Package ‘GADMTools’

October 9, 2019

Type Package
Title Easy Use of ‘GADM’ Maps
Version 3.7-2
Date 2019-10-08
Depends R (>= 3.5.0), sp, tidyverse, classInt, sf, rgdal
Imports methods, RColorBrewer, maptools, stringr, raster, rosm, lattice, jsonlite, gridExtra, rgeos, ggmap, ggspatial, ggplot2, dplyr, prettymapr
Suggests knitr, rmarkdown, kableExtra, mapproj, tidyR, testthat
License GPL-3
URL https://github.com/Epiconcept-Paris/GADMTools
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation no
Author Jean Pierre Decorps [aut, cre], Morgane Vallee [ctb]
Maintainer Jean Pierre Decorps <jp.decorps@epiconcept.fr>
Repository CRAN
Date/Publication 2019-10-09 13:40:06 UTC

R topics documented:

GADMTools-package .. 2
choropleth ... 3
classDots ... 5
Corsica ... 6
dotDensity ... 7
GADMTools-package

Easy use of GADM shapefiles

Description

See: https://gadm.org/

GADM is a spatial database of the world’s administrative boundaries for use in GIS and similar software. Administrative areas in this database are countries and lower level subdivisions such as provinces, departments, cantons, etc.

With GADMTools, a wrapper for GADM shapefiles, you can easily manipulate, assemble, and create subsets of these objects.

GADMTools can use 2 shapefile formats, SpatialPolygonsDataFrame and Simple Features (SF), both provided by GADM as .rds files.

NB: the SF format is supported only from version 3.5 of GADMTools.
 choropleth

Details

 Package: GADMTools
 Type: Package
 Version: 3.7-1
 Date: 2019-10-08
 License: GPL-3

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>
Maintainer: Jean Pierre Decorps <jp.decorps@epiconcept.fr>

choropleth

Draw a choropleth on selected regions

Description

Drawing a choropleth (colored regions based on data values) with GADMTools is straightforward. You just have to select your shape(s) file(s) with `gadm_loadcountries`, load your data from a csv file for example, and call the choropleth function with the right arguments.

Usage

`choropleth (x, data, value=NULL, breaks = NULL, steps = 5, adm.join=NULL, legend = NULL, labels = NULL, palette=NULL, title="", subtitle = NULL, caption = NULL)`

Arguments

x
Object `gadm_sf` or `gadm_sp`
data data.frame - data to plot
value String - the name of the column in the data.frame we want to plot (eg: an incidence in epidemiology studies)
breaks Vector of breaks values or a String name of a function from `classIntervals` (one of "sd", "equal", "pretty", "quantile", "kmeans", "hclust", "bclust", "fisher", or "jenks")
steps Integer - number of breaks. Default = 5. If `breaks` is NOT NULL this value is used internally with `cut()`.
adm.join
String - the name in your dataset joined with the field NAME_X of the map, where X is the level of the administrative boundaries. For instance if the level is about 'Districts' of a country, and your dataset has a field named "Study_Location" containing a list of districts, just do adm.join = "Study_Location".

legend
String - legend title. Default NULL.

labels
String vector labels for the legend. Default NULL.

palette
String - An RColorBrewer palette name or a String vector vector of colors. Default NULL.

title
String - Title of the plot. Default is an empty string.

subtitle
String - subtitle of the plot. Default is NULL.

caption
String - caption of the plot. Default is NULL.

Details

Since this release, it's no longer necessary to rename the field of your dataset that is joined with the right field of the map. Just write adm.join="data_field_to_link".

Value

Object ggplot2

Note

—-

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

—-

See Also

classIntervals

Examples

library(GADMTools)
data("Corsica")

Cantons <- listNames(Corsica, 4)

pop <- floor(runif(length(Cantons), min=15200, max=23500))
DAT <- data.frame(Cantons, pop)

choropleth(Corsica, DAT,
 adm.join = "Cantons",
 value = "pop",
 breaks = "sd",
)
classDots

```r
palette="Oranges",
legend = "Population",
title="Population Cantons de Corse")
```

classDots

Plot dots on a map with values between different fixed classes.

Description

Plot values as discretized scale circles on a map.

