Package ‘FuzzyDBScan’

January 10, 2023

Title Run and Predict a Fuzzy DBScan
Version 0.0.3

Description An interface for training Fuzzy DBScan with both Fuzzy Core and Fuzzy Border. Therefore, the package provides a method to initialize and run the algorithm and a function to predict new data w.t.h. of 'R6'. The package is build upon the paper "Fuzzy Extensions of the DBScan algorithm" from Ienco and Bordogna (2018) <doi:10.1007/s00500-016-2435-0>. A predict function assigns new data according to the same criteria as the algorithm itself. However, the prediction function freezes the algorithm to preserve the trained cluster structure and treats each new prediction object individually.

License LGPL-3
Depends R (>= 4.0.0)
Imports ggplot2, R6, data.table, dbscan, checkmate
Suggests testthat (>= 3.0.0), rmarkdown, factoextra, spelling
Encoding UTF-8
RoxygenNote 7.2.2
Language en-US
NeedsCompilation no

Author Henri Funk [aut, cre]
Maintainer Henri Funk <Henri.Funk@stat.uni-muenchen.de>
Repository CRAN
Date/Publication 2023-01-10 13:53:18 UTC

R topics documented:

Fuzzy_DBScan ... 2

Index 5
Description

This object implements fuzzy DBScan with both, fuzzy cores and fuzzy borders. Additionally, it provides a predict function.

Details

A method to initialize and run the algorithm and a function to predict new data. The package is build upon the paper “Fuzzy Extensions of the DBScan algorithm” from Ienco and Bordogna. The predict function assigns new data based on the same criteria as the algorithm itself. However, the prediction function freezes the algorithm to preserve the trained cluster structure and treats each new prediction object individually. Note, that border points are included to the cluster.

Public fields

dta data.frame | matrix
 The data to be clustered by the algorithm. Allowed are only numeric columns.

eps numeric
 The size (radius) of the epsilon neighborhood. If the radius contains 2 numbers, the fuzzy cores are calculated between the minimum and the maximum radius. If epsilon is a single number, the algorithm looses the fuzzy core property. If the length of pts is also 1L, the algorithm equals to non-fuzzy DBScan.

pts numeric
 number of maximum and minimum points required in the eps neighborhood for core points (excluding the point itself). If the length of the argument is 1, the algorithm looses its fuzzy border property. If the length of eps is also 1L, the algorithm equals to non-fuzzy DBScan.

clusters factor
 Contains the assigned clusters per observation in the same order as in dta.

dense numeric
 Contains the assigned density estimates per observation in the same order as in dta.

point_def character
 Contains the assigned definition estimates per observation in the same order as in dta. Possible are "Core Point", "Border Point" and "Noise".

results data.table
 A table where each column indicates for the probability of the new data to belong to a respective cluster.

Methods

Public methods:

- FuzzyDBScan$new()
- FuzzyDBScan$predict()
Method `new()`: Create a FuzzyDBScan object. Apply the fuzzy DBScan algorithm given the data `dta`, the range of the radius `eps` and the range of the Points `pts`.

Usage:
FuzzyDBScan$new(dta, eps, pts)

Arguments:
- `dta` `data.frame` | `matrix`
 The data to be clustered by the algorithm. Allowed are only numeric columns.
- `eps` numeric
 The size (radius) of the epsilon neighborhood. If the radius contains 2 numbers, the fuzzy cores are calculated between the minimum and the maximum radius. If epsilon is a single number, the algorithm looses the fuzzy core property. If the length of `pts` is also 1L, the algorithm equals to non-fuzzy DBScan.
- `pts` numeric
 number of maximum and minimum points required in the eps neighborhood for core points (excluding the point itself). If the length of the argument is 1, the algorithm looses its fuzzy border property. If the length of `eps` is also 1L, the algorithm equals to non-fuzzy DBScan.

Method predict(): Predict new data with the initialized algorithm.

Usage:
FuzzyDBScan$predict(new_data, cmatrix = TRUE)

Arguments:
- `new_data` `data.frame` | `matrix`
 The data to be predicted by the algorithm. Allowed are only numeric columns which should match to `self$dta`.
- `cmatrix` logical
 Indicating whether the assigned cluster should be returned in form of a matrix where each column indicates for the probability of the new data to belong to a respective cluster. The object will have the same shape as the `results` field. If set to `FALSE` the shape of the returned assigned clusters is a two-column `data.table` with one column indicating the assigned cluster and the second column indicating the respective probability of the new data.

Method plot(): Plot clusters and soft labels on two features.

Usage:
FuzzyDBScan$plot(x, y)

Arguments:
- `x` character
 Feature to plot on the x-axis.
- `y` character
 Feature to plot on the y-axis.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
FuzzyDBScan$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.
References

Examples

load factoextra for data and ggplot for plotting
library(factoextra)
dta = multishapes[, 1:2]
eps = c(0, 0.2)
pts = c(3, 15)
train DBScan based on data, ep and pts
cl = FuzzyDBScan$new(dta, eps, pts)
Plot DBScan for x and y
library(ggplot2)
c1$plot("x", "y")
produce test data
x <- seq(min(dta$x), max(dta$x), length.out = 50)
y <- seq(min(dta$y), max(dta$y), length.out = 50)
p_dta = expand.grid(x = x, y = y)
predict on test data and plot results
p = cl$predict(p_dta, FALSE)
ggplot(p, aes(x = p_dta[, 1], y = p_dta[, 2], colour = as.factor(cluster))) +
 geom_point(alpha = p$dense)
Index

character, 2, 3

data.frame, 2, 3
data.table, 2, 3

factor, 2
Fuzzy_DBScan, 2
FuzzyDBScan (Fuzzy_DBScan), 2

logical, 3

matrix, 2, 3

numeric, 2, 3