Untitled Funnel Plot",
 multiplier = 1,
 x_label = "Expected",
 y_label = "Standardised Ratio",
 xrange = "auto",
 yrange = "auto",
 return_elements = c("plot", "data", "limits")
)

Arguments

- **numerator**: A vector of the numerator (observed events/counts) values. Used as numerator of the Y-axis
- **denominator**: A vector of denominator (predicted/population etc). Used as denominator of the Y-axis and the scale of the x-axis
- **group**: A vector of group names as character or factor. Used to aggregate and group points on plots
- **label_outliers**: Add group labels to outliers on plot. Accepted values are: 95 or 99 corresponding to 95% or 99.8% quantiles of the distribution. Default=99
- **Poisson_limits**: Draw exact Poisson limits, without overdispersion adjustment. (default=FALSE)
- **OD_adjust**: Draw overdispersed limits using hierarchical model, assuming at group level, as described in Spiegelhalter (2012) <doi:https://doi.org/10.1111/j.1467-985X.2011.01010.x>. It calculates a second variance component τ for the ‘between’ standard deviation (Tau2), that is added to the ‘within’ standard deviation (sigma) (default=TRUE)
funnel_plot

method
Either "CQC" or "SHMI" (default). There are a few methods for standardisation. "CQC"/Spiegelhalter uses a square-root transformation and Winsorises (rescales the outer most values to a particular percentile). SHMI, instead, uses log-transformation and doesn’t Winsorise, but truncates the distribution before assessing overdispersion. Both methods then calculate a dispersion ratio (phi) on this altered dataset. This ratio is then used to scale the full dataset, and the plot is drawn for the full dataset.

Winsorise_by
Proportion of the distribution for winsorisation/truncation. Default is 10% (0.1). Note, this is applied in a two-sided fashion, e.g. 10% refers to 10% at each end of the distribution (20% winsorised/truncated)

title
Plot title

multiplier
Scale relative risk and funnel by this factor. Default to 1, but 100 sometime used, e.g. in some hospital mortality ratios.

x_label
Title for the funnel plot x-axis. Usually expected deaths, readmissions, incidents etc.

y_label
Title for the funnel plot y-axis. Usually a standardised ratio.

xrange
Manually specify the y-axis min and max, in form c(min, max), e.g. c(0, 200). Default, "auto", allows function to estimate range.

yrange
Manually specify the y-axis min and max, in form c(min, max), e.g. c(0.7, 1.3). Default, "auto", allows function to estimate range.

return_elements
a vector of elements to return, options include "plot" for ggplot2 object, "data" for data after processing, and "limits" for control limit lookup table used in the plot. Default is all three objects.

Details
Outliers are marked based on the grouping, and controlled by ‘label_outliers’. Overdispersion can be factored in based on the methods in Spiegelhalter et al (2012) <doi:https://doi.org/10.1111/j.1467-985X.2011.01010.x>, set ‘OD_adjust’ to FALSE to suppress this.
To use Poisson limits set ‘Poisson_limits=TRUE’. This uses 95 It deliberately avoids red-amber-green colouring, but you could extract this from the ggplot object and change manually if you like.

Value

See Also
Examples

#' # We will use the 'medpar' dataset from the 'COUNT' package.
#' # Little reformatting needed

library(COUNT)
data(medpar)
medpar$provnum<-factor(medpar$provnum)
medpar$los<-as.numeric(medpar$los)

mod<- glm(los ~ hmo + died + age80 + factor(type)
 , family="poisson", data=medpar)
summary(mod)

#' # Get predicted values for building ratio
medpar$prds<- predict(mod, type="response")

#' # Draw plot, returning just the plot object
fp<- funnel_plot(denominator=medpar$prds, numerator=medpar$los, group = medpar$provnum, return_elements=c("plot"))
fp
Index

funnel_plot, 2