Usage

```r
classDots(x, data, color="red", value = NULL, breaks = NULL,
          steps = 5, labels = NULL, opacity = 0.5, title="",
          note=NULL, legend = NULL)
```

Arguments

- **x**: Object `gadm_sp`
- **data**: Object `data.frame` with columns 'latitude' and 'longitude'
- **color**: a valid color
- **value**: Character Name of a column of the data.frame.
- **breaks**: vector of breaks
- **steps**: unused
- **labels**: vector of labels
- **opacity**: float Background opacity of the filled circles
- **title**: Character The title of the plot
- **note**: Character Add an annotation
- **legend**: Character The title of the legend

Details

Value

- **Object** `ggplot2`

Note

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>
Corsica

References

See Also

Examples

library(GADMTools)
data("Corsica")

Corse <- gadm_union(Corsica)
longitude <- runif(6, min=8.74, max = 9.25)
latitude <- runif(6, min=41.7, max = 42.6)
Cases <- runif(6, 25, 112)
DAT <- data.frame(longitude, latitude, Cases)

classDots(Corse, DAT, color="blue", value = "Cases", breaks = NULL,
esteps = 4, labels = NULL, opacity = 0.5, title="",
note=NULL, legend = NULL)

Corsica
Map of Corse (FRA) @ level 4 (Cantons)

Description

This map has been subsetted from the FRA map @ level 4.

Usage

data(Corsica)

Format

A gadm_sf object.

Examples

data("Corsica")
listNames(Corsica, 3)
Description
A dot-density map is one way to map aggregated spatial data without some of the distortions inher-
ent in choropleths.

Usage

dotDensity(map, data, adm.join = NULL, values = NULL,
cases.by.dots = 100, dot.size = .25, labels = NULL,
palette = NULL, title = NULL, subtitle = NULL,
caption = NULL)

Arguments

map Object gadm_sf
data data.frame - data to plot
values string - the names of the columns in the data.frame we want to plot. (eg: number of cases)
cases.by.dots integer of breaks values
dot.size numeric - size of dots. Default = 0.25.
adm.join string - the name in your dataset joined with the field NAME_X of the map, where X is the level of the administrative boundaries. For instance if the level is about 'Districts' of a country, and your dataset has a field named "Study_Location" containing a list of districts, just do adm.join = "Study_Location".
labels string vector labels for the legend. Default NULL. If NULL values are used as labels
palette string - An RColorBrewer palette name or a string vector vector of colors. Default NULL.
title string - title of the plot. Default is NULL
subtitle string - subtitle of the plot. Default is NULL.
caption string - caption of the plot. Default is NULL.

Details

Value

Object ggplot2
Note

dotDensity only works with maps loaded with gadm_sf_loadCountries

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

classIntervals

Examples

library(GADMTools)
data("Corsica")

Creates test data.frame (fake data) --------------------------------------
--
VAR_1 <- as.integer(runif(n = 43, min = 800, max = 15800))
VAR_2 <- as.integer(runif(n = 43, min = 1000, max = 15800))
VAR_3 <- as.integer(runif(n = 43, min = 1500, max = 15800))
Cantons <- listNames(Corsica, 4)
DF <- data.frame(Cantons, VAR_1, VAR_2, VAR_3, stringsAsFactors = FALSE)
dotDensity(Corsica,
 DF,
 adm.join="Cantons",
 values = c("VAR_1", "VAR_2", "VAR_3"),
 labels = c("H1N1", "H1N2", "H2N2"),
 palette = c("#ffff00", "#ffaa00", "#FF3200"))

dots

Plot dots on a map

Description

Plot points on a map with different colors and shapes.

Usage

dots(x, points, color="red", size = 8, value = NULL,
 breaks = NULL, steps = 5, palette = NULL, labels = NULL, strate = NULL,
 title="", subtitle = "", caption = "", legend = NULL, note=NULL)
arguments

- **x**: Object `gadm_sp` or `gadm_sf`
- **points**: Object data.frame with columns 'latitude' and 'longitude'
- **color**: a valid color
- **size**: integer size of point
- **value**: Character Name of a column in the data.frame. If not null, colored dots are displayed according to the value.
- **breaks**: vector of breaks
- **steps**: Integer Number of breaks for the value field.
- **palette**: a valid palette
- **labels**: vector of labels
- **strate**: Character name of a column in the data.frame. If not null, display dots with different shapes according to the value.
- **title**: Character title of the plot
- **subtitle**: Character subtitle of the plot
- **caption**: Character caption of the plot
- **legend**: Character The title of the legend
- **note**: Character Add an annotation

Details

Value

Object `ggplot2`

Note

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

[RColorBrewer](#)
Examples

```r
library(GADMTools)

data("Corsica")

longitude <- runif(6, min=8.74, max = 9.25)
latitude <- runif(6, min=41.7, max = 42.6)
Cases <- runif(6, 25, 112)
DAT <- data.frame(longitude, latitude, Cases)

dots(Corsica, DAT, color="red", size = 8, value = "Cases")
```

Fast.choropleth

Draw a choropleth on selected regions with lattice.

Description

Drawing a choropleth (colored regions based on data values) with GADMTools is straightforward. You just have to select your shape(s) file(s) with `gadm_loadcountries`, load your data from a csv file for example, and call the fast.choropleth function with the right arguments. fast.choropleth does not use ggplot2 but lattice, so it is very fast.

Usage

```r
fast.choropleth(x, data, value=NULL, breaks = NULL, steps = 5,
adm.join=NULL, legend = NULL, labels = NULL, palette=NULL,
title="")
```

Arguments

- **x**
 Object gadm_sp

- **data**
 data.frame - data to plot

- **value**
 String - the name of the column in the data.frame we want to plot (eg: an incidence in epidemiology studies)

- **breaks**
 Integer - number of breaks. Default = 5. If breaks is NOT NULL this value is used internally with `cut()`.

- **steps**
 Integer - number of breaks. Default = 5. If breaks is NOT NULL this value is used internally with `cut()`.

- **adm.join**
 String - the name in GADM spdf dataset which will be joined with a column of the data.

- **legend**
 String - legend title. Default NULL.

- **labels**
 String vector labels for the legend. Default NULL

- **palette**
 String - An RColorBrewer palette name or a String vector vector of colors. Default NULL.

- **title**
 String - Title of the plot. Default is an empty string.
Details

Value

Object a lattice plot of class "trellis"

Note

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

classIntervals

Examples

MAP <- gadm_loadCountries("BEL", level = 3, simplify=0.01)
DAT = read.csv2("BE_clamydia_incidence.csv")
DAT <- rename(DAT, NAME_3 = district)
fast.choropleth(MAP, DAT,
adm.join = "NAME_3",
value = "rate03",
steps = 4,
breaks = "jenks",
palette="Greens",
legend = "Incidence",
title="Chlamydia incidence by Belgian district (2003)"

Description

GADM36SF data.frame of maps provided by gadm_org)

Dataset of description of all maps provided by gadm_org. This has been used to generate the vignette GADMTools_ISO_3166-1_alpha-3
gadm_crop

Usage

data(GADM36SF)

Format

A data.frame.

gadm_crop crop a region to a specific rectangle

Description

crop a region to a specific rectangle

Usage

gadm_crop(x, xmin, ymin, xmax, ymax)

Arguments

x gadm_sp or gadm_sf Object containing regions.
xmin numeric Longitude min
ymin numeric Latitude min
xmax numeric Longitude max
ymax numeric Latitude max

Value

Object gadm_sf or gadm_sp

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

Examples

library(GADMTools)
data("Corsica")

area <- gadm_crop(Corsica, xmin=9.3, ymin=42.96, xmax=9.566, ymax=43.02819)
plotmap(area)
gadm_getBackground
Gets tiles with 'rosm' from OpenStreetMap

Description

Load tiles from OpenStreetMap create and save a .tif file with assembled tiles. The bounding box is automatically retrieved from the GADM shapefile passed as argument. The .tif file is stored in the working directory.

Usage

```r
gadm_getBackground(x, name, type="osm", clip=TRUE)

gadm.getBackground(x, name, type="osm", clip=TRUE) # deprecated
```

Arguments

- `x`
 Object gadm_sf or gadm_sp (region that you want to add a background).

- `name`
 character the name of the TIFF file generated by this function. The .tif extension is automatically added.

- `type`
 Character type (default "osm") of the map provided by osm.types().

- `clip`
 boolean if TRUE (the default), background is clipped by the external border of the spatial object. If FALSE, spatial object is drawn upper the background using the full bounding box.

Value

Object As input, gadm_sf or gadm_sp

Note

gadm.getBackground() is deprecated, it will be removed in the next release. Please use gadm_getBackground()

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also

- osm.types
Examples

```r
# library(GADMTools)
# library(rosm)
# FRA = gadm_loadCountries("FRA", 2, basefile = "./")
# BRE = GADMTools::subset(FRA, level=1, regions=c("Bretagne"))
# BRE2 <- gadm_getBackground(BRE, "BRE", "osm")
# plotmap(BRE2, title = "Map of Bretagne (FRANCE)")
```

gadm_getBbox

get the bounding box of the map

Description

get the bounding box of the map

Usage

```r
gadm_getBbox(x)
```

Arguments

- `x` **Object** of class gadm_sf or gadm_sp

Value

vector of numeric values of:

- `xmin` minimum longitude
- `ymin` minimum latitude
- `xmax` maximum longitude
- `ymax` maximum latitude

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also

`gadm_crop`

Examples

```r
library(GADMTools)
data("Corsica")
gadm_getBbox(Corsica)
```
Description

Load one GADM stripped shapefiles from a local path for use with ggplot2.

Usage

gadm_loadStripped(name, level, basefile='/.')

Arguments

name Character vector of a named region. An ISO-3166-1 code or a custom name. You don’t have to specify the suffix (admX) nor the file extension (.rds).

level Integer the level of the administrative boundaries (0 is the country, higher values equal finer divisions)

basefile Character vector the path of the directory where shapefiles are stored. Default is "./"

Value

Object gadm_sp with stripped properties == TRUE

ISO-3166-1

Note

—

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

—

See Also

—
Examples

```r
# library(GADMTools)
# library(sp)
# BE <- gadm_loadStripped('BEL', level=2)
# plotmap(BE)
```

gadm_longTo360

Converts longitudes from -180° - 0° - 180° to 0° - 360°

Description

Converts longitudes of a GADM shapefile to a range of 0° - 360° using the modulo R function.

Usage

```r
gadm_longTo360(x)
```

Arguments

- **x**: Object `gadm_sf` or `gadm_sp`.

Value

- **Object**: `gadm_sp`

Note

For `gadm_sp` maps, the transformation is done only when rendering a graph. The original data are not modified. For `gadm_sf` maps, the internal geometry is modified.

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

Examples

```r
# library(GADMTools)
# MAP <- gadm_sf.loadCountries("FJI", level = 0)
# plotmap(MAP)
# MAP <- gadm_longTo360(MAP)
# plotmap(MAP)
```
gadm_plot

Draw a gadm_sf or gadm_sp object

Description

Draw a gadm_sf or gadm_sp object with ggplot2

Usage

```r
gadm_plot(x, title ="")
```

```r
plotmap(x, title ="") # deprecated
```

Arguments

- `x` *Object* gadm_sf or gadm_sp
- `title` *String* - Title of the plot. Default is an empty string

Value

Object ggplot2

Note

`plotmap()` is deprecated, it will be removed in the next release

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

Examples

```r
library(GADMTools)
data("Corsica")
gadm_plot(Corsica)
```
gadm_remove
Remove one or more regions from a map

Description
Remove the polygons of one or more regions from a map.

Usage

```r
gadm_remove(x, level=NULL, regions=NULL)
gadm.remove(x, level=NULL, regions=NULL) # deprecated
```

Arguments

- **x**
 Object gadm_sf or gadm_sp
- **level**
 Integer - level from which shapes are removed. If NULL, curent level is used.
- **regions**
 String - vector of regions to be removed

Value

Object - As input object, gadm_sf or gadm_sp.

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also

listNames

Examples

```r
library(GADMTools)
data("Corsica")

HCorse <- gadm_remove(Corsica, level=2, "Corse-du-Sud")
plotmap(HCorreo)
```
gadm_removeBackground
Removes the background of a map

Description
Removes the background previously loaded with **gadm_getBackground**. Original .tif file is not deleted.

Usage

```r
gadm_removeBackground(x)
gadm.removeBackground(x) # deprecated
```

Arguments

- **x**
 Object gadm_sp or gadm_sf of the region that you want to remove the background.

Value

Object gadm_sp or gadm_sf

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also

- **gadm_getBackground**

Examples

```r
# library(GADMTools)
# Loads France @ level 2 (departements)
# FRA <- gadm_sf.loadCountries("FRA", level = 2, basefile = "DATA/")
# FRA <- gadm_getBackground(FRA, name = "FRABGND", clip = FALSE)
# plotmap(FRA)
# FRA <- gadm_removeBackground(FRA)
# plotmap(FRA)
```
gadm_saveStripped

Save a stripped GADM object

Description

Save a stripped (with stripSP()) GADM object for later use it with ggplot2.

Usage

gadm_saveStripped(x,fname, basefile = './')

Arguments

x
Object gadm_sp with stripped property == TRUE
fname
String file name of a region. You don’t have to specify the suffix (admX) nor the file extension (.rds).
basefile
Character vector the path of the directory where shapefiles are stored. Default is "./"

Value

Boolean TRUE

Note

—

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

—

See Also

—

Examples

library(GADMTools)
library(sp)
BE <- gadm_loadCountries('BEL', level=2)
S_BE <- stripSP(BE)
gadm_saveStripped(S_BE, "BEL")
gadm_sf_import_shp read and import a file in shapefile format

Description

read and import a file in shapefile format (.shp,.dbf,.proj) and put it in gadm_sf format for use with GADMTools

Usage

gadm_sf_import_shp(dir, name, level, del = NULL,
 renamed = NULL, keepall = FALSE)

Arguments

dir Character path to the directory where .shp file is located (eg. "/")
name Character name of the .shp file without the extension (example: “india”)
level Integer the administrative level
del Character vector the variables (columns) to be deleted (optional if keepall == FALSE)
renamed Character vector the variables to be renamed (eg. the administrative fields in GADM are named NAME_X where X is the level, and the ISO code(3))
keepall Boolean if FALSE (default), allows to keep only the columns useful for GADMTools

Value

Object of class gadm_sf (Simple Features wrapper)

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

—–

Examples

library(GADMTools)
map <- gadm_sf_import_shp(dir="./", name = "india", level = 2,
del = c("DCODE", "NAME3", "SDCODE"),
renamed = c("ISO" = 'COUNTRY',
'NAME_0' = 'COUNTRY_LO',
'NAME_1' = 'NAME1',
'NAME_2' = 'NAME2'),
keepall = FALSE
gadm_sf_loadCountries

Load one or more GADM shapefiles

Description

Load one or more GADM shapefiles as Simple Features (SF) format from a local path or from a remote repository.

Usage

```r
gadm_sf_loadCountries(fileNames, level = 0, basefile="./", baseurl=GADM_SF_URL, simplify=NULL)
```

deprecated :
```r
gadm_sf.loadCountries(fileNames, level = 0, basefile="./", baseurl=GADM_SF_URL, simplify=NULL)
```

Arguments

- **fileNames**: Character vector of named regions. An ISO-3166-1 code or a custom name. You don’t have to specify the suffix (admX) nor the file extension (.rds).
- **level**: Integer the level of the administrative boundaries (0 is the country, higher values equal finer divisions)
- **basefile**: Character vector the path of the directory where shapefiles are stored. Default is "/".
- **baseurl**: Character vector The url of GADM files. Default is "https://biogeo.ucdavis.edu/data/gadm3.6/Rsf/
- **simplify**: Numeric Numerical tolerance value to be used by the Douglas-Peuker algorithm. Higher values use less polygon points (and less memory) and lower values use more polygon points (and more memory). We suggest not going higher than 0.025 in order for intra-country boundaries to align.

Value

Object of class gadm_sf (Simple Features wrapper)

Note

See: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 for a list of ISO3 codes or take a look on the vignette "GADMTools - ISO 3166-1 alpha-3".

gadm_sf.loadCountries() is deprecated, it will be removed in the next release. Please use gadm_sf_loadCountries()
gadm_showNorth

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References
—-

See Also
gadm_sp_loadCountries

Examples

library(GADMTools)
library(sp)
Belgium = gadm_sp_loadCountries("BEL", level=2, basefile="./")
plotmap(Belgium)

Description
display a north arrow on a plot (ggplot2)

Usage
gadm_showNorth(plot, where="br")

Arguments
plot ggplot2
where character location of the arrow. Can be:
 • "tl" - top left
 • "tr" - top right
 • "bl" - bottom left
 • "br" - bottom right (default)

Value
Object ggplot2

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>
Examples

```r
library(GADMTools)
data("Corsica")

plotmap(Corsica) %>% gadm_showNorth()
```

gadm_showScale

`display a scale on a plot`

Description

display a scale for measuring distances on a plot (ggplot2)

Usage

```r
gadm_showScale(plot, where="bl")
```

Arguments

- `plot`: ggplot2
- `where`: character location of the scale. Can be:
 - "tl" - top left
 - "tr" - top right
 - "bl" - bottom left (default)
 - "br" - bottom right

Value

Object ggplot2

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

Examples

```r
library(GADMTools)
data("Corsica")

plotmap(Corsica) %>% gadm_showScale()
```
gadm_sp_loadCountries Load one or more GADM shapefiles (SpatialPolygonsDataFrame)

Description

Load one or more GADM shapefiles as SpatialPolygonsDataFrame from a local path or from a remote repository.

Usage

```r
# deprecated
gadm_sp.loadCountries(fileNames, level = 0, basefile=GADM_BASE,
                      baseurl=GADM_URL, simplify=NULL)
```

Arguments

- **fileNames** Character vector of named regions. An ISO-3166-1 code or a custom name. You don’t have to specify the suffix (admX) nor the file extension (.rds).
- **level** Integer the level of the administrative boundaries (0 is the country, higher values equal finer divisions)
- **basefile** Character vector the path of the directory where shapefiles are stored. Default is "/GADM"
- **baseurl** Character vector The url of GADM files. Default is "https://biogeo.ucdavis.edu/data/gadm3.6/Rsp/"
- **simplify** Numeric Numerical tolerance value to be used by the Douglas-Peuker algorithm. Higher values use less polygon points (and less memory) and lower values use more polygon points (and more memory). We suggest not going higher than 0.025 in order for intra-country boundaries to align.

Value

- **Object** `gadm_sp`

ISO-3166-1

Note

`gadm_sp.loadCountries()` and `gadm.loadCountries()` are deprecated, they will be removed in the next release. Please use `gadm_sp_loadCountries()`
Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References
—-

See Also

gadm_sf.loadCountries

Examples

```
# library(GADMTools)
#
# Belgium = gadm_sp_loadCountries("BEL", level=2, basefile="./")
# plotmap(Belgium)
```

gadm_subset

Description

With subset you can extract one or more regions from a country at the current level.

Usage

```
gadm_subset(x, level = NULL, regions = NULL, usevar = NULL)
gadm.subset(x, level = NULL, regions = NULL, usevar = NULL) # deprecated
```

Arguments

- **x** is Object gadm_sf or gadm_sp
- **level** is Integer the level at which the regions are extracted from
- **regions** is character vector of named regions
- **usevar** is character name of an other var of the internal dataset of map

Value

Object As input object, gadm_sf or gadm_sp

Note

gadm.subset() is deprecated, it will be removed in the next release. Please use gadm_subset()
Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also
listNames

Examples
library(GADMTools)
data("Corsica")

Calvi <- gadm_subset(Corsica, 4, "Calvi")
plotmap(Calvi)

Description
This function merges regions by removing common borders.

Usage
gadm_union(x, level = 0, type = "?")
gadm.union(x, level = 0, type = "?") # deprecated

Arguments
x Object gadm_sf or gadm_sp containing regions.
level integer level @ union is processed. For gadm_sf objects only. For gadm_sp objects, union is processed on the whole map.
type character alternative name.

Value
Object same as input, gadm_sf or gadm_sp

Note
gadm.union() is deprecated, it will be removed in the next release. Please use gadm_union()

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>
grid.map

Examples

library(GADMTools)
data("Corsica")

plotmap(Corsica)

Corse <- gadm_union(Corsica, level=2)
plotmap(Corse)

grid.map

Arrange maps on a grid

Description

Allows you to arrange multiple maps into one image. This is useful for showing a country together with its territories in other parts of the world (ex: showing France and Reunion island) or placing two or more countries side by side.

Usage

grid.map(left, right, center=NULL, title=NULL)

Arguments

left

Object gadm_sp

right
data.frame - data to plot

center

String - an RColorBrewer palette name or a String vector vector of colors. Default NULL.

title

String - plot title. Default is an empty string.

Details

-

Value

Object ggplot2

Note

-

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>
isopleth

References

See Also

Examples

```r
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random, 
##-- or do help(data=index) for the standard data sets.
```

isopleth

`isopleth(x, data, palette=NULL, title="", subtitle = "", caption = "")`

Arguments

- `x` **Object** `gadm_sp`
- `data` **data.frame** - data to plot
- `palette` **String** - An RColorBrewer palette name or a **String vector** vector of colors. Default NULL.
- `title` **String** - Plot title. Default is an empty string.
- `subtitle` **String** - Plot subtitle. Default is an empty string.
- `caption` **String** - Plot caption. Default is an empty string.

Value

Object ggplot2

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>
Examples

```r
library(GADMTools)
data(Corsica)

longitude <- runif(6, min=8.74, max = 9.25)
latitude  <- runif(6, min=41.7, max = 42.6)
Cases <- runif(6, 25, 112)
DAT <- data.frame(longitude, latitude, Cases)

isopleth(Corsica, data = DAT, palette = "Blues")
```

json.choropleth

Create a geojson choropleth of selected regions.

Description

Drawing a choropleth (colored regions based on data values) with GADMTools is straightforward. You just have to select your shape(s) file(s) with `gadm_loadcountries`, load your data from a csv file for example, and call the `json.choropleth` function with the right arguments. `json.choropleth` create a GEOJSON file (output.json) that can be used with Leaflet library.

Usage

```r
json.choropleth (x, data, value=NULL, breaks = NULL, steps = 5,
adm.join=NULL, legend = NULL, labels = NULL, palette=NULL,
title="")
```

Arguments

- `x` **Object** `gadm_sp`
- `data` **data.frame** - data to plot
- `value` **String** - the name of the column in the data.frame we want to plot (eg: an incidence in epidemiology studies)
- `breaks` **Integer** - number of breaks. Default = 5. If `breaks` is **NOT NULL** this value is used internally with `cut()`.
- `steps` **String** - the name in GADM spdf dataset which will be joined with a column of the data.
- `legend` **String** - legend title. Default **NULL**.
- `labels` **String vector** labels for the legend. Default **NULL**
- `palette` **String** - An RColorBrewer palette name or a **String vector** vector of colors. Default **NULL**.
- `title` **String** - Title of the plot. Default is an empty string.
listNames

Description

Returns a list of the names associated with the particular administration level.

Usage

listNames(x, level = 0)

Arguments

- **x**
 Object - gadm_sf or gadm_sp

- **level**
 Integer - the value of the administration level to list. Attention: only the administrative levels that have been loaded in the loadCountries object can be listed. Names are given in the country’s language or English.
Details

Some GADM country maps provide five or more administrative levels.

Value

Character vector of names

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

Examples

library(GADMTools)
data("Corsica")
listNames(Corsica, level=3)
listNames(Corsica, level=4)

propDots

Plot proportionnal circles (dots) on a map

Description

Plot values as proportionnal circles on a map.

Usage

propDots(x, data, value, breaks=NULL, range=NULL,
 labels=NULL, color="red", title="",
 subtitle = "", caption = "", note=NULL)

Arguments

x Object gadm_sf or gadm_sp
data Object data.frame with columns 'latitude' and 'longitude'
value Character Name of a column of the data.frame.
b breaks a vector of breaks
range vector min, max
labels vector of labels
color a valid color
title Character title of the plot
subtitle Character subtitle of the plot
caption Character caption of the plot
note Character A note associated with the plot
saveAs

Value

Object ggplot2

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

See Also

classDots

Examples

library(GADMTools)
data("Corsica")

longitude <- runif(7, min=8.74, max = 9.25)
latitude <- runif(7, min=41.7, max = 42.6)
Cases <- runif(7, 25, 100)
DAT <- data.frame(longitude, latitude, Cases)

propDots(Corsica, data = DAT, value="Cases",
 breaks=c(0, 25, 50, 75, 100), range = c(25, 100))

saveAs

Save your own GADM shapefile as an rds file

Description

Save a GADM shapefile (.rds)

Usage

saveAs(x, name = NULL, directory = NULL)

Arguments

x Object - GADMWWrapper
name String - filename
directory String - path to an alternative directory

Details

If directory is NULL (default), the file is stored in the same directory as specified in basefile parameter of gadm_loadCountries or gt2.loadCountries

Value

saveAsStripped

Strip a gadm_sp object

Description
Strip a gadm_sp object (with property ‘stripped’ == FALSE) and save it stripped (with property ‘stripped’ == TRUE).

Usage
saveAsStripped(x, fname, name= NULL, basefile = './')

Arguments

- **x** Object gadm_sp with stripped property == FALSE
- **fname** String file name of the region to save. You don’t have to specify the suffix (admX) nor the file extension (.rds).
- **name** String the name of the field in spdf, like "NAME_1".
- **basefile** String the path of the directory where shapefiles are stored. Default is "/"

Value
Object gadm_sp with stripped property == TRUE
strippedExists

Note

Author(s)
Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

Examples

```r
# library(GADMTools)
# library(sp)
# BE <- gadm_loadCountries('BEL', level=2)
# saveAsStripped(BE, "BEL", level=1)
```

strippedExists

Test if a stripped gadm_sp object exists

Description

Test if a stripped gadm_sp object exists on the file system in the directory `basefile`

Usage

`strippedExists(name, level, basefile = './')`

Arguments

- `name`: Character vector of a named region. An ISO-3166-1 code or a custom name. You don’t have to specify the suffix (admX) nor the file extension (.rds).
- `level`: Integer the level of the administrative boundaries (0 is the country, higher values equal finer divisions)
- `basefile`: Character vector the path of the directory where shapefiles are stored. Default is "./"

Value

Boolean TRUE if the file exists, FALSE if not
Note

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

Examples

```r
# library(GADMTools)
# library(sp)
# if (strippedExists('BEL', level = 2) {
#   BE <- gadm_loadStripped("BEL", level=2)
# }
```

stripSP

Strip a gadm_sp object

Description

Strip a gadm_sp object (with property 'stripped' == FALSE) and return a stripped gadm_sp object (with property 'stripped' == TRUE)

Usage

`stripSP(x, level=NULL)`

Arguments

- **x**
 Object gadm_sp with property 'stripped' == FALSE
- **level**
 Int admin level to be stripped/extracted. If NULL, the current level is selected

Value

Object gadm_sp with property 'stripped' == TRUE

Note

vignette

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

Examples

library(GADMTools)
library(sp)
BE <- gadm_loadCountries('BEL', level=2)
Belgique <- stripSP(BE, level=2)

vignette Create a vignette

Description

Vignette will superimpose a region map over a larger (lower level) map.

Usage

vignette(main, region, maincolor = "black",
 regioncolor = "white", mainfill = "grey",
 regionfill = "black",
 mainsize = 1, regionsize = 0.5)

Arguments

main

Object gadm_sp

region

Object gadm_sp

maincolor

a valid color

regioncolor

a valid color

mainfill

a valid color

regionfill

a valid color

mainsize

Numeric border size

regionsize

Numeric border size

Details

—-
Value

Object ggplot2

Note

Author(s)

Jean Pierre Decorps <jp.decorps@epiconcept.fr>

References

See Also

Examples

```r
# library(GADMTools)
# library(sp)
# library(ggplot2)
# FR <- gadm_loadCountries("FRA", level=1, basefile="./")
# AU <- subset(FR, regions="Auvergne", level=1)
# vignette(FR, AU)
```
Index

*Topic ~documentation
choropleth, 3
classDots, 5
dotDensity, 7
dots, 8
fast.choropleth, 10
gadm_crop, 12
gadm_getBackground, 13
gadm_getBbox, 14
gadm_loadStripped, 15
gadm_longTo360, 16
gadm_plot, 17
gadm_remove, 18
gadm_removeBackground, 19
gadm_saveStripped, 20
gadm_showNorth, 23
gadm_showScale, 24
gadm_sp_loadCountries, 25
gadm_subset, 26
gadm_union, 27
grid.map, 28
isopleth, 29
json.choropleth, 30
listNames, 31
propDots, 32
saveAs, 33
saveAsStripped, 34
strippedExists, 35
stripSP, 36
vignette, 37

*Topic ~hplot
dots, 8
fast.choropleth, 10
gadm_plot, 17
grid.map, 28
isopleth, 29
vignette, 37

*Topic ~spatial
gadm_sf_loadCountries, 22

*Topic ~utilities
gadm_getBackground, 13
gadm_loadStripped, 15
gadm_longTo360, 16
gadm_removeBackground, 19
gadm_saveStripped, 20
gadm_sp_loadCountries, 25
gadm_union, 27
json.choropleth, 30
listNames, 31
saveAs, 33
saveAsStripped, 34
strippedExists, 35
stripSP, 36

*Topic datasets
Corsica, 6
GADM36SF, 11

choropleth, 3
classDots, 5, 33
classIntervals, 4, 8, 11, 31
Corsica, 6
dotDensity, 7
dots, 8
fast.choropleth, 10

gadm.getBackground
 (gadm_getBackground), 13
gadm.remove (gadm_remove), 18
gadm.removeBackground
 (gadm_removeBackground), 19
gadm.subset (gadm_subset), 26
gadm.union (gadm_union), 27
GADM36SF, 11
gadm.crop, 12, 14
gadm.getBackground, 13, 19
gadm.getBackground, 13, 19

39
gadm_loadStripped, 15
gadm_longTo360, 16
gadm_plot, 17
gadm_remove, 18
gadm_removeBackground, 19
gadm_saveStripped, 20

*gadm_sf.loadCountries, 26
*gadm_sf.loadCountries
 \(gadm_sf_loadCountries\), 22
*gadm_sf_import_shp, 21
*gadm_sf_loadCountries, 22
*gadm_showNorth, 23
*gadm_showScale, 24
*gadm_sp.loadCountries
 \(gadm_sp_loadCountries\), 25
*gadm_sp_loadCountries, 23, 25
*gadm_subset, 26
*gadm_union, 27

GADMTools (GADMTools-package), 2
GADMTools-package, 2
grid.map, 28

isopleth, 29

json.choropleth, 30

listNames, 18, 27, 31

osm.types, 13

*plotmap (gadm_plot), 17
*propDots, 32

RCOLORBrewer, 9

saveAs, 33
saveas (saveAs), 33
saveAsStripped, 34
strippedExists, 35
stripSP, 36

vignette, 37